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Motivation: Where and How do we need Fourier Analysis?

• Where and how does Fourier Analysis appear (in our work)?

• At which level of generality (using Riemannian integrals, Lebesgue
integrals, generalized functions)? Which tools?

• In which setting should it be explained and in which order? (classical
books start from Fourier series, go then to FT on L1(Rd), FFT, maybe
tempered distributions);

• What is the natural setting: of course LCA groups? (according to
A. Weil); but or practical purposes often “elementary LCA groups”;

• What kind of Fourier Analysis is needed to teach engineers and our
students (impulse response, transfer function, filter, . . . );
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What do we have to teach our students?

The typical VIEW that well trained mathematicians working in the field may
have, is that ideally a student have to

• learn about Lebesgue integration (to understand Fourier intergrals);

• learn about Hilbert spaces and unitary operators;

• learn perhaps about Lp-spaces as Banach spaces;

• learn about topological (nuclear Frechet) spaces like S(Rd);

• learn about (tempered distributions);

• learn quasi-measures, to identify TLIS as convolution operators;
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Classical Approach to Fourier Analysis

• Fourier Series (periodic functions), summability methods;

• Fourier Transform on Rd, using Lebesgue integration;

• Theory of Almost Periodic Functions;

• Generalized functions, tempered distributions;

• Discrete Fourier transform, FFT;

• Abstract (>> Conceptional) Harmonic Analysis over LCA groups;

• . . . but what are the connections??
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Tempered distributions as unifying tool:

• Fourier Series (periodic functions), summability methods;

• Fourier Transform on Rd, using Lebesgue integration;

• Theory of Almost Periodic Functions;

• Generalized functions, tempered distributions ;

• Discrete Fourier transform, FFT;

• Conceptional Harmonic Analysis over LCA groups;
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What are our goals when doing Fourier analysis?

• find relevant “harmonic components” in [almost] periodic functions;

• define the Fourier transform (first L1(Rd), then L2(Rd), etc.);

• describe time-invariant linear systems as convolution operators;

• describe such system as Fourier multipliers (transfer function);

• deal with (slowly) time-variant channels (communications);

• describe changing frequency content (“musical transcription”);

• define FT on Lp-spaces, or more general functions/distributions;
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CLAIM: What is really needed!

In contrast to all this the CLAIM is that just a bare-bone version of functional
analytic terminology is needed (including basic concepts from Banach space
theory, up to w∗-convergence of sequences and basic operator theory), and
that the concept of Banach Gelfand triples is maybe quite useful for this
purpose. So STUDENTS SHOULD LEARN ABOUT:

• refresh their linear algebra knowledge (ONB, SVD, linear independence,
generating set of vectors), and matrix representations of linear mappings
between finite dimensional vector spaces;

• Banach spaces, operators, dual spaces, norm and w∗-convergence;

• about Hilbert spaces and unitary operators;

• about frames and Riesz basis (resp. matrices of maximal rank);
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A. Weil: LCA groups G is the natural setting!

First of all one has plenty of continuous functions k in Cc(G), i.e. with
compact support on such a “locally compact” group G, and the space
C0(G), the closure of those test functions in

(
Cb(G), ‖ · ‖∞

)
is non-trivial.

It is also clear what Ĝ, namely the group of all continuous (group)
homomorphism from G into the standard group T ( dual group).

Consequently we have (keeping the Riesz-representation theorem in mind)
Mb(G) is well defined as the space of bounded linear functionals on(
C0(G), ‖ · ‖∞

)
. As a dual Banach space it carries two topologies, the

norm topology (usually called the total variation norm on measures) and the
w∗-topology (vague convergence, e.g. used in the central limit theorem).

Among the most simply functionals in Mb(G) the Dirac measures δx, x ∈ G
which send f ∈ C0(G) into f(x). Note that δx → δ0 for x→ 0 only in the
w∗− topology. They are w∗-total in all of Mb(G).

Hans G. Feichtinger Banach Gelfand Triples for Classical Fourier Analysis



8

Now one could start talking about the existence of the (invariant) Haar
measure, L1(G) and L2(G) and the Fourier transform on those spaces.
However I prefer to introduce first convolution and the Fourier-Stieltjes
transform. Obviously we can define translation already now on C0(G) as
well as on Mb(G) (in the usual way, by adjoint action), let us call them Tz.
First of all one has to show (which is not difficult) that there is a
natural identification between the bounded linear operators on C0(G)
which commute with translations, the so-called translation invariant linear
systems and the elements of Mb(G), where we have exact correspondence
between δz ∈Mb(G) and the operator Tz.
Since these operators clearly form a (closed) subalgebra of the operator
algebra on C0(G) it is clear that we can transfer the multiplication of
operators to some natural “multiplication of bounded measures”, which we
call convolution and write ∗. Obviously we have

δx ∗ δy = δx+y.
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The “usual program”: FT on L1(G),L2(G) etc.

