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ABSTRACT

Summability methods are an important principle that arise from the classical theory of

Fourier series, but are equally important for the inversion of Fourier transforms or the proof

of Plancherel’s Theorem. The usual “good summability kernels” are also very suitable

for signal processing applications, where they are used to localize an ongoing function or

distribution in order to define its short-time Fourier transform or sliding window Fourier

transform. This opens the way to modern time-frequency analysis and Gabor analysis, its

discretized and more practical version. Function spaces defined by the behaviour of their

STFT, usually called modulation spaces, are well suited in order to handle e.g. questions

about pseudo-differential operators or symbolic calculi for operators. Elements from the

Segal algebra S0(Rd) (also called M1(Rd))) are very suitable both in the context of

Gabor analysis and as kernels for classical problems. Pertinent results in this direction are

obtained in a series of joint papers with Ferenc Weisz.
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The classical SINC kernel
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Gibb’s Phenomenon
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Finite Fourier Transforms
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The finite Fourier Transform

The finite Fourier transform is easy to understand from the linear algebra point of view.

Up to normalization the building blocks (“pure frequencies”) form an orthonormal system,

and the coefficients in this orthonormal system are just the “Fourier coefficients” (obtained

via FFT2 or FFT efficiently). Hence it maps pure frequencies on unit vectors (and vice

versa).

The relevance of the Fourier transform for signal processing applications comes from the so-

called “convolution theorem”: Translation invariant linear operators are just “convolution

operators”, and they can be described as pointwise multiplication operator “on the Fourier

transform side”.

Equivalently, translation invariant operators are just linear combinations of (cyclic) shift

operators, and the common eigenvectors for this family of operators are just the “pure

frequencies”, which we will denote by χn in the rest.

For the case of periodic functions (classical Fourier series) we have the additional problem

of convergence (because there are infinitely many pure frequencies), and in the case

of non-periodic functions the additional problem comes in that unit vectors have to be

replaced by Dirac measures.
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Goals of Fourier Analysis

What should we teach our students in courses on Fourier Analysis?

• Understand the decomposition of an “arbitrary periodic function” into pure frequencies

(i.e. to understand the original idea of J. P. Fourier);

• Get familiar with Fourier series and Fourier transforms, and their inversion;

• (A.Weil): Understand Fourier analysis in the “natural context”, i.e. over LCA groups

(for a modern treatment I may recommend the book of Deitmar, [7]);

• Help them to understand signal processing papers (sampling is the same as periodization

of the spectrum of a function, etc.);

• Understand Fourier analysis in the realm of tempered distributions, because this is they

way how it is used in the modern theory of PDE and pseudo-differential operators;

• And how much mathematical background do students or applied scientist have to learn

in order to make use of the powerful results of Fourier analysis: Lebesgue integration?

topological vector spaces? theory of generalized functions?
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Fourier Series and Fourier Transforms

If we browse Ruppert Lasser’s book on ”Fourier Series” (and Fourier transforms) the

following terms appear resp. are the essential terms in the description of the subject:

1. convolution,
(
L1(T), ‖ · ‖1

)
2. homogeneous Banach spaces such as L1(T),L2(T),Lp(T),A(T), etc.

3. L∞(T) is not a homogeneous Banach space;

4. approximate identities (unlike Dirichlet): Fejer, de la Vallee-Poussin or Poisson kernels;

5.
(
A(T), ‖ · ‖A

)
, Wiener’s algebra of absolutely convergent Fourier series;

6. Fourier transforms (and Fourier inversion);

7. Plancherel’s theorem;

8. Poisson’s formula;

9. Hermite functions as a Fourier invariant ONB for L2(Rd);

LET US TAKE a time-frequency view on these topics!
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Homogeneous Spaces

Let us first introduce the following definition, see, for instance, [16, 18] .

Definition 1. A Banach space (B, ‖ · ‖B) of locally integrable functions is called a
homogeneous Banach space on Rd if it satisfies

1. ‖Txf‖B = ‖f‖B ∀f ∈ B, x ∈ Rd;
2. ‖Txf − f‖B → 0 for x→ 0, ∀f ∈ B.

