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My Personal Background (from AHA to CHA)

• Trained as an abstract harmonic analyst (Advisor Hans Reiter)

• working on function spaces on locally compact groups, distribution theory

• turning to applications (signal processing, image processing), wavelets

• doing numerical work on scattered data approximation, Gabor analysis

• heading nowadays a group of some 20 researches at the University of
Vienna: www.nuhag.eu
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OUTLINE of the TALK:

1. short linear algebra background

2. Time-Frequency Analysis is often explained via Spectrogram

3. Gabor analysis has two aspects:

4. the synthetic viewpoint of Gabor: microtonal piano

5. the analysis viewpoint: recovery from sampled spectrogram

6. action on signals via multiplication of Gabor coefficient:

Gabor multipliers
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What is GABOR ANALYSIS about?

The original idea (D. Gabor, 1946) was to expand every signal into a sum
with uniquely determined coefficients, by choosing integer time-frequency
shifted copies of the normalized Gauss-function. Unfortunately there are
many problems, and one has to resort to TF-lattices of the form aZ× bZ,
with ab < 1, which gives us some ”redundancy”.
PROBLEMS:

1. we have to work in an infinite dimensional Hilbert space (L2(Rd));

2. the system is non-orthogonal (hence it is not clear how to get coefficients
a priori);

3. when we do computations we have to resort to “finite models”

4. how should one approximate the continuous situation by the finite one?
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CLAIM: What is really needed!

In contrast to all this the CLAIM is that just a bare-bone version of functional
analytic terminology is needed (including basic concepts from Banach space
theory, up to w∗-convergence of sequences and basic operator theory), and
that the concept of Banach Gelfand triples is maybe quite useful for this
purpose. So STUDENTS SHOULD LEARN ABOUT:

• refresh their linear algebra knowledge (ONB, SVD!!!, linear
independence, generating set of vectors), and matrix representations
of linear mappings between finite dimensional vector spaces;

• Banach spaces, bd. operators, dual spaces norm and w∗-convergence;

• about Hilbert spaces, orthonormal bases and unitary operators;

• about frames and Riesz basis (resp. matrices of maximal rank);
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Key Players for Time-Frequency Analysis

Time-shifts and Frequency shifts

Txf(t) = f(t− x)

and x, ω, t ∈ Rd
Mωf(t) = e2πiω·tf(t) .

Behavior under Fourier transform

(Txf )̂ = M−xf̂ (Mωf )̂ = Tωf̂

The Short-Time Fourier Transform

Vgf(λ) = Vgf(t, ω) = 〈f,MωTtg〉 = 〈f, π(λ)g〉 = 〈f, gλ〉, λ = (t, ω);
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A Typical Musical STFT
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Some algebra in the background: The Heisenberg group

Weyl commutation relation

TxMω = e−2πix·ωMωTx, (x, ω) ∈ Rd × R̂d.

{MωTx : (x, ω) ∈ Rd × R̂d} is a projective representation of Rd × R̂d on

L2(Rd). Heisenberg group H := {τMωTx : τ ∈ T, (x, ω) ∈ Rd × R̂d}

Schrödinger representation {τMωTx : (x, ω, τ) ∈ H} is a square-
integrable (irreducible) group representation of H on the Hilbert space
L2(Rd). Then the STFT Vgf is a representation coefficient.
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Moyal’s formula or orthogonality relations for STFTs:
Let f1, f2, g1, g2 be in L2(Rd). Then〈

Vg1f1, Vg2f2

〉
L2(R2d)

= 〈f1, f2〉L2(Rd)〈g2, g1〉L2(Rd).

Reconstruction formula
Let g, γ ∈ L2(Rd) with 〈g, γ〉 6= 0. Then for f ∈ L2(Rd) we have

f =
1

〈g, γ〉

∫∫
Rd×R̂d

Vgf(x, ω)π(x, ω)γdxdω.

So typically one chooses γ = g with ‖g‖2 = 1.

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective



11

Primer on Gabor analysis: Atomic Viewpoint

D.GABOR’s suggested to replace the continuous integral representation by
a discrete series and still claim that one should have a representation of
arbitrary elements of L2(R)!

Let g ∈ L2(Rd) and Λ a lattice in time-frequency plane Rd × R̂d.

f =
∑
λ∈Λ

a(λ)π(λ)g, for some a = (a(λ))λ∈Λ

is a so-called Gabor expansion of f ∈ L2(Rd) for the Gabor atom g.