We define
(
L1(G), ‖ · ‖1

)
, the Fourier transform on it (using Lebesgue

integrals), and show - e.g. using classical summability arguments - that the
inversion can be done “somehow”.
Then one goes on to Plancherel’s theorem (by showing the the Fourier
transform is isometric on L1 ∩L2 and applying an approximation argument
for general elements f ∈ L2(G)).
Still the picture is quite a bit “imcomplete” an distorted if you look at it
from the modern time-frequency point of view (the roles of L1(Rd) on the
one side, naturally associated with convolution, has nothing comparable on
the “other” side).
Of course the theory by L. Schwartz, using the space S(Rd) of rapidly
decreasing functions and its dual, S(Rd) (the tempered distributions) give
a more beautiful picture. But if you have seen the complications of the
Schwartz-Bruhat space for LCA groups you will not propagate this approach.
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The classical view on the Fourier Transform

Schw L1

Tempered Distr.

L2

C0

FL1
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There is no time to go through the following list of topics!

• Typical questions of (classical and modern) Fourier analysis

• Fourier transforms, convolution, impulse response, transfer function

• The Gelfand triple (S,L2,S ′)(Rd), of Schwartz functions and tempered
distributions;

• The Banach Gelfand Triples (S0,L
2,S0

′)(Rd) and its use;

• various (unitary) Gelfand triple isomorphism involving (S0,L
2,S0

′)
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Definition 1. A triple (B,H,B′), consisting of a Banach space B, which
is dense in some Hilbert space H, which in turn is contained in B′ is
called a Banach Gelfand triple.

Definition 2. If (B1,H1,B
′
1) and (B2,H1,B

′
2) are Gelfand triples then

a linear operator T is called a [unitary] Gelfand triple isomorphism if

1. A is an isomorphism between B1 and B2.

2. A is a [unitary operator resp.] isomorphism between H1 and H2.

3. A extends to a weak∗ isomorphism as well as a norm-to-norm
continuous isomorphism between B′1 and B′2.

The prototype is (`1, `2, `∞). w∗-convergence corresponds to coordinate
convergence in `∞. It can be transferred to “abstract Hilbert spaces” H.
Given any orthonormal basis (hn) one can relate `1 to the set of all elements
f ∈ H which have an absolutely convergent series expansions with respect
to this basis. In fact, in the classical case of H = L2(T), with the usual
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Fourier basis the corresponding spaces are known as Wiener’s A(T). The
dual space is then PM , the space of pseudo-measures = F−1[`∞(Z)].
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Realization of a GT-homomorphism

Very often a Gelfand-Triple homomorphism T can be realized with the help
of some kind of “summability methods”. In the abstract setting this is a
sequence (or more generally a net) An, having the following property:

• each of the operators maps B′1 into B1;

• they are a uniformly bounded family of Gelfand-triple homomorphism on
(B1,H1,B

′
1);

• Anf → f in B1 for any f ∈ B1;

It then follows that the limit T (Anf) exists in H2 respectively in B′2 (in
the w∗-sense) for f ∈ H1 resp. f ∈ B′1 and thus describes concretely the
prolongation to the full Gelfand triple. This continuation is unique due to
the w∗-properties assumed for T (and the w∗-density of B1 in B′1).
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Typical Philosophy

One may think of B1 as a (Banach) space of test functions, consisting of
“decent functions” (continuous and integrable), hence B1

′ is a space of
“generalized functions, containing at least all the Lp-spaces as well as all
the bounded measures, hence in particular finite discrete measures (linear
combinations of Dirac measures).

At the test function level every “transformation” can be carried out very
much as if one was in the situation of a finite Abelian group, where sums are
convergent, integration order can be interchanged, etc.. At the intermediate
level of the Hilbert space on has very often a unitary mapping, while only
the out “layer” allows to really describe what is going on in the ideal limit
case, because instead of unit vectors for the finite case one has to deal with
Dirac measures, which are only found in the big dual spaces (but not in the
Hilbert space!).
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Using the BGTR-approach one can achieve . . .