It is easy to show that any localizable Banach space B of Radon measures for which

D(Rd) is dense in (B, ‖ · ‖B), is a homogeneous Banach space, e.g., B = Lp(Rd) for

1 ≤ p <∞.

It is a well known consequence of Definition 1 that the convolution of bounded measures

µ ∈M(Rd) with elements from a homogeneous Banach space exists as a vector-valued

integral (improper, Riemannian) and satisfies

‖µ ∗ f‖B ≤ ‖µ‖M‖f‖B ∀µ ∈M(Rd), f ∈ B. (1)
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Segal Algebras

Let us next introduce the following definition, see, the work of Hans Reiter ([20, 21]):

Definition 2. A Banach space (B, ‖ · ‖B) of integrable functions is called a Segal
algebra on Rd (or on a LC group G, if it satisfies

1. it is densely embedded into
(
L1(Rd), ‖ · ‖1

)
, i.e. ‖f‖B ≤ ‖f‖1 ∀f ∈ B and B

is dense in
(
L1(Rd), ‖ · ‖1

)
.

2. ‖Txf‖B = ‖f‖B ∀f ∈ B, x ∈ Rd;
3. ‖Txf − f‖B → 0 for x→ 0, ∀f ∈ B.
It is easy to show that any localizable Banach space B of Radon measures for which

D(Rd) is dense in (B, ‖·‖B), is a homogeneous Banach space, e.g., B = Lp(Rd) for

1 ≤ p <∞.

It is a well known consequence of Definition 2 that (B, ‖ · ‖B) is a Banach ideal in

MRdN , and satisfies

‖µ ∗ f‖B ≤ ‖µ‖M‖f‖B ∀µ ∈M(Rd), f ∈ B. (2)
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Homogeneous Banach Spaces on the Torus

It is not hard to check that a homogeneous Banach space on the torus T is a Segal algebra

on G = T if and only if it contains the “pure frequencies” χn, n ∈ Z belong to B.

In fact, if the pure frequencies are contained in B, then also all the trigonometric

polynomials, and hence one obtains density of B in
(
L1(T), ‖ · ‖1

)
.

Conversely, a dense subspace of
(
L1(T), ‖ · ‖1

)
has to contain for each n ∈ Z at least

one f ∈ B such that f̂(n) 6= 0 (otherwise the pure frequency χn labelled by n would

be perpendicular to all of B. Since also the convolution product of χn with f is in

L1(T) ∗B ⊆ B and equals f̂(n)χn this implies that χn ∈ B for any n ∈ Z.

Hence the homogeneous Banach spaces as described in Lasser’s book are exactly the Segal

algebras on T.

Among the Segal algebras on the torus WIENER’s ALGEBRA of absolutely convergent

Fourier series

A(T) := {f | ‖f‖A(T) =
∑
n∈Z

f̂(n) <∞}(
A(T), ‖ · ‖A

)
plays a particular role (e.g. due to Wiener’s inversion theorem), and by

the fact that it is the smallest among Segal algebras on T with ‖χn‖B = 1
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Intersection of Segal Algebras

It is easy to check that the intersection of two Segal algebras is again a Segal algebra (with

the natural “sum-norm”);

The intersection of ALL Segal algebras can be shown to coincide with the set of all

band-limited L1(Rd)-functions. In fact, for every Segal algebra B the linear space

BDL1 := {f | f ∈ L
1
(Rd), supp(f̂) is compact }

is a dense subspace of (B, ‖ · ‖B), while on the other hand for every function f ∈ L1(Rd)
for which the support of f̂ is not compact (resp. bounded) one can construct Segal algebras

not containing such a “bad” functions f . This is also true over the torus. Typical examples

are (Sobolev-like) subspaces of L2(T):

{f ∈ L
2
(T) | (

∑
n∈Z

|f̂(n)|2w2
(n))

−1/2
<∞}

It was an important observation that there exists a smallest Segal algebra, called S0(G),

with the extra property ‖χf‖B = ‖f‖B for all χ ∈ Ĝ ( strong character invariance, [8]).
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Problems with classical Fourier analysis

Although the classical Fourier analysis was well established by the second half of the last

century it still looked difficult! The last important contribution was certainly L. Carleson’s

theorem ([5]).

