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SUMMARY

A log-likelihood ratio (LLR) measures the reliability (and uncertainty) of a binary random variable being a
zero versus being a one. LLRs are used as input in many implementations of decoding algorithms which
also output LLRs. Mismatches in the outputs are, for example, generated by a decoder which is
implemented by using approximations during its computations e.g. the symbol-by-symbol max-log
a posteriori probability (APP) algorithm versus the correct forward-backward (log-APP) algorithm or
Hagenauer’s approximation of the box function. We propose post-processing of output LLRs to correct part
of the mismatches. This post-processing is a function of the statistics of the input LLRs. As examples, we
study the effect of incorrectly scaled inputs to the box function leading to mismatched outputs, Hagenauer’s
approximation to the box function, and the effect of compensating mismatches of LLRs on the performance
of iterative decoders. Copyright # 2003 AEI.

1. INTRODUCTION

The log-likelihood ratio (LLR) of a binary random vari-

able has found widespread usage in the decoding of binary

codes [1]. A typical set-up is depicted in Figure 1.

Binary values b1; b2; . . . are transmitted over a channel

and samples z1; z2; . . . are received. Symbols Bi and Ri

denote the random variables corresponding to bit bi and

received value zi. For each i, the LLR of Bi, conditioned

on the knowledge of the received value Ri is computed:

li ¼ log
PðBi ¼ 0 jRi ¼ ziÞ
PðBi ¼ 1 jRi ¼ ziÞ

The numbers l1; l2; . . . are fed to a decoder that computes

LLRs of (linear combinations of ) the transmitted bits.

Throughout this paper log denotes the natural logarithm.

One of the aims of this paper is to study the distortion of

the output of the decoder if the inputs l1; l2; . . . are inaccu-

rate. This situation can occur if the channel statistics are

not precisely known. Another aim is to study the distortion

in the decoder’s output for several popular low-complexity

approximations to genuine LLR computations such as the

symbol-by-symbol max-log a posteriori probability (max-

log-APP) algorithm versus the correct forward-backward

(log-APP) algorithm or Hagenauer’s approximation of

the box function.

In Section 2 we define LLRs and we expand on the chan-

nel model given in Figure 1. In Section 3 we give a general

framework for studying the mismatches in output LLRs. We

define systematic mismatches, we prove that a certain post-

processing corrects this type of mismatch, and that other

kinds of mismatches cannot be corrected. This post-proces-

sing is used in Section 4 to analyse the distortion of the out-

put of the box function in two variables if the two inputs are

incorrectly scaled. In Section 5 we analyse Hagenauer’s

approximation of the box function and in Section 6 we
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discuss a simple network of Hagenauer’s box functions.

With simulations we show in Section 7 the performance

gain that can be achieved in iterative decoders by compen-

sating mismatched LLRs. We conclude in Section 8.

2. LOG-LIKELIHOOD RATIOS

We introduce log-likelihood ratios (LLRs) and their pro-

perties by means of definitions and examples. This leads

to the problem of analysing mismatches in LLRs discussed

in this paper.

The LLR [2] of a binary random variable B conditioned

on the knowledge of an instance of some other correlated

random variable R ¼ z is defined by

LBðR ¼ zÞ¼: log
PðB ¼ 0 jR ¼ zÞ
PðB ¼ 1 jR ¼ zÞ

It represents soft information about B provided by our

knowledge of R ¼ z and the statistics that relate B and R.

If the conditional transition probability densities

pðR ¼ z jB ¼ bÞ

and the source probabilities

PðB ¼ bÞ

are known, then by Bayes’ rule the LLR of B conditioned

on R ¼ z can be computed as

LBðR ¼ zÞ ¼ log
pðR ¼ z jB ¼ 0Þ
pðR ¼ z jB ¼ 1Þ þ log

PðB ¼ 0Þ
PðB ¼ 1Þ ð1Þ

Function p denotes the probability density and function P

denotes the probability.

2.1. LLRs are sufficient statistics

We have seen how probabilities PðB ¼ 1 jR ¼ zÞ and

PðB ¼ 0 jR ¼ zÞ define LBðR ¼ zÞ. An important property

of LLRs is that LBðR ¼ zÞ also defines the probabilities

PðB ¼ 1 jR ¼ zÞ and PðB ¼ 0 jR ¼ zÞ. By definition,

PðB ¼ 1 jR ¼ zÞ � eLBðR¼zÞ ¼ PðB ¼ 0 jR ¼ zÞ. From the

definition of probabilities we infer PðB ¼ 0 jR ¼ zÞþ

PðB ¼ 1 jR ¼ zÞ ¼ 1. By combining both relations we

obtain

PðB ¼ b jR ¼ zÞ ¼ 1

1 þ emðbÞ�LBðR¼zÞ ð2Þ

where mð0Þ ¼ �1 and mð1Þ ¼ þ1 [2]. This shows how to

compute the probability distribution PðB ¼ b jR ¼ zÞ
from LLRs. In this sense LLRs are sufficient statistics.

We do not lose information by computing the LLR and dis-

carding the received value.

2.2. The box function

In the next example we introduce the box function. Here

the box function is used to compute, given input LLRs, a

new LLR. The input LLRs are based on received values. It

appears that the new LLR about a joint statistic of the

received values can be computed by the box function

transforming the input LLRs. Thus, the input LLRs are

sufficient statistics representing the received values.

Suppose that fBigni¼1 is a sequence of binary uniformly

distributed random variables representing a sequence of

transmitted bits. Let R ¼ fRigni¼1 be the sequence of ran-

dom variables representing the received values. Hence,

Ri and Bi depend statistically on one another, but they

are statistically independent of any of the other random

variables Bj and Rj, for 14j 6¼ i4n. In this example we

are interested in the binary random value B ¼
P
�n

i¼1Bi

conditioned on the knowledge of the received sequence

R ¼ z ¼ fzigni¼1. We want to compute the LLR

y ¼ LBðR ¼ zÞ ¼ L P�n
i¼1Bið Þ fRi ¼ zigni¼1

� �
By using (2), it can be shown that

L P�n
i¼1Bið Þ fRi ¼ zigni¼1Þ ¼ Fðl1; . . . ; ln

� �
where

Fðl1; . . . ; lnÞ¼
:

log

P
ðb1;...; bnÞ:

P�n
i¼1bi¼0

Q
14 j4 n e�bjljP

ðb1;...; bnÞ:
P�n

i¼1bi¼1

Q
14 j4 n e�bjlj

ð3Þ

Figure 1. A data path.
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with li ¼ LBi
ðRi ¼ ziÞ, 14i4n. Function Fð:Þ is indepen-

dent of the channel statistics. The channel statistics are

contained in the LLRs li (they are sufficient statistics).

Function Fð:Þ is called the box function and is introduced

by Hagenauer et al. [2] in some elementary LLR calcula-

tions.

2.3. A log-APP decoder

The next example discusses a log-APP decoder which as in

Section 2.2 computes a new LLR based on input LLRs.

Let C be a binary linear code with code word length n.

Suppose that with uniform probability a code word in C is

selected and transmitted. Let the sequence B ¼ fBigni¼1

correspond to the transmitted code word and let R ¼
fRigni¼1 correspond to the sequence of received values.

We are interested in each of the binary random values Bi

conditioned on the knowledge of the received sequence

R ¼ z ¼ fzigni¼1 and conditioned on the knowledge

B ¼ fBigni¼1 2 C. We want to compute LBi
ðR ¼ z;B 2 CÞ,

for 14i4n.

A symbol-by-symbol a posteriori probability (APP)

decoder is an optimal soft-input soft-output decoder [3].

Such a decoder can work both in the probability domain

(APP decoder) and in the LLR domain (log-APP decoder).

Working in the LLR domain, the soft inputs and soft out-

puts of an optimal decoder are expected to represent LLRs.

The log-APP decoder computes given the inputs

li ¼ LBi
ðRi ¼ ziÞ; 14i4n

the outputs

yi ¼ LBi
ðR ¼ z;B 2 CÞ; 14i4n

¼ log
PðBi ¼ 0 jR ¼ z;B 2 CÞ
PðBi ¼ 1 jR ¼ z;B 2 CÞ

¼ log

P
ðb1;...; bnÞ2 C:bi¼0

Q
14j4n e�bjljP

ðb1;...; bnÞ2 C:bi¼1

Q
14j4n e�bjlj

;

where the last equation follows from (2).

