Publications
-
[article] de Gosson, M. and de Gosson, C.,
Symplectic and Lagrangian polar duality; applications to quantum harmonic analysis
Journal of Mathematical Physics 65, 6 (2024) AIP Publishing
-
[article] Dias, N. and de Gosson, M. and Prata, J.,
A metaplectic perspective of uncertainty principles in the Linear Canonical Transform domain
J. Funct. Anal. (2024) 1-56
-
[article] de Gosson, M.,
Toeplitz density operators and their separability properties
Quantum Studies: Mathematics and Foundations 10, 2 (2023) 245--261 Springer
-
[article] Koczor, B. and vom Ende, F. and de Gosson, M. and Glaser, S. and Zeier, R.,
Phase spaces, parity operators, and the Born--Jordan distribution
Ann. Henri Poincare Annales Henri Poincar\\\\'{ }{ }{ }{ }e 24, 12 (2023) 4169--4236
-
[article] de Gosson, M.,
Symplectic and Lagrangian Polar Duality; Applications to Quantum Information Geometry
arXiv preprint arXiv:2309.07775 (2023)
-
[inproceedings] de Gosson, M.,
Geometric Quantum States and Lagrangian Polar Duality: Quantum Mechanics Without Wavefunctions
International Conference on Geometric Science of Information (2023) 412--419
-
[article] De Gosson, M.,
Reconstruction of Gaussian quantum states from ideal position measurements: beyond Pauli\'{ }s problem, I
arXiv preprint arXiv:2301.12498 (2023)
-
[article] de Gosson, M. and de Goson, C.,
Polar Duality, John Ellipsoid, and Generalized Gaussians
arXiv preprint arXiv:2206.06334 (2022)
-
[article] de Gosson, M.,
The Pauli Problem for Gaussian Quantum States: Geometric Interpretation
Mathematics 9, 20 (2021) 2578 Multidisciplinary Digital Publishing Institute
-
[article] Dias, N. and de Gosson, M. and Prata, J.,
Partial traces and the geometry of entanglement: Sufficient conditions for the separability of Gaussian states
Reviews in Mathematical Physics (2021) 2250005 World Scientific
-
[article] de Gosson, M.,
Quantum polar duality and the symplectic camel: a new geometric approach to quantization
Foundations of Physics 51, 3 (2021) 1--39 Springer
-
[article] de Gosson, C. and de Gosson, M.,
On the Wigner distribution of the reduced density matrix
arXiv preprint arXiv:2106.14056 (2021)
-
[article] de Gosson, C. and de Gosson, M.,
On the non-uniqueness of statistical ensembles defining a density oand a class of mixed quantum states with integrable Wigner distribution
arXiv preprint arXiv:2103.05605 (2021)[pdf]
-
[book] de Gosson, M.,
Introduction to Quantum Harmonic Analysis
(2021) De Gruyter MR:MR4487418
-
[article] Faulhuber, M. and de Gosson, M. and Rottensteiner, D.,
Gaussian distributions and phase space Weyl--Heisenberg frames
Applied and Computational Harmonic Analysis 48, 1 (2020) 374--394 Elsevier
-
[article] de Gosson, M.,
On the disentanglement of Gaussian quantum states by symplectic rotations
Compt. Rendus. Mathematique 358, 4 (2020) 459--462
-
[article] Cordero, E. and De Gosson, M. and Nicola, F.,
A characterization of modulation spaces by symplectic rotations
Journal of Functional Analysis (2020) 108474
-
[article] Dias, N. and de Gosson, M. and Prata, J.,
A refinement of the Robertson--Schrödinger uncertainty principle and a Hirschman--Shannon inequality for Wigner distributions
Journal of Fourier Analysis and Applications 25, 1 (2019) 210--241 Springer
-
[article] Cordero, E. and de Gosson, M. and Dörfler, M. and Nicola, F.,
Signal Analysis using Born-Jordan-type Distribution
arXiv preprint arXiv:1912.11387 (2019)
-
[ARTICLE] de, G.,
Generalized Anti-Wick Quantum States
arXiv e-prints (jul) (2019)
-
[article] de Gosson, M.,
SYMPLECTIC COARSE-GRAINED DYNAMICS: CHALKBOARD MOTION IN CLASSICAL AND QUANTUM MECHANICS
(2019)
-
[article] de Gosson, M.,
Quantum Harmonic Analysis of the density matrix
Quanta 7, 1 (2018) 74-110
-
[article] Cordero, E. and de Gosson, M. and Dörfler, M. and Nicola, F.,
On the symplectic covariance and interferences of time-frequency distributions.