• Inversion from the space of FTs is not via integrals (summability is required);

• Integration (Lebesgue) does not help to establish Plancherel’s theorem;

• Although the FT is unitary it is not really a change of basis (except for the Hermite

basis);

• For the Poisson formula there is another set of extra conditions required;

• there are very few Fourier invariant function spaces, such as L2(Rd) or L1(Rd) ∩
FL1(Rd);

• the Fourier algebra FL1(Rd) resp. L1(Rd) ∩ FL1(Rd) do not enjoy the good

properties of A(Td).

Hans G. Feichtinger From Classical Fourier Analysis to Time-Frequency Analysis and Back



13

A number of auxiliary spaces have been introduced

• L1(Rd) is good, because it is the maximal domain for the integral definition of the

FT! (using the correct and most general integral, after all,
(
L1(Rd), ‖ · ‖1

)
is the

prototype of a Banach space);

•
(
L2(Rd), ‖ · ‖2

)
is the natural Hilbert space in this context (unfortunately there are

no inclusion relations between L1(Rd) and L2(Rd));

• Pseudomeasures and Quasimeasures are used in order to “represent” translation

invariant operators between Lp(Rd) spaces (both on the “time” and on the

“frequency”-side, but there is no extension of the Fourier transform to quasi-measures;

• The space S′(Rd) of tempered distributions is the dual of the Schwartz space of

rapidly decreasing functions S(Rd), which is only a (nuclear) topological vector space,

but both spaces are Fourier invariant!

• The theory of “transformable” measures by L. Argabright and J. Gil de Lamadrid

provides a theory of (unbounded) measures having a (Radon) measure as a Fourier

transform (unfortunately their theory is not Fourier invariant); (see [2, 1]).

• Further complications arise in the consideration of generalized stochastic processes;
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Fourier Integral and Inversion Formula

For a Lebesgue integrable function f ∈ L1(R) the Fourier transform is defined as

f̂(s) =

∫
R
f(t)e

−2πisx
dx

The range of the Fourier transform is FLiR. Due to the Riemann Lebesgue theorem one

has f̂ ∈ C0(R) and ‖f̂‖∞ ≤ ‖f‖1, but the Fourier transform itself is not necessarily

integrable. Hence, the direct inversion formula

f(t) =

∫
R
f̂(s)e

+2πixs
ds

is only valid if f̂ ∈ L1(R).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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Summability methods for continuous variables

Instead of Fejér summability we may take a general summability method, the so called

θ-summation defined by one single function θ. For θ ∈ L1(Rd) ∩ C0(Rd) the Uth

θ-mean of the Fourier transform of h ∈ Lp(Rd) (1 ≤ p ≤ 2) or h ∈ Lp(Rd)∩L2(Rd)
(2 < p <∞) is introduced by

σ
θ
Uh(t) :=

∫
Rd
θ
(−ω
U

)
ĥ(ω)e

2πıω·t
dω.

For θ ∈ L1(Rd) ∩ C0(Rd)) the Uth θ-mean of the Fourier transform of h ∈ Lp(Rd)
(1 ≤ p ≤ 2) or h ∈ Lp(Rd) ∩ L2(Rd) (2 < p <∞) is introduced by

σ
θ
Uh(t) :=

∫
Rd
θ
(−ω
U

)
ĥ(ω)e

2πıω·t
dω.
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Key Players for Time-Frequency Analysis

Time-shifts and Frequency shifts

Txf(t) = f(t− x)
and x, ω, t ∈ Rd

Mωf(t) = e
2πiω·t

f(t) .

Behavior under Fourier transform

(Txf )̂ = M−xf̂ (Mωf )̂ = Tωf̂

The Short-Time Fourier Transform

Vgf(λ) = Vgf(t, ω) = 〈f,MωTtg〉 = 〈f, π(λ)g〉 = 〈f, gλ〉, λ = (t, ω);
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A Typical Musical STFT
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S0(Rd) = M1(Rd) := M0
1,1(Rd)

A function in f ∈ L2(Rd) is (by definition) in the subspace S0(Rd) if for some non-zero

g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0
:= ‖Vgf‖L1 =

∫∫
Rd×R̂d

|Vgf(x, ω)|dxdω <∞.