1946 - D. Gabor: Λ = Z2 and Gabor atom g(t) = e−πt
2
.
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Examples of finite Gabor families
Signal length n = 240, lattice Λ with 320 = 4/3∗n [ 180 = 3/4∗n] points.
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Gabor atom, with canonical tight and dual Gabor atoms
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Gabor atom, with canonical tight and dual Gabor atoms
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The benefit of having a dual Gabor atom (and duality is a symmetric
relationship because the frame operator induced by t g̃ is just the inverse of
the frame operator!) is that one can use one for analysis and the other for
synthesis as follows:

Seen as a sampling problem, one reconstructs the signal f from the samples
of Vg(f) over Λ by the formula f = S−1S(f) =

∑
λ Vgf(λ)π(λ)g̃.

On the other hand, if one takes the atomic point of view, i.e. if one want to
fulfill Gabor’s wishes by providing in a most efficient ways coefficients for a
given function f in order to write it as an (unconditionally convergent) Gabor
sum, then one will prefer the formula f = S−1S(f) =

∑
λ Vg̃f(λ)π(λ)g.

There is also a symmetric way, of modifying both the analysis and synthesis
operator in order to (by choosing h = S−1/2g)

f =
∑
λ Vhf(λ)π(λ)h =

∑
λ〈f, hλ〉hλ.

This looks very much like an orthonormal expansion (although it is not),
and h is called a tight Gabor atom.
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A Discrete Version: Each Point ”is” a Lattice, n = 540

Separable TF−lattices for signal length 540
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Exact recovery for elements from a subspace

When looking at the above images it is natural to assume that one
can have perfect reconstruction of all the signals which are concentrated
with the region of interest (looked at from a time-frequency view-point).
Unfortunately no single function has its STFT concentrated (for whatever
window) in a bounded domain of the time-frequency plane, because that
would imply that such a function is both time- and frequency-limited
We are presently investigating (PhD thesis of Roza Acesca) a mathematical
clean description for the idea of functions of variable band-width. The
problem with such a concept is that it has to respect the uncertainty
principle (which for me implies: one cannot talk about the exact frequency
content of a function at a given time, at a precise frequency level!). Also
THERE IS NO SPACE of functions having a their spectrogram in a strip
(of variable width)!
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reconstruction from local STFT samples
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local part of spectrogram
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full spectrogram
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How can one localize a signal to a region of interest?

It is natural to restrict the (regular or irregular) Gabor expansion of a
given signal to the region of interest and take this as a kind of projection
operator. Alternatively one can take the full STFT and set it to zero outside
the region of interest. The disadvantage of such a procedure (which is simple
to implement!) is that fact that it does not really give us an (orthogonal)
projection operator. In other words, if we apply the same operation twice are
a few times there will still be further changes. In fact, the STFT-multipliers
(with some 0/1-mask) all are (mathematically) strict contractions, with a
maximal eigenvalue of maybe 0.99. Although iterated application of this
denoising procedure (by masking the spectrogram) appears to be useful in
many cases it is of interest to find a correct projection operator.
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Study of the localization operators: eigenvalues and eigenvectors
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localization of 50−dim. space
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Best approximation of a given matrix by Gabor multiplier

In many cases, even if the building blocks (gλ) of a Gabor frame are
(of course) a linear dependent set of atoms in our signal space, the
corresponding set of projection operators (Pλ), given by h 7→ 〈h, gλ〉gλ has
good chances to be a linear independent set (in the continuous case: a
Riesz basis within the class of Hilbert Schmidt operators, with the scalar
product 〈A,B〉HS = trace(AB∗)).
This means that the mapping from the sequence (mλ) to the operator

Th =
∑
λ

mλ〈h, gλ〉gλ =
∑
λ∈Λ

mλPλ(h)

is one to one, in other words, the “upper symbol” of a Gabor multiplier is
uniquely determined, and the set of Gabor multipliers is closed within the
space of all Hilbert Schmidt operators.
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Consequently every Hilbert Schmidt operator has a best approximation (in
the HS-norm) by a Gabor multiplier (with upper symbol (mλ ∈ `2(Λ).
Although Gabor multipliers with respect to ”nice atoms” g will have
matrices closely concentrated near the main diagonal (both in the time and
in the frequency representation!) it is not at all obvious, but still true
that the operator T can be identified (and this best approximation can be
determined) from the scalar products (〈T (gλ), gλ〉). This sequence is called
the “lower symbol” of the operator T .
In fact, this best approximation procedure extends to a much larger class
of symbols, including Gabor multipliers with just bounded symbols (mλ)
(which are not Hilbert Schmidt, but may be invertible, for example). In an
ongoing project with the EE Dept. (TU Vienna, Franz Hlawatsch) we are
studying the approximation of the inverse of a Gabor multiplier (which by
itself is NOT! a Gabor multiplier) or more general the inverse of a slowly
varying channel by a (generalized) Gabor multiplier. The idea being that
the implementation of such operators should be computationally cheap.
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Some idea about frames and frame multipliers

a frame of redundancy 18 in the plane
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• Typical questions of (classical and modern) Fourier analysis