SIAM J. Math. Anal. 50, 2 (2018) 2178--2193 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA ZBL:1388.42017
-
[article] Cordero, E. and de Gosson, M. and Nicola, F.,
On the reduction of the interferences in the Born-Jordan distribution.
Appl. Comput. Harmon. Anal. 44, 2 (2018) 230--245 ZBL:1381.42017
-
[ARTICLE] de Gosson, M.,
A symplectic interpretation of the separability of Gaussian mixed states
ArXiv e-prints (sep) (2018)
-
[Article] Dias, N. and de Gosson, M. and Prata, J.,
A Refinement of the Robertson--Schrödinger Uncertainty Principle and a Hirschman--Shannon Inequality for Wigner Distributions
J. Fourier Anal. Appl. (Feb) (2018)[pdf]
-
[ARTICLE] de Gosson, M. and Nicacio, F.,
Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states
J. Math. Phys. 59, 5 (feb) (2018) MR:MR3805947
[pdf]
-
[book] De Gosson, M.,
Emergence of the Quantum from the Classical: Mathematical Aspects of Quantum Processes
Emergence of the Quantum from the Classical: Mathematical Aspects of Quantum Processes (2018) 308 World Scientific Pub.
-
[ARTICLE] Faulhuber, M. and de Gosson, M. and Rottensteiner, D.,
Gaussian distributions and phase space Weyl--Heisenberg frames
Applied and Computational Harmonic Analysis (2018)[pdf]
-
[ARTICLE] Cordero, E. and De Gosson, M. and Nicola, F.,
On the reduction of the interferences in the Born-Jordan distribution
Applied and Computational Harmonic Analysis 44, 2 (jan) (2018) 230 - 245 MR:MRXXX
ZBL:ZblXXX
[pdf]
-
[article] Cordero, E. and de Gosson, M. and Nicola, F.,
Born-Jordan pseudodifferential operators with symbols in the Shubin classes
Trans. Amer. Math. Soc. Ser. B 4 (2017) 94--109 MR:MR3693108
-
[article] Cordero, E. and de Gosson, M. and Nicola, F.,
Semi-classical time-frequency analysis and applications.
Math. Phys. Anal. Geom. 20, 4 (2017) 23 Springer Netherlands, Dordrecht
-
[article] Cordero, E. and de Gosson, M. and Nicola, F.,
Time-frequency analysis of Born-Jordan pseudodifferential operators.