The space (S0(Rd), ‖ · ‖S0
) is a Banach space, for any fixed, non-zero g ∈ S0(Rd),

and different windows g define the same space and equivalent norms. Since S0(Rd)
contains the Schwartz space S(Rd), any Schwartz function is suitable, but also compactly

supported functions having an integrable Fourier transform (such as a trapezoidal or

triangular function) are suitable windows. Often the Gaussian is used as a window. Note

that

Vgf(x, ω) = ̂(f · Txg)(ω), i.e., g localizes f near x.
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Lemma 1. Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0
= ‖f‖S0

.

(2) f̂ ∈ S0(Rd), and ‖f̂‖S0
= ‖f‖S0

.

Remark 2. Moreover one can show that S0(Rd) is the smallest non-trivial Banach
spaces with this property, i.e., it is continuously embedded into any such Banach space.
As a formal argument one can use the continuous inversion formula for the STFT:

f =

∫
Rd× R̂d

Vgf(λ)π(λ)gdλ

which implies

‖f‖B ≤
∫

Rd× R̂d
|Vgf(λ)|‖π(λ)g‖B dλ = ‖g‖B‖f‖S0

.
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Basic properties of S0(Rd) resp. S0(G)

THEOREM:

• For any automorphism α of G the mapping f 7→ α∗(f) is an isomorphism on S0(G);

[with(α∗f)(x) = f(α(x))], x ∈ G.
• FS0(G) = S0(Ĝ); (Invariance under the Fourier Transform);

• THS0(G) = S0(G/H); (Integration along subgroups);

• RHS0(G) = S0(H); (Restriction to subgroups);

• S0(G1)⊗̂S0(G2) = S0(G1 ×G2). (tensor product stability);
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Basic properties of S0
′(Rd)

Of course the dual space S0
′(Rd) is defined as the set of all bounded linear functionals.

Since S(Rd) is a dense subspace of S0(Rd) the continuous linear functionals are are

subspace of the space S′(Rd) of tempered distributions on Rd.

A tempered distribution σ ∈ S′(Rd) belongs to S0
′(Rd) if and only if its short-term

Fourier transform is bounded. Norm convergence in S0
′(Rd) corresponds to uniform

convergence of the corresponding STFTs.

There is also a w∗-convergence in S0
′(Rd), and this is just pointwise convergence (or

equivalently uniform convergence over compact sets).

The Banach space S0(Rd) is dense in the Hilbert space L2(Rd), which in turn is (only)

w∗-dense in S0
′(Rd) (not norm dense).

A triple, consisting of a Banach space B, which is dense in some Hilbert space H, which

in turn is (hence) contained in B is called a Banach Gelfand triple.
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Banach Gelfand Triples

A triple, consisting of a Banach space B, which is dense in some Hilbert space H, which

in turn is (hence) contained in B′ is called a Banach Gelfand triple.

Definition 3. If (B1,H1, B
′
1) and (B2,H2, B

′
2) are Gelfand triples then an operator

A is called a [unitary] Gelfand triple isomorphism if

1. A is an isomorphism between B1 and B2.

2. A is a [unitary operator resp.] isomorphism between H1 and H2.

3. A extends to a weak∗ isomorphism as well as a norm-to-norm continuous
isomorphism between B′1 and B′2.
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Basic properties of S0
′(Rd)

THEOREM:

• the Generalized Fourier Transforms, defined by transposition

〈σ̂, f〉 = 〈σ, f̂〉,
for f ∈ S0(Ĝ), σ ∈ S0

′(G), satisfies F(S0
′(G)) = S0

′(Ĝ).

• σ ∈ S0
′(G) is H-periodic, i.e. σ(f) = σ(Thf) for all h ∈ H, iff there exists

σ̇ ∈ S0
′(G/H) such that 〈σ, f〉 = 〈σ, THf〉 .

• S0
′(H) can be identified with a subspace of S0

′(G), the injection iH being given by

〈iHσ, f〉 := 〈σ,RHf〉.

For σ ∈ S0
′(G) one has σ ∈ iH(S0

′(H)) iff supp(σ) ⊆ H.
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The Usefulness of S0(Rd)

Theorem 1. (Poisson’s formula) For f ∈ S0(Rd) and any discrete subgroup H of Rd

with compact quotient the following holds true: There is a constant CH > 0 such that∑
h∈H

f(h) = CH
∑
l∈H⊥

f̂(l) (3)

with absolute convergence of the series on both sides.