• a relative simple minded approach to Fourier analysis (motivated by
linear algebra);

• results based on standard functional analysis only;

• provide clear rules, based on basic Banach space theory;

• comparison with extensions Q >> R resp. R >> C;

• provide confidence that “generalized functions” really exist;

• provide simple descriptions to the above list of questions!
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Key Players for Time-Frequency Analysis

Time-shifts and Frequency shifts

Txf(t) = f(t− x)
and x, ω, t ∈ Rd

Mωf(t) = e2πiω·tf(t) .
Behavior under Fourier transform

(Txf )̂ = M−xf̂ (Mωf )̂ = Tωf̂

The Short-Time Fourier Transform

Vgf(λ) = Vgf(t, ω) = 〈f,MωTtg〉 = 〈f, π(λ)g〉 = 〈f, gλ〉, λ = (t, ω);
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A Typical Musical STFT
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S0(Rd) = M1(Rd) := M0
1,1(Rd)

A function in f ∈ L2(Rd) is (by definition) in the subspace S0(Rd) if for
some non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0 := ‖Vgf‖L1 =
∫∫

Rd×R̂d
|Vgf(x, ω)|dxdω <∞.

The space (S0(Rd), ‖ · ‖S0) is a Banach space, for any fixed, non-zero
g ∈ S0(Rd), and different windows g define the same space and equivalent
norms. Since S0(Rd) contains the Schwartz space S(Rd), any Schwartz
function is suitable, but also compactly supported functions having an
integrable Fourier transform (such as a trapezoidal or triangular function)
are suitable windows. Often the Gaussian is used as a window. Note that

Vgf(x, ω) = ̂(f · Txg)(ω), i.e., g localizes f nearx.
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Lemma 1. Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0 = ‖f‖S0.

(2) f̂ ∈ S0(Rd), and ‖f̂‖S0 = ‖f‖S0.

Remark 2. Moreover one can show that S0(Rd) is the smallest non-
trivial Banach spaces with this property, i.e., it is continuously embedded
into any such Banach space. As a formal argument one can use the
continuous inversion formula for the STFT:

f =
∫

Rd× R̂d
Vgf(λ)π(λ)gdλ

which implies

‖f‖B ≤
∫

Rd× R̂d
|Vgf(λ)|‖π(λ)g‖B dλ = ‖g‖B‖f‖S0.
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Basic properties of S0(Rd) resp. S0(G)

THEOREM:

• For any automorphism α of G the mapping f 7→ α∗(f) is an isomorphism
on S0(G); [with(α∗f)(x) = f(α(x))], x ∈ G.

• FS0(G) = S0(Ĝ); (Invariance under the Fourier Transform);

• THS0(G) = S0(G/H); (Integration along subgroups);

• RHS0(G) = S0(H); (Restriction to subgroups);

• S0(G1)⊗̂S0(G2) = S0(G1 ×G2). (tensor product stability);
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Basic properties of S0
′(Rd) resp. S0

′(G)

THEOREM: (Consequences for the dual space)

• σ ∈ S(Rd) is in S0
′(Rd) if and only if Vgσ is bounded;

• w∗-convergence in S0
′(Rd) is equivalent to pointwise convergence of Vgσ;

•
(
S0
′(G), ‖ · ‖S0

′
)

is a Banach space with a translation invariant norm;

• S0
′(G) ⊆ S ′(G), i.e. S0

′(G) consists of tempered distributions;

• P (G) ⊆ S0
′(G) ⊆ Q(G); (sits between pseudo- and quasimeasures)

• T (G) = W (G)′ ⊆ S0
′(G); (contains translation bounded measures);
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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Basic properties of S0(Rd) continued

THEOREM:

• the Generalized Fourier Transforms, defined by transposition
〈σ̂, f〉 = 〈σ, f̂〉,

for f ∈ S0(Ĝ), σ ∈ S0
′(G), satisfies F(S0

′(G)) = S0
′(Ĝ).

• σ ∈ S0
′(G) is H-periodic, i.e. σ(f) = σ(Thf) for all h ∈ H, iff there

exists σ̇ ∈ S0
′(G/H) such that 〈σ, f〉 = 〈σ, THf〉 .

• S0
′(H) can be identified with a subspace of S0

′(G), the injection iH
being given by

〈iHσ, f〉 := 〈σ,RHf〉.
For σ ∈ S0

′(G) one has σ ∈ iH(S0
′(H)) iff supp(σ) ⊆ H.