2.4. A complete data path

In Figure 1 a complete data path is depicted. We start trans-

mitting a sequence of bits over a noisy channel, for exam-

ple AWGN with BPSK transmission. The received values

are transformed into LLRs. As seen from (1), the channel

statistics are needed in these computations. A decoder uses

the computed LLRs as inputs to compute LLRs of (linear

combinations of ) the transmitted bits. Such a decoder may

be a network of box functions, see Section 2.2, or a log-

APP decoder, see Section 2.3.

2.5. Mismatches

Consider an AWGN channel with BPSK transmission.

Suppose that we use an incorrect estimate of the amplitude

and/or variance with which we compute mismatched

(incorrectly scaled) LLRs li’s. Then the box function

Fðl1; . . . ; lnÞ outputs a mismatched LLR. It will not com-

pute the desired y ¼ LBðR ¼ zÞ but it computes

LBðR ¼ zÞ þ "ðzÞ

where "ð:Þ is the function representing the mismatch in the

output. This situation for the box function in two variables

is analysed in Section 4.

Mismatched inputs lead to mismatches in the output.

Correct inputs but incorrect computations lead to mis-

matches in the output as well. For example, Hagenauer

approximated the box function by replacing the sum

operation in (3) by the max operation [2]. This results in

the so-called Hagenauer’s box function. If we use the

resulting function (which is easier to implement) we do

not compute the desired y ¼ LBðR ¼ zÞ but we compute

LBðR ¼ zÞ þ "ðzÞ, where "ð:Þ is the function representing

the mismatch in the output in this situation. In Section 5

the mismatch due to use of Hagenauer’s box function is

analysed.

The forward backward algorithm [3] is an efficient

implementation of the optimal log-APP decoding algo-

rithm of convolutional codes. It can be approximated by

using the max operation over exponentials, instead of sum-

ming exponentials. This leads to the so called max-log-

APP algorithm or the modified soft-output Viterbi algo-

rithm (SOVA) [1]. The used approximation introduces

mismatches in the outputs.

In the iterative decoding of parallel concatenated codes,

see [4, 5], the outputs of a log-APP decoder are used as

inputs to a second log-APP decoder. If we use the max-

log-APP algorithm instead, then the second decoder does

not only use approximations leading to mismatches in the

output LLRs, but also mismatched inputs leading to

mismatches in the LLRs (in implementations we need

finite precision which lead to approximations as well).

Similarly, in a network of Hagenauer’s box functions appro-

ximations and mismatched inputs lead to mismatched out-

puts. In Section 6 a simple network is considered and in

Section 7 it is shown that scaling mismatched LLRs in

iterative decoders increase the performance and that the

scaling is related to the correction of mismatched LLRs.
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3. SYSTEMATIC MISMATCHES

Let us consider the general situation in which we want to

compute LBðR ¼ zÞ, but we actually compute

a ¼ LBðR ¼ zÞ þ "ðzÞ

we discard the received value z and keep the computed

value a. Value "ðzÞ represents the mismatch. Since we dis-

card z, our remaining knowledge about z is that it is an ele-

ment in Ra, where

Ra ¼ f� : a ¼ LBðR ¼ �Þ þ "ð�Þg

Define qð�Þ ¼ pðR ¼ �Þ=pðR 2 RaÞ for � 2 Ra. Let

EðaÞ ¼
X
�2Ra

qð�Þ"ð�Þ

and

�ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2Ra

qð�Þð"ð�Þ � EðaÞÞ2

s

EðaÞ is the average mismatch over � 2 Ra, and �ðaÞ is the

standard deviation of the considered mismatches. The

value a does not contain any mismatch if both EðaÞ ¼ 0

and �ðaÞ ¼ 0. We say it contains a systematic mismatch

if EðaÞ 6¼ 0. Similarly, it contains random mismatches if

�ðaÞ 6¼ 0. In this concept EðaÞ measures the extent to

which value a contains a systematic mismatch, and �ðaÞ
measures the extent to which value a contains a random

mismatch.

In Appendix A we prove the following theorem.

Theorem 1. Let A be the random variable which

corresponds to a ¼ LBðR ¼ zÞ þ "ðzÞ, and let LðaÞ ¼P
�2Ra

qð�ÞLBðR ¼ �Þ. Note that �ðaÞ4
P

�2Ra
qð�Þj"ð�Þ

�EðaÞj4max�2Ra
j"ð�Þ � EðaÞj. Then,

jLBðA ¼ aÞ � LðaÞj4max
�2Ra

j "ð�Þ � EðaÞ j

and the first few terms of a Taylor series expansion of

LBðA ¼ aÞ is given by

LBðA ¼ aÞ ¼ LðaÞ � 1

2

eLðaÞ � 1

eLðaÞ þ 1
�ðaÞ2 þ � � �

Suppose that the random mismatches are small, in the

sense that

max
�2Ra

j"ð�Þ � EðaÞj4"

If necessary we may replace the sum in the defini-

tions of LðaÞ, EðaÞ, and �ðaÞ by integrals. We derive

(Theorem 1 is used in the second inequality), for each

z 2 Ra,

jLBðA ¼ aÞ � LBðR ¼ zÞ j
4 j LBðA ¼ aÞ � LðaÞ j þ j LðaÞ � LBðR ¼ zÞ j
¼ j LBðA ¼ aÞ � LðaÞ j þ j "ðzÞ � EðaÞ j
42 max

�2Ra

j "ð�Þ � EðaÞ j42"

and

j a� LBðR ¼ zÞ j ¼ j "ðzÞ j5 jEðaÞ j � j "ðzÞ � EðaÞ j
5jEðaÞ j � max

�2Ra

j "ð�Þ � EðaÞ j

5jEðaÞ j � "

So, if jEðaÞ j > 3" then by computing LBðA ¼ aÞ we cor-

rect some of the unwanted systematic mismatches. The

Taylor series expansion of LBðA ¼ aÞ in Theorem 1 seems

to indicate this as well. The computation of LBðA ¼ aÞ is a

one-input one-output post-processing step in which the

real valued output a is transformed into an other real value,

a LLR.

If there are no mismatches at all we compute LBðA ¼ aÞ,
where A is the random variable corresponding to

a ¼ LBðR ¼ zÞ. From the derivations in Appendix A it

follows that LBðA ¼ aÞ ¼ a. In other words, the post-

processing function is equal to the identity function.

From equation (2) we deduce that by computing

LBðA ¼ aÞ and discarding a we do not lose our knowledge

about the statistics PðB ¼ b jA ¼ aÞ. From an information-

theoretical point of view we do not lose any informa-

tion; the uncertainty of B given our knowledge of a is

equal to the uncertainty of B given our knowledge of

LBðA ¼ aÞ. We conclude that systematic mismatches do

not introduce uncertainty since we are able to correct them

partly. This is in accordance with information theory: sys-

tematic errors simply do not introduce uncertainty while

random errors do introduce uncertainty.

A natural choice for a post-processing function f ð:Þ
minimizes the average mismatch over � 2 Ra, that is, it

minimizes X
�2Ra

qð�Þ j f ðaÞ � LBðR ¼ �Þj

Even though it minimizes the average mismatch and

reduces the systematic mismatch, we propose to use

the post-processing LBðA ¼ aÞ instead for the following

reason. Let us consider the log-APP decoder of

Section 2.3. If we use the LLRs LBi
ðAi ¼ aiÞ as inputs

then the log-APP decoder computes LLRs yi ¼

230 M. VAN DIJK ET AL.
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LBi
ðfAj ¼ ajgnj¼1;B 2 CÞ. In other words, conditioned on

B 2 C and given the knowledge of values fajgnj¼1 we com-

pute the probability 1=ð1 þ e�yiÞ that bit Bi ¼ 0 (see (2)).

This is the most we can hope for. Our computations are

optimal in this sense. In Appendix B we consider an exam-

ple which demonstrates this advantage of using LBðA ¼ aÞ
instead of f ðaÞ.

The proposed post-processing requires the precise

knowledge of the channel statistics. In practice we do

not have this knowledge, because otherwise we would

avoid mismatches in the inputs and we would use better

approximations. However, a proper analysis of the pro-

posed post-processing does tell us the behaviour of sys-

tematic mismatches in the output (hopefully leading to

improved implementations; see the next paragraph). To

obtain some intuition about this behaviour we shall com-

pute the post-processing function for the box function with

incorrectly scaled inputs in Section 4 and we compute the

post-processing function for Hagenauer’s box function

with correct inputs in Section 5. (In both cases we found

exact expressions for very small a and for very large a.)