J. Funct. Anal. 272, 2 (2017) 577--598 Elsevier, Amsterdam ZBL:1356.47055
-
[ARTICLE] Cordero, E. and de Gosson, M. and Nicola, F.,
On the positivity of trace class operators
ArXiv e-prints (jun) (2017)[pdf]
-
[ARTICLE] Cordero, E. and de Gosson, M. and Nicola, F.,
A characterization of modulation spaces by symplectic rotations
ArXiv e-prints (jul) (2017) MR:MR4075584
[pdf]
-
[book] de Gosson, M.,
The Wigner Transform
The Wigner transform Advanced Textbooks in Mathematics (2017) xx+229 World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ MR:MR3643624
-
[ARTICLE] de Gosson, M. and Toft, J.,
Continuity properties for Born-Jordan operators with symbols in Hörmander classes and modulation spaces
ArXiv e-prints (feb) (2017) MR:MR4075584
-
[ARTICLE] de Gosson, M.,
Quantum harmonic analysis of the density matrix: basics
ArXiv e-prints (mar) (2017)
-
[article] De Gosson, M.,
The canonical group of transformations of a Weyl-Heisenberg frame; applications to Gaussian and Hermitian frames
J. Geom. Phys., 114 (2017) 375 - 383 MR:MR3610050
-
[article] de Gosson, M.,
Bypassing the Groenewold--van Hove obstruction on: A new argument in favor of Born--Jordan quantization
Journal of Physics A: Mathematical and Theoretical 49, 39 (2016) 39LT01 IOP Publishing
-
[incollection] de Gosson, M.,
Weak values and the reconstruction problem
Born-Jordan Quantization (2016) 161--170 Springer
-
[ARTICLE] De Gosson, M. and Mohageg, M.,
On the dependence of quantum states on the value of Planck's constant
ArXiv e-prints (dec) (2016)[pdf]
-
[article] de Gosson, M. and Luef, F.,
Born-Jordan pseudodifferential calculus, Bopp operators and deformation quantization
Integral Equations Operator Theory 84, 4 (2016) 463--485 MR:MR3483871
-
[ARTICLE] de Gosson, M. and Hiley, B. and Cohen, E.,
Observing Quantum Trajectories: From Mott's Problem to Quantum Zeno Effect and Back
ArXiv e-prints (jun) (2016) MR:MRXXX
ZBL:ZblXXX
-
[INBOOK] De Gosson, M.,
Fermi blobs and the symplectic camel: a geometric picture of quantum states
Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum.~Edited by Ignazio Licata.~Published by World Scientific Publishing Co.~Pte.~Ltd.. DeGosson, M.~A.;Licata, I. (2016) 27-43 World Scientific Publishing Co MR:MRXXX
ZBL:ZblXXX
-
[ARTICLE] de Gosson, M.,
Bypassing the Groenewold--van Hove obstruction: a physically meaningful quantization for ${R}^{2n}$
ArXiv e-prints (apr) (2016) MR:MRXXX
ZBL:ZblXXX
-
[inproceedings] de Gosson, C. and de Gosson, M.,
Weak Values, the Reconstruction Problem, and the Uncertainty Principle
Journal of Physics: Conference Series 701, 1 (2016) 012011 MR:MRXXX
ZBL:ZblXXX
-
[ARTICLE] De Gosson, M. and Gröchenig, K. and Romero, J.,
Stability of Gabor frames under small time Hamiltonian evolutions
Lett. Math. Phys. 106, 6 (2016) 799-809 MR:MR3500423
ZBL:06593130
[pdf]
-
[ARTICLE] Cordero, E. and de Gosson, M. and Nicola, F.,
On the invertibility of Born-Jordan quantization
J. Math. Pures Appl. (9) 105, 4 (jul) (2016) 537--557 MR:MRXXX
ZBL:1338.47057
-
[article] Neuhauser, M. and De Gosson, M.,
On the asymptotic behavior of the Wigner transform for large values of Planck’s Constant
J. Geom. Phys. 102 (2016) 44--49 MR:MR3457651
ZBL:1332.81109
-
[Article] Abreu, L. and Balazs, P. and de Gosson, M. and Mouayn, Z.,
Discrete coherent states for higher Landau levels
Annals of Physics 363, (2015) 337-353 MR:MR3424534
ZBL:ZblXXX
-
[ARTICLE] de Gosson, C. and de Gosson, M.,
The Phase Space Formulation of Time-Symmetric Quantum Mechanics, I: the Wigner Formalism
Quanta 4, 1 (oct) (2015) 27-34 ZBL:ZblXXX
-
[article] de Gosson, C. and de Gosson, M.,
The Phase Space Formulation of Time-Symmetric Quantum Mechanics
Quanta 4, 1 (2015) 27--34 MR:MRXXX
ZBL:ZblXXX
[pdf]
-
[ARTICLE] De Gosson, M.,
Deforming the Window of a Gabor Frame: the Ellipsoid Method
ArXiv e-prints (dec) (2015) MR:MRXXX
ZBL:ZblXXX
[pdf]
-
[article] De Gosson, M.,
Hamiltonian deformations of Gabor frames: First steps
Appl. Comput. Harmon. Anal. 38, 2 (2015) 196--221 MR:MR3303672
ZBL:1306.81042
-
[article] Dias, N. and de Gosson, M. and Prata, J.,
A symplectic extension map and a new Shubin class of pseudo-differential operators
J. Funct. Anal. 266, 6 (2014) 3772--3796 MR:MR3165242
-
[article] Dias, N. and de Gosson, M. and Prata, J.,
Maximal covariance group of Wigner transforms and pseudo-differential operators
Proc. Amer. Math. Soc. 142, 9 (2014) 3183--3192 MR:MR3223374
[pdf]
-
[article] Pauwels, E. and De Gosson, M.,
On the prolate spheroidal wave functions and Hardy\'{ }s uncertainty principle.