• Fourier transforms, convolution, impulse response, transfer function

• The Gelfand triple (S,L2,S ′)(Rd), of Schwartz functions and tempered
distributions; maybe rigged Hilbert spaces;

WHAT WE WANT TO DO TODAY:

• The Banach Gelfand Triples (S0,L
2,S0

′)(Rd) and its use;

• various (unitary) Gelfand triple isomorphisms involving (S0,L
2,S0

′)

LET US START WITH SOME FORMAL DEFINITIONS:

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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Definition 1. A triple (B,H,B′), consisting of a Banach space B, which
is dense in some Hilbert space H, which in turn is contained in B′ is
called a Banach Gelfand triple.

Definition 2. If (B1,H1,B
′
1) and (B2,H2,B

′
2) are Gelfand triples then

a linear operator T is called a [unitary] Gelfand triple isomorphism if

1. A is an isomorphism between B1 and B2.

2. A is a [unitary operator resp.] isomorphism between H1 and H2.

3. A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.

The prototype is (`1, `2, `∞). w∗-convergence corresponds to coordinate
convergence in `∞. It can be transferred to “abstract Hilbert spaces” H.
Given any orthonormal basis (hn) one can relate `1 to the set of all elements
f ∈ H which have an absolutely convergent series expansions with respect
to this basis. In fact, in the classical case of H = L2(T), with the usual

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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Fourier basis the corresponding spaces are known as Wiener’s A(T). The
dual space is then PM , the space of pseudo-measures = F−1[`∞(Z)].
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Realization of a GT-homomorphism

Very often a Gelfand-Triple homomorphism T can be realized with the help
of some kind of “summability methods”. In the abstract setting this is a
sequence (or more generally a net) An, having the following property:

• each of the operators maps B′1 into B1;

• they are a uniformly bounded family of Gelfand-triple homomorphism on
(B1,H1,B

′
1);

• Anf → f in B1 for any f ∈ B1;

It then follows that the limit T (Anf) exists in H2 respectively in B′2 (in
the w∗-sense) for f ∈ H1 resp. f ∈ B′1 and thus describes concretely the
prolongation to the full Gelfand triple. This continuation is unique due to
the w∗-properties assumed for T (and the w∗-density of B1 in B′1).

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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Typical Philosophy

One may think of B1 as a (Banach) space of test functions, consisting of

“decent functions” (continuous and integrable), hence B1′ is a space of
“generalized functions, containing at least all the Lp-spaces as well as all
the bounded measures, hence in particular finite discrete measures (linear
combinations of Dirac measures).

At the INNER = test function level every “transformation” can be carried
out very much as if one was in the situation of a finite Abelian group, where
sums are convergent, integration order can be interchanged, etc.. At the
INTERMEDIATE level of the Hilbert space one has very often a unitary
mapping, while only the OUTER LAYER allows to really describe what is
going on in the ideal limit case, because instead of unit vectors for the
finite case one has to deal with Dirac measures, which are only found in the

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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big dual spaces (but not in the Hilbert space!).
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Introducing S0(Rd) = M1(Rd) := M0
1,1(Rd) (Fei, 1979)

A function in f ∈ L2(Rd) is (by definition) in the subspace S0(Rd) if for
some non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0 := ‖Vgf‖L1 =

∫∫
Rd×R̂d

|Vgf(x, ω)|dxdω <∞.

The space (S0(Rd), ‖ · ‖S0) is a Banach space, for any fixed, non-zero
g ∈ S0(Rd), and different windows g define the same space and equivalent
norms. Since S0(Rd) contains the Schwartz space S(Rd), any Schwartz
function is suitable, but also compactly supported functions having an
integrable Fourier transform (such as a trapezoidal or triangular function)
are suitable windows. Often the Gaussian is used as a window. Note that

Vgf(x, ω) = ̂(f · Txg)(ω), i.e., g localizes f nearx.

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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Lemma 1. Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0 = ‖f‖S0.

(2) f̂ ∈ S0(Rd), and ‖f̂‖S0 = ‖f‖S0.

Remark 2. Moreover one can show that S0(Rd) is the smallest non-
trivial Banach spaces with this property, i.e., it is continuously embedded
into any such Banach space. As a formal argument one can use the
continuous inversion formula for the STFT:

f =

∫
Rd× R̂d

Vgf(λ)π(λ)gdλ

which implies

‖f‖B ≤
∫
Rd× R̂d

|Vgf(λ)|‖π(λ)g‖B dλ = ‖g‖B‖f‖S0.