By means of simulations (of the whole data path from

random variable B to random variable A; see Figure 1

where A corresponds to the output LLRs which contain

mismatches) we estimate the probability density functions

pðA ¼ a jB ¼ 0Þ and pðA ¼ a jB ¼ 1Þ with which we can

determine LBðA ¼ aÞ as a function of a. Note that it is only

feasible to obtain pðA ¼ a jB ¼ 0Þ and pðA ¼ a jB ¼ 1Þ
from simulations if these values are not too small. In prac-

tical implementations of decoding algorithms the output

LLRs are quantized and therefore have a finite number

of possible values. So post-processing can be implemented

by means of a look-up table. This look-up table depends on

the channel statistics. In practice, we are usually interested

in a certain critical range of statistics for which the decod-

ing should perform well. As far as statistics outside this

range are concerned, it will either be obvious that the per-

formance is excellent or we do not mind if the performance

is poor. So, the look-up table to be implemented must be

adjusted to the critical range of statistics.

4. THE BOX FUNCTION WITH INCORRECTLY
SCALED INPUTS

In this section we analyse the box function in two vari-

ables, which can be written as (see Section 2.2)

Fðl1; l2Þ ¼ log
1 þ el1þl2

el1 þ el2

We assume an AWGN channel with BPSK transmission

leading to

pðRi ¼ z jBi ¼ 0Þ ¼ e�ðz�mÞ2=2�2ffiffiffiffiffiffiffiffiffiffi
2p�2

p

and

pðRi ¼ z jBi ¼ 1Þ ¼ e�ðzþmÞ2=2�2ffiffiffiffiffiffiffiffiffiffi
2p�2

p

Full knowledge of m and �2 lead to full knowledge of

2m=�2, which is necessary for transforming the received

values into LLRs

LBi
ðRi ¼ zÞ ¼ 2m

�2
z

Having computed l1 ¼ LB1
ðR1¼z1Þ and l2 ¼LB2

ðR2 ¼ z2Þ
we use them as arguments of the box function and compute

z ¼ Fðl1; l2Þ ¼ LB1�B2
ðR1 ¼ z1;R2 ¼ z2Þ.

We now want to study what happens when the decoder

has partial knowledge of the amplitude m and/or variance

�2 leading to a scaled transformation of the received

values. Let a be the scaling factor leading to mismatched

LLRs

L̂Bi
ðRi ¼ zÞ¼: 2m

a�2
z

Let L̂i represent the corresponding random variables. We

use the mismatched LLRs as inputs to the box function.

This leads to a systematic mismatch at the output of

the box function. We want to compute the output

LB1�B2
ðR1 ¼ z1;R2 ¼ z2Þ. So the post-processing of the

output suggested in the previous section is the function

LðzÞ¼: LB1�B2
ðZ ¼ zÞ ¼ log

pðZ ¼ z jB1 � B2 ¼ 0Þ
pðZ ¼ z jB1 � B2 ¼ 1Þ

where Z ¼ FðL̂1; L̂2Þ.
In order to analyse the post-processing function we

derive

pðL̂i ¼ z jBi ¼ 0Þ ¼ d

dz
P L̂i4z jBi ¼ 0
� �

¼ d

dz
P Ri4

a�2

2m
z jBi ¼ 0

� �

¼ a�2

2m
p Ri ¼

a�2

2m
z jBi ¼ 0

� �

¼ e�ðz�bÞ2a=4bffiffiffiffiffiffiffiffiffiffiffiffiffi
4pb=a

p
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where b ¼ 2m2=ða�2Þ. We observe that pðL̂i ¼ z j Bi ¼
0Þ ¼ pðL̂i ¼ �z jBi ¼ 1Þ and

Fðl1; l2Þ ¼ �Fð�l1; l2Þ ¼ �Fðl1;�l2Þ

From these symmetry considerations we deduce

LðzÞ ¼ log
pðZ ¼ z jB1 ¼ B2 ¼ 0Þ
pðZ ¼ �z jB1 ¼ B2 ¼ 0Þ

So, without loss of generality we assume that B1 ¼ B2 ¼ 0

and

Z ¼ log
1 þ eXþY

eX þ eY
;

where X and Y are independent Gaussian variables with

mean b and variance 2b=a such that

LðzÞ ¼ log
pðZ ¼ zÞ
pðZ ¼�zÞ :

The next theorem gives an expression of pðZ ¼ zÞ; see

Appendix C for its proof.

Theorem 2. The probability density function of Z can be

determined as :

pðZ ¼ zÞ ¼ e�ab=2

ð1
�1

faðetÞpðW ¼ tÞpðW ¼ t � zÞ dt;

where

pðW ¼ wÞ

¼

0; w < 0ffiffiffiffiffiffi
2a
pb

s
�
exp

�
� a

2b
log 2 ew þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2w � 1

p�
Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e�2w

p ; w > 0

8>><
>>:

and

faðxÞ ¼ coshða arccoshðxÞÞ; x51

Function pðW ¼ wÞ is the probability density function

of W ¼ log ðcoshðVÞÞ with V a Gaussian distributed ran-

dom variable with mean 0 and variance b=a. It can be read-

ily verified that:

pðZ ¼ �zÞ ¼ e�
ab
2

ð1
�1
faðet�zÞpðW ¼ tÞpðW ¼ t � zÞ dt

Hence, when a ¼ 1 so that faðxÞ ¼ x, we obtain that

pðZ ¼ zÞ ¼ ezpðZ ¼ �zÞ and LðzÞ ¼ z. If a ¼ 1 then the

input LLRs do not contain mismatches, and therefore no

post-processing is required as is expressed by the identity

function LðzÞ ¼ z.

It should be noted that pðZ ¼ zÞ has a logarithmic singu-

larity at z ¼ 0. Therefore, it is necessary to subject

pðZ ¼ zÞ to a mathematical analysis to obtain more insight

into the behaviour of pðZ ¼ zÞ, especially at z ¼ 0.

In Appendices C.2 and C.3 we show that for a51 and

y51,

yafaðxÞ4 faðxyÞ4 faðxÞfaðyÞ; x51 ð4Þ

while for a < 1 the inequality signs should be reversed.

Applying this inequality with faðxyÞ ¼ faðetÞ ¼ faðet�zezÞ
results for a51 and z > 0 in the lower and upper bound

az4 LðzÞ4 log faðezÞ ð5Þ

For a < 1 the inequality signs should be reversed. Both the

upper and the lower bound coincide for a ¼ 1 giving

LðzÞ ¼ z. Furthermore, it should be noted that the above

inequality for LðzÞ is sharp in the sense that LðzÞ ! az
when a is kept fixed and b ! 1 while LðzÞ ! log faðezÞ
when a is kept fixed and b # 0. Experiments have shown

that if b is not too small and a is fixed, the bound az is close

to being attained.

Both the upper bound for a51 and the lower bound for

a < 1 of LðzÞ exhibit linear behaviour for small z and for

large z. This linear behaviour of these bounds can be made

explicit by applying an upper bound on faðyÞ for a51 and

y51 :

faðyÞ4
ya

2

2a�1ya

(

For a < 1 the inequality signs should be reversed and we

then obtain a lower bound on faðyÞ. When we apply these

bounds with y ¼ ez and a51 we obtain

LðzÞ4 log faðezÞ4 a2z

azþ ða� 1Þ log 2

�

where the inequality signs should be reversed for a < 1. In

Appendices C.2 and C.3 we show that for fixed a it holds

that

lim
z!0

LðzÞ
z

¼ a2 and lim
z!1

LðzÞ � azð Þ ¼ ða� 1Þ log 2

Hence, for large z the upper bound and the lower bound (5)

on LðzÞ have the same slope a and the bounds have a ver-

tical offset of ða� 1Þ log 2.

The derived bounds of LðzÞ are illustrated for a ¼ 1=2 in

Figure 2. The case a > 1 means that the inputs of the box

function do not match m2=2�2, the signal-to-noise-ratio

(SNR) on the transmission channel, and that the true

SNR is higher than assumed. This underestimation leads
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to outputs of the box function that are systematically too

small (a factor of a smaller for large z and a factor of a2

for small z). Similarly, for a < 1 the outputs of the box

function are systematically too large.

In order to carry out the proposed post-processing we

need full knowledge of a, in other words, we need to know

2m=�2. If we would have known this ratio we would not

have supplied incorrectly scaled inputs in the first place.

The analysis shows how the linear behaviour of the sys-

tematic mismatch in the inputs propagates to the output.

The outputs themselves will be used as inputs in future

computations. The given analysis describes the systematic

mismatches affecting these new inputs, and can help us

understand the outputs of future computations.