Hans G. Feichtinger Banach Gelfand Triples for Classical Fourier Analysis



25

The Usefulness of S0(Rd)

Theorem 1. (Poisson’s formula) For f ∈ S0(Rd) and any discrete
subgroup H of Rd with compact quotient the following holds true: There
is a constant CH > 0 such that∑

h∈H

f(h) = CH
∑
l∈H⊥

f̂(l) (1)

with absolute convergence of the series on both sides.

By duality one can express this situation as the fact that the Comb-
distribution µZd =

∑
k∈Zd δk, as an element of S0

′(Rd) is invariant under
the (generalized) Fourier transform. Sampling corresponds to the mapping
f 7→ f · µZd =

∑
k∈Zd f(k)δk, while it corresponds to convolution with µZd

on the Fourier transform side = periodization along (Zd)⊥ = Zd of the
Fourier transform f̂ . For f ∈ S0(Rd) all this makes perfect sense.
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Regularizing sequences for (S0,L
2,S0

′)

Wiener amalgam convolution and pointwise multiplier results imply that

S0(Rd)·(S0
′(Rd)∗S0(Rd)) ⊆ S0(Rd) S0(Rd)∗(S0

′(Rd)·S0(Rd)) ⊆ S0(Rd)

e.g. S0(Rd) ∗ S0
′(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊆W (FL1, `∞).

Let now h ∈ FL1(Rd) be given with h(0) = 1. Then the dilated
version hn(t) = h(t/n) are a uniformly bounded family of multipliers
on (S0,L

2,S0
′), tending to the identity operator in a suitable way. Similarly,

the usual Dirac sequences, obtained by compressing a function g ∈ L1(Rd)
with

∫
Rd g(x)dx = 1 are showing a similar behavior: gn(t) = n · g(nt)

Following the above rules the combination of the two procedures, i.e.
product-convolution or convolution-product operators of the form provide
suitable regularizers: Anf = gn ∗ (hn · f) or Bnf = hn · (gn ∗ f).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

The Fourier transform is a prototype of a Gelfand triple isomorphism.
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EX1: The Fourier transform as Gelfand Triple Automorphism

Theorem 2. Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),

(2) F is a unitary map between L2(Rd) and L2(R̂d),

(3) F is a weak∗ (and norm-to-norm) continuous bijection from S0
′(Rd)

onto S0
′(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (2)

is valid for (f, g) ∈ S0(Rd) × S0
′(Rd), and therefore on each level of the

Gelfand triple (S0,L
2,S0

′)(Rd).
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The properties of Fourier transform can be expressed by a Gelfand bracket

〈f, g〉(S0,L
2,S0
′) = 〈f̂ , ĝ〉(S0,L

2,S0
′) (3)

which combines the functional brackets of dual pairs of Banach spaces and
of the inner-product for the Hilbert space.

One can characterize the Fourier transform as the uniquely
determined unitary Gelfand triple automorphism of (S0,L

2,S0
′)

which maps pure frequencies into the corresponding Dirac
measures (and vice versa). 1

One could equally require that TF-shifted Gaussians are mapped into FT-
shifted Gaussians, relying on F(MωTxf) = T−ωMxFf and the fact that

Fg0 = g0, with g0(t) = e−π|t|
2
.

1as one would expect in the case of a finite Abelian group.
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EX.2: The Kernel Theorem for general operators in L(S0,S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then

there exists a unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉

for f, g ∈ S0(Rd), where g ⊗ f(x, y) = g(x)f(y).
Formally sometimes one writes by “abuse of language”

Kf(x) =
∫

Rd
k(x, y)f(y)dy

with the understanding that one can define the action of the functional
Kf ∈ S0

′(Rd) as

Kf(g) =
∫

Rd

∫
Rd
k(x, y)f(y)dyg(x)dx =

∫
Rd

∫
Rd
k(x, y)g(x)f(y)dxdy.
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This result is the ”outer shell of the Gelfand triple isomorphism. The
“middle = Hilbert” shell which corresponds to the well-known result that
Hilbert Schmidt operators on L2(Rd) are just those compact operators

which arise as integral operators with L2(R2d)-kernels.