By duality one can express this situation as the fact that the Comb-distribution µZd =∑
k∈Zd δk, as an element of S0

′(Rd) is invariant under the (generalized) Fourier transform.

Sampling corresponds to the mapping f 7→ f ·µZd =
∑

k∈Zd f(k)δk, while it corresponds

to convolution with µZd on the Fourier transform side = periodization along (Zd)⊥ = Zd

of the Fourier transform f̂ . For f ∈ S0(Rd) all this makes perfect sense.
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Regularizing sequences for (S0, L
2, S0

′)

Wiener amalgam convolution and pointwise multiplier results imply that

S0(Rd) · (S0
′
(Rd) ∗ S0(Rd)) ⊆ S0(Rd) S0(Rd) ∗ (S0

′
(Rd) · S0(Rd)) ⊆ S0(Rd)

e.g. S0(Rd) ∗ S0
′(Rd) = W (FL1, `1) ∗W (FL∞, `∞) ⊆W (FL1, `∞).

Let now h ∈ FL1(Rd) be given with h(0) = 1. Then the dilated version hn(t) =

h(t/n) are a uniformly bounded family of multipliers on (S0,L
2,S0

′), tending to the

identity operator in a suitable way. Similarly, the usual Dirac sequences, obtained by

compressing a function g ∈ L1(Rd) with
∫

Rd g(x)dx = 1 are showing a similar behavior:

gn(t) = n · g(nt)
Following the above rules the combination of the two procedures, i.e. product-convolution

or convolution-product operators of the form provide suitable regularizers:

Anf = gn ∗ (hn · f) or Bnf = hn · (gn ∗ f).
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Schwartz space, S0, L2, S′0, tempered distributions

S0
Schw L1

Tempered Distr.

SO’

L2

C0

FL1
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The Gelfand Triple (S0, L
2, S0

′)

 The S
0
 Gelfand triple

S0

S0’

L2

The Fourier transform is a prototype of a Gelfand triple isomorphism.
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EX1: The Fourier transform as Gelfand Triple Automorphism

Theorem 2. Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),

(2) F is a unitary map between L2(Rd) and L2(R̂d),

(3) F is a weak∗ (and norm-to-norm) continuous bijection from S0
′(Rd) onto S0

′(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (4)

is valid for (f, g) ∈ S0(Rd)×S0
′(Rd), and therefore on each level of the Gelfand triple

(S0,L
2,S0

′)(Rd).
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The properties of Fourier transform can be expressed by a Gelfand bracket

〈f, g〉(S0,L
2,S0
′) = 〈f̂ , ĝ〉(S0,L

2,S0
′) (5)

which combines the functional brackets of dual pairs of Banach spaces and of the inner-

product for the Hilbert space.

One can characterize the Fourier transform as the uniquely
determined unitary Gelfand triple automorphism of (S0, L

2, S0
′)

which maps pure frequencies into the corresponding Dirac
measures (and vice versa). 1

One could equally require that TF-shifted Gaussians are mapped into FT-shifted Gaussians,

relying on F(MωTxf) = T−ωMxFf and the fact that Fg0 = g0, with g0(t) = e−π|t|
2
.

1as one would expect in the case of a finite Abelian group.
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EX.2: The Kernel Theorem for general operators in L(S0, S0
′)

Theorem 3. If K is a bounded operator from S0(Rd) to S0
′(Rd), then there exists a

unique kernel k ∈ S0
′(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉 for f, g ∈ S0(Rd), where

g ⊗ f(x, y) = g(x)f(y).
Formally sometimes one writes by “abuse of language”

Kf(x) =

∫
Rd
k(x, y)f(y)dy

with the understanding that one can define the action of the functional Kf ∈ S0
′(Rd) as

Kf(g) =

∫
Rd

∫
Rd
k(x, y)f(y)dyg(x)dx =

∫
Rd

∫
Rd
k(x, y)g(x)f(y)dxdy.