5. HAGENAUER’S BOX FUNCTION

In this section we shall analyse Hagenauer’s approxi-

mation

Hðl1; . . . ; lnÞ ¼
Y

14i4n

ðsign liÞ � min
14 j4n

j lj j

to the box function Fðl1; . . . ; lnÞ (See (3) in Section 2.2).

Let us consider a special case where li ¼ l � 0 for all

14i4n. Then, Hagenauer’s approximation equals l. The

true box function equals

log

P
ðb1;...; bnÞ:

P�n
i¼1bi¼0

Q
14 j4n e�bjlP

ðb1;...; bnÞ:
P�n

i¼1bi¼1

Q
14j4n e�bjl

� log
1

ne�l
¼ l� log n: ð6Þ

Hagenauer’s approximation thus produces a systematic

mismatch � �log n. That is, Hagenauer’s approximation

overestimates the output LLR (this corresponds to the

results in [6]).

The general setting in this section is as in Section 2.2;

fBigni¼1 is a sequence of binary uniformly distributed ran-

dom variables representing a sequence of transmitted bits

and R ¼ fRigni¼1 represents the sequence of received

values z ¼ fzigni¼1. Random variables Ri and Bi depend

statistically on one another, but they are statistically inde-

pend of any of the other random variables Bj and Rj,

for 14j 6¼ i4n. In the sequel Li is the random variable

corresponding to LBi
ðRi ¼ ziÞ. Let H be the random

variable corresponding to HðL1; . . . ; LnÞ and let

B ¼
P
�n

i¼1Bi. We compute Hðl1; . . . ; lnÞ instead of

Fðl1; . . . ; lnÞ ¼ LBðR ¼ zÞ. So, the post-processing of the

output suggested in Section 3 is the function LBðH ¼ zÞ.
We redefine

LðzÞ¼: LBðH ¼ zÞ

The next theorem shows that the proposed post-proces-

sing of Section 3 corrects the mismatch shown in (6). Its

proof is given in Appendix D.

Theorem 3. Suppose that all transition probability den-

sities pðRi ¼ r jBi ¼ bÞ are identical (independent of i). In
addition we assume that these transition probability

densities are symmetric so that

pðRi ¼ r jBi ¼ 0Þ ¼ pðRi ¼ �r jBi ¼ 1Þ

for all 14 i4 n. Let

L ¼ f� : pðLi ¼ �Þ 6¼ 0g

(which is independent of i since all Li’s are identically dis-

tributed). Then, for z 2 L,

LðzÞ ¼ z� ðsign zÞlog ð1 þ ðn� 1ÞgðzÞÞ

� ðsign zÞ ðn� 1ÞgðzÞ þ nðn� 1Þðn� 2ÞgðzÞ3

3 þ 3ðn� 1ÞgðzÞ

" #

� e�2 j z j þ O
�
e�4 j z j � ð7Þ

where

gðzÞ ¼
Ð1
j z j pðLi ¼ x jBi ¼ 0Þe�x dxÐ1

j z j pðLi ¼ x jBi ¼ 0Þe� j z j dx
2 ð0; 1Þ

(which is independent of index i). Furthermore,

pðH ¼ z jB ¼ 0Þ ¼ pðH ¼ �z jB ¼ 1Þ, Lð�zÞ ¼ �LðzÞ,

Figure 2. Bounds on the log-likelihood ratio of the box function
with incorrectly scaled inputs.
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and LðzÞ is a strictly increasing function in z 2 L. In

particular,

d

dz
LðzÞ

				
z¼0

¼ 1 � gð0Þ
1 þ gð0Þ

� �n�1

Let us proceed with a specific choice for the probability

densities pðRi ¼ r jBi ¼ bÞ mentioned in Theorem 3. Take

pðRi ¼ z jBi ¼ 0Þ ¼ e�ðz�mÞ2=2�2ffiffiffiffiffiffiffiffiffiffi
2p�2

p

and

pðRi ¼ z jBi ¼ 1Þ ¼ e�ðzþmÞ2=2�2ffiffiffiffiffiffiffiffiffiffi
2p�2

p

representing BPSK transmission with additive white

Gaussian noise. Then,

LBi
ðRi ¼ zÞ ¼ 2m

�2
z

Hence,

pðLi ¼ z jBi ¼ 0Þ ¼ e�ðz�bÞ2=4bffiffiffiffiffiffiffiffi
4pb

p

where b ¼ 2m2=�2 (see also the previous section). We

deriveð1
j z j

e�xpðLi ¼ x jBi ¼ 0Þdx ¼
ð� j z j

�1
pðLi ¼ x jBi ¼ 1Þ dx

¼
ð�ð j z j þbÞ=

ffiffiffiffi
2b

p

�1

e�x2=2ffiffiffiffiffiffi
2p

p dx

¼
ð1
ð j z j þbÞ=

ffiffiffiffi
2b

p
e�x2=2ffiffiffiffiffiffi

2p
p dx

and ð1
j z j

pðLi ¼ x jBi ¼ 0Þdx ¼
ð1
ð j z j �bÞ=

ffiffiffiffi
2b

p
e�x2=2ffiffiffiffiffiffi

2p
p dx

Let

QðzÞ ¼
ð1
z

e�x2=2ffiffiffiffiffiffi
2p

p dx

Then

gðzÞ ¼ Qðð j z j þ bÞ=
ffiffiffiffiffiffi
2b

p
Þ

e� j z jQðð j z j � bÞ=
ffiffiffiffiffiffi
2b

p
Þ

To obtain the asymptotic behaviour of gðzÞ we use the

inequalities

ð1 � 1=z2Þ e�z2=2ffiffiffiffiffiffi
2p

p
z
< QðzÞ < e�z2=2ffiffiffiffiffiffi

2p
p

z

for z > 0 [7, pp. 31], leading to

j z j � b
j z j þ b

� ð j z j þ bÞ2 � 2b

ð j z j þ bÞ2
< gðzÞ

and

gðzÞ < j z j � b
j z j þ b

� ð j z j � bÞ2

ð j z j � bÞ2 � 2b
;

for j z j > b. Hence (see also (6)),

lim
z!1

LðzÞ � zð Þ ¼ �log n

and

lim
z!�1

LðzÞ � zð Þ ¼ log n

For small z other terms in the expansion of LðzÞ become

more important. Theorem 3 states

lim
z!0

LðzÞ
z

¼
�

1 � 2Q
� ffiffiffiffiffiffiffiffi

b=2
p ��n�1

:

In Figure 3 we have plotted LðzÞ for n ¼ 2 and b ¼ 1. A

consequence of the proof in Appendix D is that

LðzÞ ¼ z� log ð1 þ gðzÞÞ þ log ð1 þ e�2zgðzÞÞ for n ¼ 2

and z50, which is in agreement with (7). There is a verti-

cal offset of log 2 for large z, which can be corrected with-

out any knowledge of the amplitude and variance. For

decreasing z the offset decreases as a function of the

SNR. If the SNR is known then we can implement a table

which provides correction terms LðzÞ � z for various z, so

that we are able to reduce the systematic mismatch gener-

ated by Hagenauer’s box function.

Figure 3. The log-likelihood ratio of Hagenauer’s box function.
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6. A NETWORK OF HAGENAUER’S BOX
FUNCTIONS

From the definition of the box function Fð:Þ and from the

definition of Hagenauer’s box function Hð:Þ it follows that

Fðl1; l2; l3; l4Þ ¼ FðFðl1; l2Þ;Fðl3; l4ÞÞ
and

Hðl1; l2; l3; l4Þ ¼ HðHðl1; l2Þ;Hðl3; l4ÞÞ

More generally, we can build a network using (Hagenauer’s)

box functions of two variables to implement a (Hagenauer’s)

box function in more than two variables. In this section

we continue the discussion of Section 5 for a simple

example of a network. We suppose that the assumptions

in Theorem 3 hold.

Suppose that we compute Hðl1; l2; l3; l4Þ by computing

HðHðl1; l2Þ;Hðl3; l4ÞÞ. In Section 3 we propose to use the

post-processing

LðzÞ ¼ LB1�B2�B3�B4
ðHðL1; L2; L3; L4Þ ¼ zÞ:

An other possibility is to compute Hðl1; l2Þ and Hðl3; l4Þ
and not to postpone the post-processing but to apply the

post-processing suggested in Section 3 on these values.