Again the complete picture can again be best expressed by a unitary Gelfand
triple isomorphism. We first describe the innermost shell:

Theorem 4. The classical kernel theorem for Hilbert Schmidt operators
is unitary at the Hilbert spaces level, with 〈T, S〉HS = trace(T ∗ S′) as
scalar product on HS and the usual Hilbert space structure on L2(R2d)
on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if the
corresponding operator K maps S0

′(Rd) into S0(Rd), but not only in
a bounded way, but also continuously from w∗−topology into the norm
topology of S0(Rd).
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Remark: Note that for ”regularizing” kernels in S0(R2d) the usual
identification (recall that the entry of a matrix an,k is the coordinate
number n of the image of the n−th unit vector under that action of the
matrix A = (an,k):

k(x, y) = K(δy)(x) = δx(K(δy).

Since δy ∈ S0
′(Rd) and consequently K(δy) ∈ S0(Rd) the pointwise

evaluation makes sense.

With this understanding our claim is that the kernel theorem provides
a (unitary) isomorphism between the Gelfand triple (of kernels)
(S0,L

2,S0
′)(R2d) into the Gelfand triple of operator spaces(
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

)
.
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The Kohn Nirenberg Symbol and Spreading Function

The Kohn-Nirenberg symbol σ(T ) of an operator T (respectively its
symplectic Fourier transform, the spreading distribution η(T ) of T ) can
be obtained from the kernel using some automorphism and a partial Fourier
transform, which again provide unitary Gelfand isomorphisms. In fact, the
symplectic Fourier transform is another unitary Gelfand Triple (involutive)

automorphism of (S0,L
2,S0

′)(Rd × R̂d).
Theorem 5. The correspondence between an operator T with kernel K
from the Banach Gelfand triple

(
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

)
and the corresponding spreading distribution η(T ) = η(K) in
S0
′(R2d) is the uniquely defined Gelfand triple isomorphism between(
L(S0

′(Rd),S0(Rd)), HS, L(S0(Rd),S0
′(Rd))

)
and (S0,L

2,S0
′)(Rd × R̂d)

which maps the time-frequency shift operators My ◦ Tx onto the Dirac
measure δ(x,y).
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Kohn-Nirenberg and Spreading Symbols of Operators

· Symmetric coordinate transform: TsF (x, y) = F (x+ y
2, x−

y
2)

· Anti-symmetric coordinate transform: TaF (x, y) = F (x, y − x)

· Reflection: I2F (x, y) = F (x,−y)

· partial Fourier transform in the first variable: F1

· partial Fourier transform in the second variable: F2

Kohn-Nirenberg correspondence
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1. Let σ be a tempered distribution on Rd then the operator with symbol σ

Kσf(x) =
∫

Rd
σ(x, ω)f̂(ω)e2πix·ωdω

is the pseudodifferential operator with Kohn-Nirenberg symbol σ.

Kσf(x) =
∫

Rd

(∫
Rd
σ(x, ω)e−2πi(y−x)·ωdω

)
f(y)dy

=
∫

Rd
k(x, y)f(y)dy.

2. Formulas for the (integral) kernel k: k = TaF2σ

k(x, y) = F2σ(η, y − x) = F−1
1 σ̂(x, y − x)

= σ̂(η, y − x)e2πiη·xdη.
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3. The spreading representation of the same operator arises from the
identity

Kσf(x) =
∫∫

R2d
σ̂(η, u)MηT−uf(x)dudη.

σ̂ is called the spreading function of the operator Kσ.

If f, g ∈ S(Rd), then the so-called Rihaczek distribution is defined by

R(f, g)(x, ω) = e−2πix·ωf̂(ω)g(x).

and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,R(f, g)〉 = 〈Kσf, g〉

is well-defined and describes a uniquely defined operator from the Schwartz
space S(Rd) into the tempered distributions S ′(Rd).
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Weyl correspondence

1. Let σ be a tempered distribution on Rd then the operator

Lσf(x) =
∫∫

R2d
σ̂(ξ, u)e−πiξ·uf(x)dudξ

is called the pseudodifferential operator with symbol σ. The map
σ 7→ Lσ is called the Weyl transform and σ the Weyl symbol of the
operator Lσ.

Lσf(x) =
∫∫

R2d
σ̂e−πiu·ξT−uMξf(x)dudξ

=
∫

Rd

(∫
Rd
σ̂(ξ, y − x)e−2πiξx+y

2

)
f(y)dy.
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2. Formulas for the kernel k from the KN-symbol: k = T −1
s F−1

2 σ

k(x, y) = F−1
1 σ̂

(x+ y

2
, y − x

)
= F2σ

(x+ y

2
, y − x

)
= F−1

2 σ
(x+ y

2
, y − x

)
= T −1

s F−1
2 σ.