J. Fourier Anal. Appl. 20, 3 (2014) 566--576 Springer (Birkhäuser), New York, NY MR:MR3217488
ZBL:06384983
[pdf]
-
[article] de Gosson, M. and Luef, F.,
Metaplectic group, symplectic Cayley transform, and fractional Fourier transforms
J. Math. Anal. Appl. 416, 2 (2014) 947-968 MR:MR3188749
ZBL:1322.43003
-
[ARTICLE] De Gosson, M.,
Symplectic and Hamiltonian deformations of Gabor frames
ArXiv e-prints (may) (2013) MR:MRXXX
ZBL:1306.81042
-
[article] Binz, E. and De Gosson, M. and Hiley, B.,
Clifford algebras in symplectic geometry and quantum mechanics.
Found. Phys. 43, 4 (2013) 424--439 Springer, New York, NY MR:MR3031619
ZBL:1276.81065
-
[article] De Gosson, M.,
Symplectic covariance properties for Shubin and Born-Jordan pseudo-differential operators.
Trans. Am. Math. Soc. 365, 6 (2013) 3287--3307 MR:MR3034466
ZBL:1278.47050
-
[inproceedings] Scheeres, D. and de Gosson, M. and Maruskin, J.,
Fundamental limits on orbit uncertainty
2012 15th International Conference on Information Fusion (2012) 2050--2057
-
[article] Dias, N. and Gosson, M. and Luef, F. and Prata, J.,
Quantum mechanics in phase space: the Schrödinger and the Moyal representations.
J. Pseudo-Differ. Oper. Appl. 3, 4 (2012) 367--398 Springer (Birkhäuser), Basel ZBL:1261.81083
-
[article] De Gosson, M.,
On the partial saturation of the uncertainty relations of a mixed Gaussian state
Journal of Physics A: Mathematical and Theoretical 45, 41 (2012) 415301 MR:MR2983332
ZBL:1258.81051
[pdf]
-
[article] Dias, N. and De Gosson, M. and Luef, F. and Prata, J.,
Quantum mechanics in phase space: the Schrödinger and the Moyal representations
Journal of Pseudo-Differential Operators and Applications 3, 4 (2012) 367--398 Birkhäuser Basel MR:MR2992055
ZBL:06145077
-
[article] Dias, N. and De Gosson, M. and Luef, F. and Prata, J.,
Quantum mechanics in phase space: The Schrödinger and the Moyal representations
Journal of Pseudo-Differential Operators and Applications (2012) EMS MR:MRXXX
ZBL:06145077
-
[incollection] de Gosson, M.,
Heisenberg--Weyl and Grossmann--Royer Operators
Symplectic Methods in Harmonic Analysis and in Mathematical Physics (2011) 91--116 Springer
-
[article] de Gosson, M.,
A transformation property of the Wigner distribution under Hamiltonian symplectomorphisms
J. Pseudo-Differ. Oper. Appl. 2, 1 (2011) 91--99 MR:MR2781143
[pdf]
-
[book] de Gosson, M.,
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Symplectic Methods in Harmonic Analysis and in Mathematical Physics Pseudo-Differential Operators. Theory and Applications 7 (2011) xxiv+337 Birkhäuser/Springer Basel AG, Basel MR:MR2827662
ZBL:1247.81510
-
[article] Luef, F. and De Gosson, M.,
Preferred quantization rules: Born--Jordan vs. Weyl: the pseudo-differential point of view
J. Pseudo-Differ. Oper. Appl. 2, 1 (2011) 115-139 MR:MR2781145
ZBL:1278.81121
[pdf]
-
[article] Dias, C. and De Gosson, M. and Luef, F. and Prata, J.,
A pseudo-differential calculus on non-standard symplectic space; spectral and regularity results in modulation spaces
J. Math. Pures Appl. 96, 5 (2011) 423--445 MR:MR2843220
ZBL:1232.53069