This means that we twice use the post-processing function

�LðzÞ ¼ LB1�B2
ðHðL1; L2Þ ¼ zÞ

¼ LB3�B4
ðHðL3; L4Þ ¼ zÞ

This results in the post-processed values �LðHðl1; l2ÞÞ and
�LðHðl3; l4ÞÞ. Now we compute

Hð�LðHðl1; l2ÞÞ; �LðHðl3; l4ÞÞÞ

and we apply the final post-processing

L̂ðzÞ ¼ LðB1�B2Þ�ðB3�B4ÞðZ ¼ zÞ

where Z is the random variable

Z ¼ Hð�LðHðL1; L2ÞÞ; �LðHðL3; L4ÞÞÞ

We will prove that if we postpone all the post-processing

we obtain the same final value, that is,

LðHðHðl1; l2Þ;Hðl3; l4ÞÞÞ
¼ L̂ðHð�LðHðl1; l2ÞÞ; �LðHðl3; l4ÞÞÞÞ

According to Theorem 3 �LðzÞ is a strictly increasing

function in z. Hence, from the definition of Hagenauer’s

approximation to the box function it follows that

Hð�LðHðl1; l2ÞÞ; �LðHðl3; l4ÞÞÞ
¼ �LðHðHðl1; l2Þ;Hðl3; l4ÞÞÞ ð8Þ

A second consequence is

LðHðHðl1; l2Þ;Hðl3; l4ÞÞÞ
¼ LB1�B2�B3�B4

ðHðHðL1; L2Þ;HðL3; L4ÞÞ
¼ HðHðl1; l2Þ;Hðl3; l4ÞÞÞ
¼ LB1�B2�B3�B4

ð�LðHðHðL1; L2Þ;HðL3; L4ÞÞÞ
¼ �LðHðHðl1; l2Þ;Hðl3; l4ÞÞÞÞ

By using (8) we derive

LB1�B2�B3�B4
ð�LðHðHðL1; L2Þ;HðL3; L4ÞÞÞ

¼ �LðHðHðl1; l2Þ;Hðl3; l4ÞÞÞÞ
¼ LðB1�B2Þ�ðB3�B4ÞðHð�LðHðL1; L2ÞÞ; �LðHðL3; L4ÞÞÞ
¼ Hð�LðHðl1; l2ÞÞ; �LðHðl3; l4ÞÞÞÞ
¼ L̂ðHð�LðH1ðl1; l2ÞÞ; �LðH2ðl3; l4ÞÞÞ

This proves that in this specific example without loss of

information we may postpone all the post-processing to

the end. It remains an open problem whether this is true

for more general networks of Hagenauer’s box functions.

7. SIMULATION RESULTS

In this section we present simulation results that show the

influence of compensating mismatched LLRs on the per-

formance of an iterative decoder [2, 4, 8]. In Figure 4 a

schematic diagram of an iterative decoder is shown. The

symbols x, y1 and y2 represent the intrinsic information

of, respectively, the information bits, the parity bits of

encoder 1 and the parity bits of encoder 2. Compared to

traditional iterative decoders, the one shown in Figure 4

is extended with multipliers that scale the extrinsic infor-

mation of the decoders 1 and 2 with a1 and a2, respectively.

The use of scaling will be elucidated in the next section.

Figure 4. Schematic diagram of iterative decoder for PCCC.
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Reasons for arising mismatches of LLRs in iterative

decoders maybe due to the fact that in the course of iter-

ating the correlation between a-priori information and

intrinsic information increases. Also the use of subopti-

mal component decoders like max-log-APP decoders

will lead to mismatches. In particular the produced

extrinsic information of max-log-APP decoders is an

overestimate of the true LLR [6, 9]. The mismatch due

to use of a max-log-APP decoder is quantified in the next

section.

7.1. Quantifying mismatch of max-log-APP decoders

We quantify the mismatch of the extrinsic information pro-

duced by a max-log-APP decoder compared to the true

LLR by determining the scaling factor that one has to

apply in order to correct the relation between extrinsic

information and LLR. For that purpose we do experiments

with an 8-state recursive convolutional code with genera-

tor polynomial G ¼ ð1; 15=13Þ. By doing simulations we

determined the distribution of the extrinsic information a

produced by a max-log-APP decoder. This distribution is

used to determine the LLR LðaÞ of the extrinsic informa-

tion a and can therefore be used for calculating the

required correction factor LðaÞ=a (see Section 3) of the

extrinsic information. The required correction factor is

shown in Figure 5 and turns out to be dependent on the

decoder output a. The correction values are smaller than

one and therefore validate the reported overestimation of

LLRs in [6, 9]. An approximation to the non-constant scal-

ing may be a constant correction factor.

7.2 Scaling in iterative decoders

In an iterative decoding scheme (see Figure 4), with com-

ponent decoders of the max-log-APP type, we investigate

experimentally whether compensation of mismatched

LLRs lead to better performances. The used code is a par-

allel concatenated convolutional code with two 8-state

recursive systematic component convolutional codes.

The generator polynomials of the component codes are

G ¼ ð1; 15=13Þ. The interleaver size is 150 and the two

component codes are terminated separately by zero-tail-

ing. The interleaver is a randomly chosen permutation.

To avoid decoding complexity, the mismatched LLRs at

the output of the component decoders are compensated

with a constant scaling factor instead of using a scaling

function like shown in Figure 5. For obtaining good

scaling factors we use an experimental and greedy

approach. We fix the SNR and start with one iteration

and observe the performance (Bit Error Rate) at the output

of decoder 2 while a1 is varied. The scaling factor is varied

in steps of 0.1 from 0.1 up to 1.0. The value of a1 that gives

the lowest BER is used in further simulations (but only for

the first iteration). The same procedure is repeated for a2

while we observe the BER at the output of decoder 1 and

do 2 (actually 1.5) iterations. Then we vary a1 again for the

second iteration, etc. In this way we obtain two profiles of

scaling factors for one SNR. For each SNR the procedure

has to be repeated. The resulting scaling factors are shown

in Table 1. We find that the scaling factor a2 does not vary

much with the SNR, but for a1 we see that a higher SNR

leads to higher values. Furthermore, the scaling factor

found for a1 in the first iteration matches well with the

found scaling function shown in Figure 5.

7.3. Performance versus complexity

In Figure 6 the convergence behaviour of iterative decod-

ing with scaling is shown. The figure gives the BER as

function of the number of iterations. As a reference we also

give the performances of iterative decoding without scal-

ing for 5 and 10 iterations. The results show that in case

of iterative decoding with max-log-APP component

decoders, due to properly scaling the required number of

iterations can be halved for the same (or better) perfor-

mance. Moreover, the performance approaches the perfor-

mance of an iterative decoder with log-APP component

decoders.

Notice that in [6] a different scaling is proposed that

does not lead to significant performance improvements.

The reason for that may be that they assume Gaussian

distributed extrinsic information, while the non-constantFigure 5. LLR correction of extrinsic information.
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correction factor shown in Figure 5 suggests a non-Gaus-

sian distribution.

8. CONCLUSIONS

In general, systematic mismatches can be studied by

means of a post-processing which corrects this type of

mismatches. We demonstrated that this post-processing

is generally not equivalent to minimizing the average

(systematic or non-systematic) mismatch.

For example, if we do not know the exact SNR we will

incorrectly scale the inputs of the box function with say a

factor a. This leads to a mismatched output of the box

function. We have given upper and lower bounds on the

output of the proposed post-processing as a function of

the mismatch. If we underestimate the SNR then the output

of the box function is smaller than what it should be (a pes-

simistic output). Overestimation of the SNR leads to opti-

mistic outputs of the box function. If the SNR is not too

small and a is fixed, the post-processing is approximately

equivalent to multiplying with the factor a. So the beha-

viour of the systematic mismatch at the inputs transfers

to the output.

Hagenauer’s approximation to the box function was

considered as a second example. An expression of the

post-processing function LðzÞ has been derived. If z is

not too small, this expression equals approximately

z� ðsign zÞlog n, where n is the number of inputs.

Hagenauer’s approximation leads to a slightly pessimistic

output. For a simple network of Hagenauer’s box func-

tions, we proved that without loss of information we

may postpone all the post-processing to the end.

Simulation results show that our theory explains the

influence of scaling on the performance of an iterative

decoder. By using scaling factors the performance can be

significantly improved.

APPENDIX A: PROPERTIES OF LBðA ¼ aÞ

In this appendix we present the proof of Theorem 1

concerning the post-processing LBðA ¼ aÞ, where A is

the random variable corresponding to a ¼ LBðR ¼ zÞþ
"ðzÞ. We define Ra ¼ f� : a ¼ LBðR ¼ �Þ þ "ð�Þg and

qð�Þ ¼ pðR ¼ �Þ=pðR 2 RaÞ for � 2 Ra.