3. 〈Lσf, g〉 = 〈k, g ⊗ f〉. (Weyl operator vs. kernel)

If f, g ∈ S(Rd), then the cross Wigner distribution of f, g is defined by

W (f, g)(x, y) =
∫

Rd
f(x+ t/2)g(x− t/2)e−2πiω·tdt = F2Ts(f ⊗ g)(x, ω).
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and belongs to S(R2d). Consequently, for any σ ∈ S ′(Rd)

〈σ,W (f, g)〉 = 〈Lσf, g〉

is well-defined and describes a uniquely defined operator Lσ from the
Schwartz space S(Rd) into the tempered distributions S ′(Rd).

(Uσ)(ξ, u) = F−1(eπiu·ξσ̂(ξ, u)).

KUσ = Lσ

describes the connection between the Weyl symbol and the operator kernel.

In all these considerations the Schwartz space S(Rd) can be correctly
replaced by S0(Rd) and the tempered distributions by S0

′(Rd).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0,L
2,S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

Fourier transform is a prototype of a unitary Gelfand triple isomorphism.
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Back to the Classical Problems: Fourier Inversion

We want to give an interpretation of the usual summability methods showing
the relevance of S0(Rd) in this business for a number of sufficient conditions
for f to belong to S0(Rd): in the case of d = 1 a sufficient condition is
that f is an integrable and piecewise linear function with not too irregular
nodes, or f, f ′, f ′′ ∈ L1(R). Recall S0 · FL1 ⊆ S0.
The typical reasoning where summability methods are applied is in order to
give the usual inversion formula f(t) =

∫
Rd f̂(s)e2πistds a meaning, even

if f̂ /∈ L1(Rd). This is done by multiplying it with some integrable and
continuous function h, with h(0) = 1, which is then dilated. In other words,
one replaces the integrand f(s) by f(s)h(%s), for some small value of %.
It can be shown for all the “good classical kernels” that they are of this
form, for some h ∈ S0(Rd). This means of course that s 7→ h(%s) is the
Fourier transform of some compressed S0(Rd) version St%g of some function
g (with ĝ = h) and hence St%g ∗ f converges to f in

(
L1(Rd), ‖ · ‖1

)
.
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Characterize translation invariant operators as convolution operators

Let us start by citing the introduction of Larsen’s book [?]: Given any pair
of Banach space of [equivalence classes] of functions on a locally compact
Abelian group one may ask: “what are the bounded linear operators between
them which are also commuting with translations”. Let us call those spaces
(B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)), and ask for HG(B1,B2):

HG(B1,B2) = {T : B1 7→ B2, bd. and linear, Tx ◦ T = T ◦ Tx, ∀x ∈ G }.
(4)

In most cases one shows that it equals HL1(B1,B2), defined as follows:

HL1(B1,B2) = {T : B1 7→ B2, bd. and linear, T (g∗f) = g∗Tf , ∀g ∈ L1 },
(5)

which will be called the space of all L1-module homomorphism between
(B1, ‖ · ‖(1)) and (B2, ‖ · ‖(2)) (cf. Rieffel! [?]). There are not too many
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cases where this space can be identified in an easy and complete way:

1. Wendel’s Theorem, p = 1, ([?])

HL1(L1,L1)(G) ≈ Mb(G)

or in words: The bounded operator on L1 commuting with L1-
convolution are exactly the convolution operators with bounded measures
µ ∈Mb(G).

2. p = 2 :
HL1(L2,L2)(G) ≈ FL∞

i.e. the bounded L1-homomorphism on L2(G) are exactly the operators
of the form f 7→ F−1(hf̂), for some h ∈ L∞. By a suitable interpretation
of FL∞ it can is called the space P (G) of pseudo-measures, and T is
represented as convolution with a pseudo-measure.
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3. For general p ∈ (1,∞) one can show that HL1(Lp,Lp) equals

HL1(Lp ′,Lp ′) for 1/p + 1/p′ = 1. It follows therefrom via complex
interpolation (with the choice θ = 0.5) that

HL1(Lp,Lp) ⊆ HL1(L2,L2) = FL∞.

This implies that in the context of Lp-spaces (except for p = ∞)
one can describe L1-homomorphism as convolution operators with a
pseudo-measure.