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

The Fourier transform is a prototype of a Gelfand triple isomorphism.
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EX1: The Fourier transform as Gelfand Triple Automorphism

Theorem 1. Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),

(2) F is a unitary map between L2(Rd) and L2(R̂d),

(3) F is a weak∗-weak∗ (and norm-to-norm) continuous isomorphism

between S0
′(Rd) and S0

′(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (1)

is valid for (f, g) ∈ S0(Rd) × S0
′(Rd), or (f, g) ∈ L2(Rd) × L2(Rd) or

other pairings from the Gelfand triple (S0,L
2,S0

′)(Rd).
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The properties of Fourier transform can be expressed by a Gelfand bracket

〈f, g〉(S0,L
2,S0
′) = 〈f̂ , ĝ〉(S0,L

2,S0
′) (2)

which combines the functional brackets of dual pairs of Banach spaces and
of the inner-product for the Hilbert space.

One can characterize the Fourier transform as the uniquely
determined unitary Gelfand triple automorphism of (S0,L

2,S0
′)

which maps pure frequencies into the corresponding Dirac
measures (and vice versa). 1

One could equally require that TF-shifted Gaussians are mapped into FT-
shifted Gaussians, relying on F(MωTxf) = T−ωMx(Ff) and the fact that

Fg0 = g0, with g0(t) = e−π|t|
2
.

1as one would expect in the case of a finite Abelian group.
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

Fourier transform is a prototype of a unitary Gelfand triple isomorphism.
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Examples of Gelfand Triple Isomorphisms

1. The standard Gelfand triple (`1, `2, `∞).

2. The family of orthonormal Wilson bases (obtained from Gabor families
by suitable pairwise linear-combinations of terms with the same absolute
frequency) extends the natural unitary identification of L2(Rd) with `1(I)
to a unitary Banach Gelfand Triple isomorphism between (S0,L

2,S0
′)

and (`1, `2, `∞)(I).

This isomorphism leeds to the observation that essentially the
identification of L(S0,S0

′) boils down to the identification of the bounded
linear mappings from `1(I) to `∞(I), which are of course easily recognized
as `∞(I × I) (the bounded matrices). The fact that tensor products of
1D-Wilson bases gives a characterization of (S0,L

2,S0
′) over R2d then

gives the kernel theorem.
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Automatic Gelfand-triple invertibility

Gröchenig and Leinert have shown (J. Amer. Math. Soc., 2004):
Theorem 2. Assume that for g ∈ S0(Rd) the Gabor frame operator

S : f 7→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd), then it is also invertible on S0(Rd)
and in fact on S0

′(Rd).
In other words: Invertibility at the level of the Hilbert space
automatically !! implies that S is (resp. extends to ) an isomorphism of
the Gelfand triple automorphism for (S0,L

2,S0
′)(Rd).

In a recent paper K. Gröchenig shows among others, that invertibility of S
follows already from a dense range of S(S0(Rd)) in S0(Rd).

Hans G. Feichtinger Gabor Analysis and Gabor Multipliers with a Musical Signal Processing Perspective



45

Robustness resulting from those three layers:

In the present situation one has also (in contrast to the “pure Hilbert space
case”) various robustness effects:

1) One has robustness against jitter error. Depending (only) on Λ and
g ∈ S0(Rd) one can find some δ0 > 0 such that the frame property is
preserved (with uniform bounds on the new families) if any point λ ∈ Λ is
not moved more than by a distance of δ0.

2) One even can replace the lattice generated by some non-invertible matrix
A (applied to Z2d) by some “sufficiently similar matrix B and also preserve
the Gabor frame property (with continuous dependence of the dual Gabor
atom g̃ on the matrix B) (joint work with N. Kaiblinger, Trans. Amer.
Math. Soc.).
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Stability of Gabor Frames with respect to Dilation (F/Kaibl.)

For a subspace X ⊆ L2(Rd) define the set

Fg =
{

(g, L) ∈ X ×GL(R2d) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

}
.

(3)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 3. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).

(ii) (g, L) 7→ g̃ is continuous mapping from FS0(Rd) into S0(Rd).

There is an analogous result for the Schwartz space S(Rd).

Corollary 3. (i) The set FS is open in S(Rd)×GL(R2d).
(ii) The mapping (g, L) 7→ g̃ is continuous from FS into S(Rd).
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On the continuous dependence of dual atoms on the TF-lattice
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THE END!

THANK you for your attention! HGFei

http://www.nuhag.eu
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