We derive

LBðA ¼ aÞ ¼ log
pðB ¼ 0;R 2 RaÞ
pðB ¼ 1;R 2 RaÞ

¼ log

P
�2Ra

qð�ÞPðB ¼ 0 jR ¼ �ÞP
�2Ra

qð�ÞPðB ¼ 1 jR ¼ �Þ

By using equation (2) we obtain

LBðA ¼ aÞ ¼ log

P
�2Ra

qð�Þ=
�
1 þ e�LBðR¼�Þ

�
P

�2Ra
qð�Þ=

�
1 þ eþLBðR¼�Þ

�
¼ log

P
�2Ra

qð�Þ= 1 þ e�ða�"ð�ÞÞ� �
P

�2Ra
qð�Þ=

�
1 þ eþða�"ð�ÞÞ

�

Table 1. Scaling factors for iterative decoding with max-log-APP.

Es=N0 ai Iteration number

1 2 3 4 5 6 7 8 9 10

�4.0 1 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.7 0.6 0.7
2 — 0.6 0.7 0.7 0.6 0.6 0.6 0.7 0.6 0.7

�3.0 1 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.7
2 — 0.7 0.7 0.7 0.7 0.6 0.7 0.6 0.7 0.7

�2.0 1 0.8 0.9 0.9 1.0 1.0 — — — — —
2 — 0.7 0.6 0.7 0.6 — — — — —

Figure 6 Convergence of iterative decoding with scaling at
Es=N0 ¼ �3:0 dB.
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Let LðaÞ ¼
P

�2Ra
qð�ÞLBðR ¼ �Þ, and EðaÞ¼

P
�2Ra

�
qð�Þ"ð�Þ. We notice that LBðA ¼ aÞ ¼ log 1�x

x
, with x ¼P

�2Ra
qð�Þ=ð1 þ eða�"ð�ÞÞÞ, is a decreasing function in x.

Hence, a� max�2Ra
"ð�Þ4LBðA ¼ aÞ4a� min�2Ra

�
"ð�Þ, and we obtain

�max
�2Ra

ð"ð�Þ � EðaÞÞ4 LBðA ¼ aÞ � LðaÞ

and

LBðA ¼ aÞ � LðaÞ4� min
�2Ra

ð"ð�Þ � EðaÞÞ

from which the first part of the theorem follows.

The second part of the theorem can be derived by taking

partial derivatives of

x ¼
X
�2Ra

qð�Þ 1 þ eðLðaÞ�ð"ð�Þ�EðaÞÞÞ
� �.

which is a function of variables v� ¼ "ð�Þ � EðaÞ, � 2 Ra.

APPENDIX B: LBðA ¼ aÞ VERSUS fðaÞ

Assume an AWGN channel with BPSK transmission. Let

m ¼ 1 and � ¼ 2:296069 so that the SNR equals m2=2�2 ¼
�10:23 dB. Note that our example is not practical. If a zero

is transmitted we receive an instance of a Gaussian distri-

bution with mean m and standard deviation �. If a one is

transmitted we receive an instance of a Gaussian distribu-

tion with mean �m and standard deviation �. Let B be the

random variable corresponding to the transmitted bit.

Suppose that the received signal is quantized by 5 bits.

That is, there are 32 quantization intervals. For large

enough SNR the performance of a convolutional code is

given by the union bound. The intervals are chosen such

that the union bound is minimized, or equivalently such

that the minimum Bhattacharyya distance [7, pp. 311]

between the signal sequences corresponding to two differ-

ent code words is maximized. The quantization intervals

optimize the so-called cut-off rate [7, pp. 310–318].

Without much performance degradation we use the uni-

form spacing t ¼ 0:180 � �, that is the 32 quantization

intervals are I�16 ¼ ð�1;�15t�, I�15 ¼ ð�15t;�14t�;
I�14 ¼ ð�14t;�13t�; . . . ; I�1 ¼ ð�t; 0�; I1 ¼ ð0; t�; . . . ;
I16 ¼ ð15t;1Þ. The quantized received signal z is repre-

sented by the index (z 2 f�16; . . . ;�1;þ1; . . . ;þ16g)

of the quantization interval containing the originally

received signal. Let R be the random variable correspond-

ing to z. Let

Lz ¼ log
PðB ¼ 0 jR ¼ zÞ
PðB ¼ 1 jR ¼ zÞ

be the LLR corresponding to the interval Iz and let

Pz ¼ PðR ¼ zÞ be the probability that we receive a signal

in interval Iz; see Table 2. We notice that L�z ¼ �Lz and

P�z ¼ Pz.

Suppose that we want to represent R ¼ z by means of 3

bits instead of 5 bits, which will lead to a mismatch. In this

case we should have quantized the originally received sig-

nal by 3 bits right away. This would lead to a uniform spa-

cing of t ¼ 0:569 � �, which is about 3 times the uniform

spacing used for 32 quantization intervals. Therefore, in

order to represent R ¼ z by means of 3 bits we map z 2 J1

¼ f1; 2; 3g into a ¼ 1, we map z 2 J2 ¼ f4; 5; 6g into

a ¼ 2, we map z 2 J3 ¼ f7; 8; 9g into a ¼ 3 and we map

z 2 J4 ¼ f10; . . . ; 16g into a ¼ 4. Similarly, �z is mapped

into �a. Let A be the random variable corresponding to a.

From Section 3, we propose the post-processing

LBðA ¼ aÞ ¼ log
PðA ¼ a jB ¼ 0Þ
PðA ¼ a jB ¼ 1Þ

¼ log

P
z2Ja PðR ¼ z jB ¼ 0ÞP
z2Ja PðR ¼ z jB ¼ 1Þ

¼ log

P
z2Ja Pz=

�
1 þ e�Lz

�
P

z2Ja Pz=
�
1 þ eLz

�
see (2). In this appendix we compare this to a different

post-processing

f ðaÞ ¼
X
z2Ja

PzLz

which minimizes the average mismatch. Table 3 lists both

function values.

Table 2. The statistics describing 32 quantization intervals.

z Lz Pz

1 0.07818243 0.06502740
2 0.2345484 0.06334471
3 0.3909203 0.06010470
4 0.5472841 0.05554249
5 0.7036525 0.04997747
6 0.8600187 0.04377633
7 1.016384 0.03731538
8 1.172751 0.03094384
9 1.329121 0.02495421

10 1.485495 0.01956311
11 1.641870 0.01490382
12 1.798244 0.01102980
13 1.954615 0.007926813
14 2.110979 0.005530324
15 2.267335 0.003744492
16 2.619154 0.006315138
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We make the example more explicit by supposing

that we puncture the parities at the even positions of a rate

1/2 systematic non-recursive convolutional code with

feedforward polynomial 1 þ D. The resulting punctured

convolutional code words are a repetition of code words

in the ½3; 2; 2� parity check code. In Section 2.3 we

described a symbol-by-symbol log-APP decoder. Let

l1; l2; l3 2 f�4;�3;�2;�1;þ1;þ2;þ3;þ4g be the three

inputs. Then the first output equals y1 ¼ l1 þ Fðl2; l3Þ.
Based on y1 we make a hard decision, if y1 < 0 we decide

a 1 was transmitted as first bit of the parity check code

word and if y1 > 0 we decide a 0 was transmitted as first

bit of the parity check code word. Without loss of general-

ity we assume the all-zero code word has been transmitted.

Except for the 4 cases listed in Table 4 the two kinds of

post-processing (PP) lead to the same hard decisions

(HD’s).

The bit error rate (BER) after taking the hard decisions

is equal to 0:3228271 in the case of the post-processing

LBðA ¼ aÞ and 0:3228486 in the case of the post-

processing f ðaÞ. Our proposed post-processing performs

slightly better. This confirms the conclusion that the

post-processing LBðA ¼ aÞ is optimal. We notice that if

we do not perform any decoding then the BER after taking

hard decisions is equal to 0:3315900. So, our example is

not practical but it does demonstrate the differences

between the two post-processings.