4. As soon as one wants to generalize this characterization of L1-
homomorphism to the case where the two spaces are not equal anymore,
i.e. when one is interested in the characterization of HL1(Lp,Lq), for
some pair of values p and q one finds that pseudo-measures are not
sufficient anymore! Just note that obviously any L2-function h defines a
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bounded linear operator from L1 into L2 via convolution, since obviously

ĥ ∗ f = ĥ · f̂ ∈ FL2 · FL1 ⊆ FL2. 2

The theory of quasi-measures was a vehicle providing a way out of
this dilemma. From todays view-point quasi-measures are exactly the
(tempered) distributions which equal locally pseudo-measures, but the
original definition was much more involved (going back to Gaudry, see
[?] the equivalence was established by Cowling in [?]).

In contrast, from the point of view of the Banach Gelfand Triple
(S0,L

2,S0
′) this question has a fairly simple answer, however. Since

S0(G) ⊆ Lp(G) ⊆ S0
′(G) for any value of p ∈ [1,∞] (due to the

minimality of S0(G), hence the maximility of S0
′(G)) it is easy to observe

the following natural embeddings:

HL1(Lp,Lq) ↪→ HL1(S0,S0
′) ≈ S0

′(G). (6)
2 We only need L1 ∗ L2 ⊆ L2 !?
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We only have to recall the definition of the convolution of σ ∈ S0
′(G)

with f ∈ S0(G), indeed the standard interpretation of the convolution of
a bounded linear functional with a test function applies:

σ ∗ f(x) = σ(Txf̌).

This also implies that S0
′(G) ∗S0(G) ⊆ Cb(G). Hence it in fact possible

to recover σ, given the operator T : f 7→ σ ∗ f , by means of the identity
σ(f) = T (σ̌)(0).

It is of course not difficult to show that the generalized FT on S0
′(G)

allows to describe T as a “multiplication operator on the FT side”,
by giving a meaning to the formula: T (f) = F−1(σ̂ · f̂). The transfer
function σ̂ is therefore an element of S0

′, hence a quasi-measure. This
fact has to be proven separately in the book of Larsen ([?]), because the
space Q(Rd) of quasi-measures is too large in order to be invariant with
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respect to the Fourier transform (leave alone the fact that the original
definition of the space of quasi-measures was a quite complicated one).

5. Sometimes unbounded measures still have measures as Fourier
transforms. The so-called chirp function x 7→ eπi|x|

2
is an excellent

example, because it is even invariant under the Fourier transform. Dilated
version therefore are mapped onto correspondlingly inversly dilated chirp
functions. The most general theory in this direction has been developed
by Argabright and Gil de Lamadrid ([?]) in the 1970-th. It can also be
subsumed in the S0

′-context.
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Examples of Gelfand Triple Isomorphisms

1. The standard Gelfand triple (`1, `2, `∞).

2. The family of orthonormal Wilson bases (obtained from Gabor families
by suitable pairwise linear-combinations of terms with the same absolute
frequency) extends the natural unitary identification of L2(Rd) with `1(I)
to a unitary Banach Gelfand Triple isomorphism between (S0,L

2,S0
′)

and (`1, `2, `∞)(I).

This isomorphism leeds to the observation that essentially the
identification of L(S0,S0

′) boils down to the identification of the bounded
linear mappings from `1(I) to `∞(I), which are of course easily recognized
as `∞(I × I) (the bounded matrices). The fact that tensor products of
1D-Wilson bases gives a characterization of (S0,L

2,S0
′) over R2d then

gives the kernel theorem.
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Automatic Gelfand-triple invertibility

Gröchenig and Leinert have shown (J. Amer. Math. Soc., 2004):
Theorem 6. Assume that for g ∈ S0(Rd) the Gabor frame operator

S : f 7→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g

is invertible as an operator on L2(Rd), then it is also invertible on S0(Rd)
and in fact on S0

′(Rd).
In other words: Invertibility at the level of the Hilbert space
automatically !! implies that S is (resp. extends to ) an isomorphism of
the Gelfand triple automorphism for (S0,L

2,S0
′)(Rd).

In a recent preprint K. Gröchenig shows among others, that invertibility of
S follows already from a dense range of S(S0(Rd)) in S0(Rd).
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Robustness resulting from those three layers:

In the present situation one has also (in contrast to the “pure Hilbert space
case”) various robustness effects:
1) One has robustness against jitter error. Depending (only) on Λ and
g ∈ S0(Rd) one can find some δ0 > 0 such that the frame property is
preserved (with uniform bounds on the new families) if any point λ ∈ Λ is
not moved more than by a distance of δ0.
2) One even can replace the lattice generated by some non-invertible matrix
A (applied to Z2d) by some “sufficiently similar matrix B and also preserve
the Gabor frame property (with continuous dependence of the dual Gabor
atom g̃ on the matrix B) (joint work with N. Kaiblinger, Trans. Amer.
Math. Soc.).