-
[article] Dias, N. and De Gosson, M. and Luef, F. and Prata, J.,
A deformation quantization theory for non-commutative quantum mechanics
J. Math. Phys. 51, 7 (2010) 072101 -072112 MR:MR2681066
ZBL:ZblXXX
[pdf]
-
[article] De Gosson, M. and Luef, F.,
Spectral and regularity properties of a Weyl calculus related to Landau quantization
Journal of Pseudo-Differential Operators and Applications 1, 1 (2010) 3-34 MR:MR2679741
ZBL:1200.81061
[pdf]
-
[article] De Gosson, M. and Luef, F.,
On the usefulness of modulation spaces in deformation quantization
J. Phys. A: Math. Theor. 42 (2009) 315205-315221 MR:MR2521307
ZBL:1177.81074
[pdf]
-
[article] De Gosson, M. and Luef, F.,
Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics
Physics Reports 484, 5 (2009) 131-179 MR:MR2559681
ZBL:1247.81510
[pdf]
-
[article] De Gosson, M.,
The symplectic camel and the uncertainty principle: the tip of an iceberg?
Found. Phys. 39, 2 (2009) 194--214 MR:MR2475714
ZBL:1165.81030
-
[article] de Gosson, M.,
Semi-classical propagation of wavepackets for the phase space Schrödinger equation: interpretation in terms of the Feichtinger algebra
Journal of Physics A: Mathematical and Theoretical 41, 9 (2008) 095202 IOP Publishing[pdf]
-
[article] Piccione, P. and De Gosson, M. and De Gosson, S.,
On a product formula for the Conley-Zehnder index of symplectic paths and its applications.
Ann. Global Anal. Geom. 34, 2 (2008) 167-183 MR:MR2425528
ZBL:1145.37013
-
[article] De Gosson, M.,
On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths
(2008) MR:MR2531557
ZBL:1179.53080
-
[article] De Gosson, M.,
Spectral properties of a class of generalized Landau operators.
Commun. Partial Differ. Equations 33, 11 (September) (2008) 2096-2104 MR:MR2475331
ZBL:1159.35077
[pdf]
-
[Article] De Gosson, M. and Luef, F.,
A new approach to the *-genvalue equation
Lett. Math. Phys. 85, 2-3 (2008) 173--183 MR:MR2443938
ZBL:1165.53059
[pdf]
-
[article] De Gosson, M. and Luef, F.,
Principe d'incertitude et positivité des opérateurs à trace; applications à l'opérateur densité
Ann. Inst. H. Poincaré 9, 2 (2008) 329--346 MR:MR2399191
ZBL:1140.81014
[pdf]
-
[article] De Gosson, M.,
Remarks on the positivity and the variation of Planck's constant
(2007) MR:MRXXX
ZBL:1203.81012
-
[article] de Gosson, M.,
Remarks on a paper by Cordero and Nicola on Feichtinger\'{ }s Wiener amalgam spaces and the Schrödinger equation
(2007) 5 MR:MRXXX
ZBL:ZblXXX
-
[article] Isidro, J. and De Gosson, M.,
A gauge theory of quantum mechanics.
Mod. Phys. Lett. A 22, 3 (2007) 191-200 MR:MR2290898
ZBL:1117.81088
-
[article] De Gosson, M.,
Semi-Classical propagation of wavepackets for the phase space Schrödinger equation; Interpretation in terms of the Feichtinger algebra
J. Phys. A 41, 9 (2007) 095202, 13 MR:MR2453740
ZBL:1137.81030
[pdf]
-
[article] De Gosson, M.,
Metaplectic representation, Conley-Zehnder index, and Weyl calculus on phase space
Rev. Math. Phys., 10 (2007) 1149--1188 World Scientific, Singapore MR:MR2362902
ZBL:1156.81028
-
[article] Isidro, J. and de Gosson, M.,
A gauge theory of quantum mechanics.