APPENDIX C: ANALYSIS OF RANDOM
VARIABLE Z

In this appendix we present the proofs of the results

given in Section 4 concerning the probability density func-

tion (pdf) pðZ ¼ zÞ and LLR LðzÞ ¼ log
�
pðZ ¼ zÞ=

pðZ ¼ �zÞ
�

of

Z ¼ log
1 þ eXþY

eX þ eY


 �
ð9Þ

where X; Y are independent Gaussian random variables

with mean m and variance �2. For this a careful analysis

of the functions

faðxÞ ¼ coshða arccoshðxÞÞ; x51 ð10Þ

where a ¼ 2m=�2, is required. We note that m and � play a

different role in Section 4. Yet, for a better understanding,

we shall use the same variables in the context of this

appendix. In Section 4, we apply the results of this appen-

dix for m ¼ b and �2 ¼ 2b=a.

C.1. Explicit formula for pðZ ¼ zÞ and some first
consequences

We shall show that for z 2 R

pðZ ¼ zÞ ¼ e�
m2

�2

ð1
�1

faðetÞpðW ¼ tÞpðW ¼ t � zÞ dt

ð11Þ
Here fa is given by (10) and

pðW ¼ wÞ

¼
0; w < 0

2

�
ffiffiffi
p

p
exp

�
� 1

�2 log 2 ew þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2w � 1

p� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e�2w

p ; w > 0

8><
>:

ð12Þ
is the pdf of W ¼ log ðcoshðVÞÞ with V a Gaussian random

variable with mean 0 and variance 1
2
�2.

Indeed, from (9) it follows that

Z ¼ log
cosh 1

2
ðX þ YÞ

cosh 1
2
ðX � YÞ

" #

¼ log ðcoshðUÞÞ � log ðcoshðVÞÞ ð13Þ

where U ¼ 1
2
ðX þ YÞ and V ¼ 1

2
ðX � YÞ are independent

Gaussian random variables with variance 1
2
�2 and with

mean m and 0, respectively. Write

T ¼ log ðcoshðUÞÞ; W ¼ log ðcoshðVÞÞ

Table 3. Two kinds of post-processing.

a LBðA ¼ aÞ f ðaÞ PðA ¼ ajB ¼ 0Þ

�4 �1.780219 �1.819411 0.01991400
�3 �1.147889 �1.152016 0.04490553
�2 �0.6886431 �0.6913283 0.09982994
�1 �0.2295319 �0.2304663 0.1669406
þ1 0.2295319 0.2304663 0.2100131
þ2 0.6886431 0.6913283 0.1987626
þ3 1.147889 1.152016 0.1415213
þ4 1.780219 1.819411 0.1181130

Table 4. Differences in the hard decisions (HD’s).

ðl1; l2; l3Þ HD based on HD based on
y1 with the y1 with the

PP LBðA ¼ aÞ PP f ðaÞ

(�3, �4, �4) 1 0
(�3, þ4, þ4) 1 0
(þ3, �4, þ4) 0 1
(þ3, þ4, �4) 0 1
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For the pdf of W we compute

PðW4wÞ ¼ 2

�
ffiffiffi
p

p
ðvðwÞ

0

e�v2=�2

dv; w > 0

and PðW4wÞ ¼ 0 for w < 0, where

vðwÞ ¼ arccoshðewÞ ¼ log ew þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2w � 1

p� �
; w > 0

Thus

pðW ¼ wÞ ¼ 2

�
ffiffiffi
p

p e�v2ðwÞ=�2

v0ðwÞ; w > 0

and it follows that pðW ¼ wÞ is given by (12).

For the pdf of T we compute

PðT4tÞ ¼ 1

�
ffiffiffi
p

p
ðvðtÞ
�vðtÞ

e�ðu�mÞ2=�2

du

¼ 2

�
ffiffiffi
p

p e�m2=�2

ðvðtÞ
0

e�u2=�2

coshðauÞ du

for t > 0, and PðT4tÞ ¼ 0 for t < 0. From this we easily

obtain

pðT ¼ tÞ ¼ e�m2=�2

faðetÞpðW ¼ tÞ; t > 0

with fa as given in (10). Then, from (13) and the statistical

independence of T and W , both

pðZ ¼ zÞ ¼
ð
pðT ¼ tÞpðW ¼ t � zÞ dt; z 2 R

and (11) follow.

We give some consequences of (11–12). By taking t þ z

as integration variable in the integral in (11) with z

replaced by �z we obtain

pðZ ¼�zÞ ¼ e
�m2

�2

ð1
�1
faðet�zÞpðW ¼ tÞpðW ¼ t � zÞ dt

Hence, we obtain for the LLR

LðzÞ ¼ log
pðZ ¼ zÞ
pðZ ¼ �zÞ


 �

¼ log

Ð
faðetÞpðW ¼ tÞpðW ¼ t � zÞ dtÐ
faðet�zÞpðW ¼ tÞpðW ¼ t � zÞ dt


 �
z5 0: ð14Þ

In particular, when a ¼ 1, so that faðxÞ ¼ x, we find that

LðzÞ ¼ z.

We furthermore observe that, due to the factor ð1�
expð�2wÞÞ�1=2

in the second member of the right-hand

side of (12) and fað1Þ ¼ 1,

lim
z!0

pðZ ¼ zÞ
j log j z j j

¼ 2

�2p
e�m2=�2

Hence pðZ ¼ zÞ has a logarithmic singularity at z ¼ 0.

C.2. Properties of fa

To obtain inequalities for and insight into the behaviour of

LðzÞ, we consider formula (14), in which we write

faðetÞ ¼
faðet�zezÞ
faðet�zÞ faðet�zÞ; t5 z5 0

We are therefore particularly interested in the lower and

upper bounds of faðxyÞ=faðxÞ as a function of x ¼
et�z51 for a given value of y ¼ ez51. These bounds

translate directly into bounds for LðzÞ through formula

(14).

Lemma 4

(i) Let y > 1 and a > 1. Then faðxyÞ=faðxÞ decreases
from faðyÞ to ya when x increases from 1 to 1.

(ii) Let y > 1 and a < 1. Then faðxyÞ=faðxÞ increases
from faðyÞ to ya when x increases from 1 to 1.

(iii) f1ðxÞ ¼ x, x51; fað1Þ ¼ 1, f 0að1Þ ¼ a2, a > 0.

(iv) For a > 1, x > 1, y > 1 we have

ya <
faðxyÞ
faðxÞ

< faðyÞ < min
�
ya

2

; 2a�1ya
�

ð15Þ

(v) For a < 1, x > 1, y > 1 we have

ya >
faðxyÞ
faðxÞ

> faðyÞ > max ya
2

; 2a�1ya
� �

ð16Þ

(vi) For 0 < a <1 we have

faðxyÞ
faðxÞ

¼ ya
2
�

1 þO
�
ðx� 1Þðy� 1Þ þ ðy� 1Þ2


�
ð17Þ

for x5 1, y5 1.

(vii) For 0 < a <1 we have

faðxyÞ
faðxÞ

¼ 2a�1ya
�

1 þO ðx� 1Þ þ y�2g� 
�
ð18Þ

for x51, y51, where g ¼ minð1; aÞ.
(viii) faðxÞ is strictly convex in x51 when a > 1 and

strictly concave in x51 when 0 < a < 1.
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(ix) log faðexpðzÞÞ is strictly concave in z50 when

a > 1 and strictly convex in z50 when 0 < a < 1.

Proof.

(i) We have

d

dx

faðxyÞ
faðxÞ


 �
¼ 1

f 2
a ðxÞ

ðyf 0aðxyÞfaðxÞ � faðxyÞf 0aðxÞ
�

for x; y > 1. Since

f 0aðxÞ ¼
a sinhða arccoshðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p x > 1

we obtain after some computations

yf 0aðxyÞ � faðxyÞf 0aðxÞ ¼
a
x
faðxÞfaðxyÞ

�
 aðxyÞ �  aðxÞ

�
for x; y > 1, where

 aðxÞ ¼
x tanhða arccoshðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ; x > 1 ð19Þ

Hence faðxyÞ=faðxÞ decreases in x > 1 if and only if

 aðxÞ decreases in x > 1.

We now change variables in (19) according to

a ¼ arccoshðxÞ, so that a increases from 0 to 1 as

x increases from 1 to 1, and we shall show that

 aðcoshðaÞÞ ¼ tanhðaaÞ
tanhðaÞ

decreases in a > 0. We compute

d

da

tanhðaaÞ
tanhðaÞ


 �
¼ a sinhð2aÞ � sinhð2aaÞ

2 coshðaaÞ2
sinhðaÞ2

ð20Þ

Since a > 1 we have by strict convexity of sinh on

ð0;1Þ that the right-hand side of (20) is negative

for a > 0. Therefore,  aðxÞ and faðxyÞ=faðxÞ decrease

in x > 1.