This result is the ”outer shell” of the Gelfand triple isomorphism. The “middle =

Hilbert” shell which corresponds to the well-known result that Hilbert Schmidt operators

on L2(Rd) are just those compact operators which arise as integral operators with

L2(R2d)-kernels.
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Again the complete picture can again be best expressed by a unitary Gelfand triple

isomorphism. We first describe the innermost shell:

Theorem 4. The classical kernel theorem for Hilbert Schmidt operators is unitary at
the Hilbert spaces level, with 〈T, S〉HS = trace(T ∗S′) as scalar product on HS and
the usual Hilbert space structure on L2(R2d) on the kernels.
Moreover, such an operator has a kernel in S0(R2d) if and only if the corresponding
operator K maps S0

′(Rd) into S0(Rd), but not only in a bounded way, but also
continuously from w∗−topology into the norm topology of S0(Rd).
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Remark: Note that for ”regularizing” kernels in S0(R2d) the usual identification (recall

that the entry of a matrix an,k is the coordinate number n of the image of the n−th unit

vector under that action of the matrix A = (an,k):

k(x, y) = K(δy)(x) = δx(K(δy).

Since δy ∈ S0
′(Rd) and consequently K(δy) ∈ S0(Rd) the pointwise evaluation makes

sense.

With this understanding our claim is that the kernel theorem provides a (unitary)

isomorphism between the Gelfand triple (of kernels) (S0,L
2,S0

′)(R2d) into the Gelfand

triple of operator spaces(
L(S0

′
(Rd),S0(Rd)), HS, L(S0(Rd),S0

′
(Rd))

)
.

Hans G. Feichtinger From Classical Fourier Analysis to Time-Frequency Analysis and Back



35

Wilson bases

Lemma 3. Let (Ψk,n) be an orthonormal Wilson basis for L2(Rd). Then the coefficient
mapping D : f 7→ 〈f,Ψk,n〉 induces a unitary Gelfand triple isomorphism between

(S0, L
2
,S0
′
)(Rd) and (`

1
, `

2
, `
∞

)(Zd × Nd).

From this identification one can get some understanding of the kernel theorem: one

can express the w∗-to-norm continuous operators from S0
′(Rd) into S0(Rd) with the

w∗-to-norm continuous operators from `∞ into `1 which turns out to be exactly the space

of (bi-infinite) matrices in `1(Zd × Zd). Similar statements can be made with respect to

so-called local Fourier bases and also Malvar bases. For the case of “Gabor frames” one

has instead of an isomorphism just a retract property.

However, such is a situation is not completely new, if we recall that in the classical

case the Fourier basis establishes a natural Banach Gelfand triple isomorphism between

(`1, `2, `∞)(Z) and (A(T),L2(T),PM).
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Other talks by HGFei on related topics:

Information about Banach Gelfand Triples can be found in a number of talks available

from the NuHAG talk-server, i.e. from www.nuhag.eu
You can inquire e.g.

http://www.univie.ac.at/nuhag-php/program/talks show.php?name=Feichtinger
or http://www.univie.ac.at/nuhag-php/program/talks details.php?id=955
or http://www.univie.ac.at/nuhag-php/program/talks details.php?id=941
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Recent work connecting Gabor and Summability Theory

In the years 2004 - 2006 Ferenc Weisz from Budapest spent two years in Vienna, which

resulted on a series of papers connecting classical summability theory with Gabor and
time-frequency analysis.

In general one can say: Good kernels are good because they belong to S0(Rd), while “bad

kernels” (such as the box-function or the SINC-function) simply are not in S0(Rd). Most

sufficient kernels, that imply e.g. that Poisson’s formula is valid for them, or makes them

good approximate units, simply provide sufficient conditions for membership of functions

in S0(R) or S0(Rd) resp. good examples are [14] or a long list of kernels listed in [13]

and other papers by F. Weisz (and hgfei), such as [13, 10, 11, 12].

Other places where S0(Rd) and other Wiener amalgam spaces play a role in order to

overcome the (apparent) technical problems in Gabor analysis are [9, 19].

Banach Gelfand triples are described in some detail in [6]. Comments on “Feichtinger’s

algebra” S0(Rd) are also given in [21].
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A picture book of kernels in S0(R):
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Comparing Dirichlet kernel and de la Vallee Poussin kernel:
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Of course it is also interesting to look at Hermite functions:
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