Hans G. Feichtinger Banach Gelfand Triples for Classical Fourier Analysis



53

Stability of Gabor Frames with respect to Dilation (F/Kaibl.)

For a subspace X ⊆ L2(Rd) define the set

Fg =
{

(g, L) ∈ X ×GL(R2d) which gene-

rate a Gabor frame {π(Lk)g}k∈Z2d

}
.

(7)

The set FL2 need not be open (even for good ONBs!). But we have:

Theorem 7. (i) The set FS0(Rd) is open in S0(Rd)×GL(R2d).
(ii) (g, L) 7→ g̃ is continuous mapping from FS0(Rd) into S0(Rd).

There is an analogous result for the Schwartz space S(Rd).

Corollary 3. (i) The set FS is open in S(Rd)×GL(R2d).
(ii) The mapping (g, L) 7→ g̃ is continuous from FS into S(Rd).
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On the continuous dependence of dual atoms on the TF-lattice
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Bounded Uniform Partitions of Unity

Definition 3. A bounded family Ψ = (ψn)n∈Zd in a Banach algebra
(A, ‖·‖A) is a regular A-Bounded Uniform Partition of Unity if∑

n∈Zd
ψ(x− n) = 1 for all x ∈ Rd
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Quasi-interpolation and discretization

Together with N. Kaiblinger a paper on quasi-interpolation has just been
published (J. Approx. Th.). We show that piecewise linear interpolation
resp. quasi-interpolation (using for example cubic splines), i.e. operators of
the form

Qhf =
∑
k∈Zd

f(hk)ThkDhψ

are norm convergent to f ∈ S0(Rd) in the S0-norm.
This is an important step for his work on the approximation of ”continuous
Gabor problems” by finite ones (handled computationally using MATLAB,
for example), a subject which has been driven further to the context of
Gabor Analysis (using code for the determination of dual Gabor atoms over
finite Abelian groups in order to determine approximately solutions to the
continuous question).
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Quasi-interpolation and wavelet approximation

Since one has ‖en∗f−f‖S0 → 0 for any f ∈ S0(Rd) for any Dirac sequence
(en) and because sampling is a bounded operation from S0(Rd) into `1(Zd)
one also derives from this fact that (at least for suitable wavelets)

‖Pnf − f‖S0 → 0 for f ∈ S0(Rd).

where Pn is the projection onto the scale-space Vn (which - as we know is
created by dilating the space V0 appropriately. The result therefore follows
from the explicit form the projection operator onto V0 which is of the form
P0f =

∑
λ∈Λ f ∗ ϕ̃(λ)Tλϕ.

Note: Since the adjoint operator to the quasi-interpolation operator is of
the form Q∗(σ) =

∑
λ∈Λ σ(Tλψ)δλ we also see (constructively) that (finite)

discrete measures are w∗-dense in S0
′(Rd).
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OUTLOOK and SUMMARY

Of course both the Banach Gelfand Triple setting in general as well as
the specific choice, with B = S0 are of course “ubiquitous” in time-
frequency analysis and Gabor analysis, in considerations about stability of
Gabor systems, but also in the context of projective modules and non-
communtative tori (“noncommutative geometry”) as treated by M. Rieffel
or A. Connes (as discovered by Franz Luef, cf. his PhD thesis).
Returning to “classical Fourier analysis” it is not just the flexibility of
the concept which allows to treat most of the basic results in complete
generality, but also the fact that S0(Rd) appears to be a very suitable
replacement for the Schwartz (-Bruhat) space [!except for PDE], e.g. in the
context of abstract/conceptual harmonic analysis or for signal processing.
On the other hand S0(Rd) is “just the right reservoir” of kernels, when it
comes to applications in classical summability theory, and practically all the
“good kernels” belong to S0(Rd) (cf. joint work with Ferenc Weisz).
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PLANNED END OF THE LECTURE: More
material below

THANK you for your attention! HGFei

http://www.nuhag.eu
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A Collection of Fourier Invariant Spaces

It is also possible to make use of radial weights of sub-exponential growth,
and obtain in this way a family of Fourier invariant Banach spaces of test
functions and corresponding spaces of ultra-distributions.
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S0

Schw

Tempered Distr.

Ultradistr.

SO’

L2

SIMILAR TALKS found are at

http://www.univie.ac.at/nuhag-php/program/talks show.php?name=Feichtinger
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