Mod. Phys. Lett. A 22, 3 (2007) 191-200 MR:MR2290898
ZBL:05133376
-
[article] Isidro, J. and De Gosson, M.,
Abelian gerbes as a gauge theory of quantum mechanics on phase space
J. Phys. A, Math. Theor. 40, 13 (2007) 3549-3567 MR:MR2325061
ZBL:05141988
-
[article] De Gosson, M. and Luef, F.,
Remarks on the fact that the Uncertainty Principle does not determine the Quantum State
Phys. Lett., A, 364 (2007) 453–457 MR:MR2307863
ZBL:1203.81012
[pdf]
-
[article] De Gosson, M. and Luef, F.,
Quantum states and Hardys formulation of the uncertainty principle: a symplectic approach
Lett. Math. Phys. 80, 1 (2007) 69-82 MR:MR2314845
ZBL:1113.81090
[pdf]
-
[article] De Gosson, M.,
Gaussian Quantum States and the Uncertainty Principle of Hardy
(2006) 1-12 MR:MRXXX
ZBL:ZblXXX
-
[article] De Gosson, M. and De Gosson, S.,
Extension of the Conley-Zehnder index, a product formula, and an application to the Weyl representation of metaplectic operators.
J. Math. Phys. 47, 12 (2006) 123506, 15 MR:MR2285155
ZBL:1112.53065
[pdf]
-
[misc] De Gosson, M.,
Weyl calculus in phase space and the Torres-Vega and Frederick
equation.
(2006) MR:MR2212840
ZBL:05132417
-
[misc] De Gosson, M.,
Weyl calculus in phase space and the Torres-Vega and Frederick equation
(2006) MR:MR2212840
ZBL:05132417
-
[incollection] De Gosson, M.,
Uncertainty principle, phase space ellipsoids and Weyl calculus.
Pseudo-differential Operators and related Topics Papers Based on Lectures Given at the International Conference, Växjö University, Sweden, June 22 to June 25, 2005 Boggiatto, Paolo;et al. Operator Theory: Advances and Applications 164 (2006) 121-132 Birkhäuser; MR:MRXXX
ZBL:05035715
[pdf]
-
[book] de Gosson, M.,
Symplectic Geometry and Quantum Mechanics
Operator Theory: Advances and Applications. Advances in Partial Differential Equations. 166 (2006) xx+367 Birkhäuser; MR:MR2241188
ZBL:05031976
-
[article] De Gosson, M.,
Extended Weyl calculus and application to the phase-space Schrödinger equation.
J. Phys. A, Math. Gen. 38, 19 (2005) L325-L329 MR:MR2145799
ZBL:1072.81041
-
[article] de Gosson, M.,
Symplectic quantum cells and Husimi-Wigner functions.
Bull. Sci. Math. 129, 3 (2005) 211-226 MR:MR2126823
ZBL:1074.81050
-
[article] De Gosson, M.,
Symplectically covariant Schrödinger equation in phase space.
J. Phys. A, Math. Gen. 38, 42 (2005) 9263-9287 MR:MR2186606
ZBL:1081.81072
-
[article] De Gosson, M.,
On the Weyl representation of metaplectic operators
Lett. Math. Phys. 72, 2 (2005) 129--142 MR:MR2154859
ZBL:1115.81048
-
[article] De Gosson, M.,
The optimal pure Gaussian state canonically associated to a Gaussian quantum state
Phys. Lett. A 330, 3-4 (2004) 161--167 MR:MR2095989
ZBL:1209.81026
-
[article] De Gosson, M.,
On the notion of phase in mechanics.
J. Phys. A, Math. Gen. 37, 29 (2004) 7297-7314 MR:MR2078958
ZBL:1088.81069
-
[incollection] De Gosson, M. and De Gosson, S.,
The cohomological meaning of Maslov's Langrangian path intersection index.
Jean Leray '99 Conference Proceedings The Karlskrona Conference, Sweden, August 1999 in Honor of Jean Leray de Gosson, Maurice Math. Phys. Stud. 24 (2003) 143-162 Kluwer Academic Publishers; MR:MR2051486
ZBL:1027.53099
-
[incollection] De Gosson, M.,
Semiclassical wavefunctions and Schrödinger equation.
Hyperbolic Differential Operators and related Problems et al.;Ancona, Vincenzo Lect. Notes Pure Appl. Math. 233 (2003) 287-300 Marcel Dekker; MR:MR2004871
ZBL:1046.81039
-
[article] De Gosson, M. and De Gosson, S.,
The Maslov indices of Hamiltonian periodic orbits.
J. Phys. A, Math. Gen. 36, 48 (2003) L615-L622 MR:MR2025474
ZBL:1047.37038
-
[article] De Gosson, M.,
Phase space quantization and the uncertainty principle.
Phys. Lett., A 317, 5-6 (2003) 365-369 MR:MR2027474
ZBL:1058.81045
-
[incollection] De Gosson, M. and De Gosson, S.,
Symplectic path intersections and the Leray index.
Partial Differential Equations and Mathematical Physics In Memory of Jean Leray et al.;Kajitani, Kunihiko Prog. Nonlinear Differ. Equ. Appl. 52 (2003) 85-96 Birkhäuser; MR:MR1957627
ZBL:1074.53068
-
[article] De Gosson, M.,
The symplectic camel principle and semiclassical mechanics.
J. Phys. A, Math. Gen. 35, 32 (2002) 6825-6851 MR:MR1930894
ZBL:1039.53103
-
[book] de Gosson, M.,
The Principles of Newtonian and Quantum Mechanics. The Need for Planck\'{ }s Constant, $h$.
(2001) xxii+357 Imperial College Press MR:MR1897416
ZBL:0991.70001
-
[incollection] De Gosson, M. and Dragovich, B. and Khrennikov, A.,
Some $p$-adic differential equations.
$p$-adic Functional Analysis Proceedings of the 6th International Conference, Ioannina, Greece, July 3-7, 2000 et al.;Katsaras, A. K. Lect. Notes Pure Appl. Math. 222 (2001) 91-102 Marcel Dekker; MR:MRXXX
ZBL:1006.12006
-
[article] De Gosson, M.,
The symplectic camel and phase space quantization.
J. Phys. A, Math. Gen. 34, 47 (2001) 10085-10096 MR:MR1872403
ZBL:1008.53074
-
[incollection] De Gosson, M.,
Lagrangian path intersections and the Leray index.
Geometry and Topology, Aarhus Proceedings of the Conference on Geometry and Topology, Aarhus, Denmark, August 10-16, 1998 et al.;Grove, Karsten Contemp. Math. 258 (2000) 177-184 American Mathematical Society (AMS); MR:MR1778103
ZBL:0985.53038
-
[article] De Gosson, M.,
On the classical and quantum evolution of Lagrangian half-forms in phase space.
Ann. Inst. H. Poincaré (A) Phys. théor. 70, 6 (1999) 547-573 MR:MR1693584
ZBL:1049.53055
-
[article] De Gosson, M.,
The quantum motion of half-densities and the derivation of Schrödinger's equation.
J. Phys. A, Math. Gen. 31, 18 (1998) 4239-4247 MR:MR1627530
ZBL:0961.81010
-
[article] De Gosson, M.,
On half-form quantization of Lagrangian manifolds and quantum mechanics in phase space.
Bull. Sci. Math. 121, 4 (1997) 301-322 MR:MR1456285
ZBL:0878.58023
-
[book] De Gosson, M.,
Maslov Classes, Metaplectic Representation and Lagrangian Quantization
Maslov classes, metaplectic representation and Lagrangian quantization Research Notes in Mathematics 95 (1997) 186 Wiley-VCH; MR:MR1449637
ZBL:0872.58031
-
[article] De Gosson, M.,
On the Leray-Maslov quantization of Lagrangian submanifolds.
J. Geom. Phys. 13, 2 (1994) 158-168 MR:MR1260596
ZBL:0795.58022
-
[article] De Gosson, M.,
Cocycles de Demazure-Kashiwara et géométrie métaplectique. (Demazure-Kashiwara cocycles and metaplectic geometry).
J. Geom. Phys. 9, 3 (1992) 255-280 MR:MR1171138
ZBL:0776.53022
-
[article] De Gosson, M.,
The structure of $q$-symplectic geometry.
J. Math. Pures et Appl. 71 (1992) 429-453 MR:MR1191584
ZBL:0829.58015
-
[article] De Gosson, M.,
La définition de l'indice de Maslov sans hypothèse de transversalité. (The definition of the Maslov index without a transversality assumption).
C. R. Acad. Sci. Paris, Série I 310 (1990) 279-282 MR:MR1042863
ZBL:0705.22012
-
[article] De Gosson, M.,
La relation entre $Sp_{\infty}$, rev\^etement universel du groupe symplectique Sp, et Sp$\times {\bbfZ}$. (The relation between $Sp_{\infty}$, the universal covering of the symplectic group Sp, and Sp$\times {\bbfZ})$.
C. R. Acad. Sci. Paris, Série I 310 (1990) 245-248 MR:MR1042855
ZBL:0732.22001
-
[article] De Gosson, M.,
Maslov indices on the metaplectic group ${M}p(n)$.
Ann. Inst. Fourier 40, 3 (1990) 537-555 MR:MR1091832
ZBL:0705.22013
-
[article] De Gosson, M.,
Microlocal regularity at the boundary for pseudo-differential operators with the transmission property. I.
Ann. Inst. Fourier 32, 3 (1982) 183-213 MR:MR0688025
ZBL:0488.35080
-
[article] De Gosson, M.,
Paramètrix de transmission pour des opérateurs de type parabolique et application au problème de Cauchy microlocal.
C. R. Acad. Sci. Paris 292 (1981) MR:MR0610146
ZBL:0484.35046
-
[article] De Gosson, M.,
Résultats microlocaux en hypoellipticite partielle à la frontière pour les opérateurs pseudo-différentiels de transmission.
C. R. Acad. Sci. Paris 292 (1980) MR:MR0585915
ZBL:0469.35080
-
[article] De Gosson, M.,
Hypoellipticite partielle à la frontière des opérateurs pseudo- différentiels de transmission.
Ann. Mat. Pura Appl., IV. Ser. 123 (1980) 377-402 MR:MR0581937
ZBL:0435.35087
Preprints
-
Cordero, E. and de Gosson, M. and Dörfler, M. and Nicola, F.,
Generalized Born--Jordan Distributions and Applications
preprint https://arxiv.org/abs/1811.04601 (nov) (2018)
-
De Gosson, M. and Onchis, D.,
Multivariate symplectic Gabor frames with Gaussian windows
preprint (2012) MRXXX
ZBL:ZblXXX
-
De Gosson, M. and Luef, F.,
Sub-Gaussian estimates for Wigner functions and their relation with the notion of symplectic capacity
preprint (2011) MRXXX
ZBL:ZblXXX
-
Dias, N. and De Gosson, M. and Luef, F. and Prata, J.,
Quantum mechanics in phase space: The Schroedinger and the Moyal representations
preprint (2011) EMS MR2992055
ZBL:06145077
-
De Gosson, M. and Luef, F.,
The Pseudo-Character of the Weil representation and its relation with the Conley-Zehnder Index
preprint (2009) MRXXX
ZBL:ZblXXX
[pdf]
-
de Gosson, M. and Luef, F.,
The multi-dimensional Hardy Uncertainty Principle and its interpretation in terms of the Wigner distribution; relation with the notion of Symplectic Capacity
preprint (2008) MRXXX
ZBL:ZblXXX
[pdf]
-
De Gosson, M. and Luef, F.,
A Geometric Interpretation of Hardy's Uncertainty Principle in Terms of the Notion of Symplectic Capacity
preprint (2007) MRXXX
ZBL:ZblXXX
|
|