It is not hard to see that

faðxyÞ
faðxÞ

					
x¼1

¼ faðyÞ; lim
x!1

faðxyÞ
faðyÞ

¼ ya

and this completes the proof of (i).

(ii) Along similar lines as the proof of (i).

(iii) Trivial.

(iv) The first two inequalities in (iv) follow from (i), so we

only need to show that

faðxÞ < min ya
2

; 2a�1ya
� �

; y > 1 ð21Þ

We compute

d

dy

faðyÞ
ya



� ¼ afaðyÞ

ya
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p ð22Þ

�
�
tanhða arccoshðyÞÞ

� tanhð arccoshðyÞÞ



d

dy

faðyÞ
ya

2


 �
¼ afaðyÞ

ya
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p ð23Þ

�
�
tanhða arccoshðyÞÞ

� a tanhðarccoshðyÞÞ



From strict monotonicity and strict concavity of tanh

on ð0;1Þ and the fact that a > 1 it then follows that

the right-hand sides of (22) and (23) are positive and

negative, respectively. Then (21) follows from

fað1Þ ¼ 1; lim
y!1

faðyÞ
ya

¼ 2a�1

(v) Along similar lines as the proof of (iv).

(vi) We first observe that faðxÞ is a smooth function of

x51, and that

fað1Þ ¼ 1; f 0að1Þ ¼ a2

By the Taylor expansion of faðxyÞ around y ¼ 1 (with

x51 fixed), we have for y51

faðxyÞ ¼ faðxÞ þ xðy� 1Þf 0aðxÞ þ O
�
ðy� 1Þ2�

¼ faðxÞ 1 þ xf 0aðxÞ
faðxÞ

ðy� 1Þ þ O
�
ðy� 1Þ2

�
 �

¼ faðxÞ
h
1 þ a2ðy� 1Þ

þ O ðx� 1Þðy� 1Þ þ ðy� 1Þ2
h ii

:

The result then easily follows from

ya
2 ¼ expða2log yÞ ¼ 1 þ a2ðy� 1Þ þ O

�
ðy� 1Þ2

�
(vii) There holds

faðxÞ ¼
1

2
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� �a
þ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� ��ah i
¼ 2a�1xa 1 þOðx�2 þ x�2aÞ

�
Þ

¼ 2a�1xa 1 þOðx�2gÞ
� �

; x51

where g ¼ minð1; aÞ. Hence, for x; y51,
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faðxyÞ ¼ 2a�1yaxa 1 þOððxyÞ�2gÞ
� �

¼ 2a�1yafaðxÞ 1 þOðx� 1Þð Þ

� 1 þOððxyÞ�2gÞ
� �

and from this the result easily follows.

(viii) We compute for x > 1

f 00a ðxÞ ¼
axfaðxÞ
ðx2 � 1Þ

3
2

�
a tanhð arccoshðxÞÞ

� tanhða arccoshðxÞÞ



and the claims easily follow from strict concavity

of tanh on ½0;1Þ.
(ix) Assume that a > 1. From (i) we have that

y > 1; 1 < x1 < x2 ) faðx1yÞfaðx2Þ
> faðx2yÞfaðx1Þ

Taking

x1 ¼ ev; x2 ¼ evþw; y ¼ ez

with v;w; z > 0 and letting gðzÞ ¼ log faðexpðzÞÞ,
we see that

v;w; z > 0 ) gðvþ zÞ þ gðvþ wÞ
> gðvþ wþ zÞ þ gðvÞ

This is equivalent to convexity of g on ð0;1Þ.
The proof for the case that a < 1 is simi-

lar. &

We conclude this subsection with some comments. In

terms of the hypergeometric functions F, see [10,

Ch. 15], in particular 15.1.17 on p. 556, we have for x51

faðxÞ ¼ coshða arccoshðxÞÞ ¼ F �a; a;
1

2
;
1

2
ð1 � xÞ

� �

When a ¼ 0; 1; . . ., we get, see [10, 22.5.47 on p.779 and

22.3.6 on p.775],

faðxÞ ¼ �aðxÞ ¼
1

2
a
Xb1

2
ac

m¼0

ð�1Þm ða� m� 1Þ!
m!ða� 2mÞ! ð2xÞ

a�2m;

the Chebyshev polynomial of the first kind of degree a.
Furthermore, the functions faðxÞ map ½1;1Þ onto ½1;1Þ

and they form a group in the sense that

fabðxÞ ¼ fað fbðxÞÞ; a; b > 0; x5 1:

Interestingly, the functions ya
2

and 2a�1ya that occur at the

right-hand sides of (15–16), considered as mappings of

½0;1Þ onto ½0;1Þ, form groups in the same sense as well.

A similar comment applies to the functions ya, see left-

hand sides of (15–16).

C.3. Consequences for the log-likelihood ratio

The inequalities (4) and (5) in the main text follow

straightforwardly from (14) and the Lemma in C.2. For

instance, when a > 1, the first inequality in (4) follows

from the first inequality in (15) so that

faðetÞ ¼ faðet�zezÞ > eazfaðet�zÞ; t5 z > 0

We shall now sketch proofs of the fact that if a ¼
2m=�2 > 0 and z > 0 are fixed we have

lim
�#0

LðzÞ ¼ log faðezÞ½ �; lim
�!1

LðzÞ ¼ az ð24Þ

We shall also sketch proofs of the fact that if a > 0 and

� > 0 are fixed we have

lim
z#0

LðzÞ
z

¼ a2; lim
z!1

�
LðzÞ � az

�
¼ ða� 1Þlog 2 ð25Þ

The proofs of these limit relations consist of a considera-

tion of the limiting behaviour of the pdf

pðW ¼ tÞpðW ¼ t � zÞÐ1
z

pðW ¼ tÞpðW ¼ t � zÞ dt
; t5 z ð26Þ

for each of the four cases in (24–25), together with an

appeal to the appropriate items in the Lemma in C.2.

As for the first limit in (24), we note that for fixed a > 0,

z > 0 the pdf in (26) concentrates all its mass at the point

t ¼ z when � # 0, see (12). Hence, in the right-hand side of

(14) we can replace the faðetÞ in the numerator by faðezÞ
and the faðet�zÞ in the denominator by fað1Þ ¼ 1.

Similarly, for the second limit in (24), we note that for

fixed a > 0, z > 0 and any arbitrarily large T > 0 the pdf

in (26) concentrates all its mass in ½T ;1Þ as �! 1.

Since by (i) and (ii) of the Lemma in C.2 we have

lim
x!1

faðxyÞ
faðxÞ

¼ ya

we can replace the faðetÞ in the numerator of the right-hand

side of (14) effectively by

faðet�zezÞ ¼ eazfaðet�zÞ

and this yields the second limit formula in (24).

As for the first limit in (25), we observe that for fixed

a > 0, � > 0 the pdf in (26) concentrates all its mass at

t ¼ z when z # 0. This is because of the occurrence of

the factor ð1 � expð�2wÞÞ�1=2
in the lower line of the
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expression (12) for pðW ¼ wÞ. Hence, by (17), we can

replace the faðetÞ in the numerator of the right-hand side

of (14) effectively by

faðet�zezÞ ¼ ea
2zfaðet�zÞ:

Finally, for the second limit in (25) we note that for fixed

a > 0, z > 0 the pdf in (26) concentrates all its mass at

t ¼ z when z ! 1. This is because of the occurrence of

the log 2ðexpðwÞ þ ðexpð2wÞ � 1Þ1=2Þ in the exponent in

the lower line of the expression (12) for pðW ¼ wÞ. Hence,

by (18), we can replace the faðetÞ in the numerator of the

right-hand side of (14) effectively by

faðet�zezÞ ¼ 2a�1eaz:

This completes the sketches of the proofs of all four limit

relations in (24–25).

APPENDIX D. ANALYSIS OF HAGENAUER’S
BOX FUNCTION

In this appendix we prove Theorem 3 in which we analyse

LðzÞ ¼ LBðH ¼ zÞ. By using the assumptions in

Theorem 3, a straightforward case analysis proves

PðH5z jB ¼ 0Þ

¼
ðAðzÞþBðzÞÞnþðBðzÞ�AðzÞÞn

2
; z50

1 � ðAð�zÞþBð�zÞÞn�ðBð�zÞ�Að�zÞÞn
2

; z < 0

(

where AðzÞ¼PðLi5z jBi ¼ 1Þ¼PðLi4� z jBi¼0Þ and

BðzÞ ¼ PðLi5z jBi ¼ 0Þ ¼ PðLi4� z jBi ¼ 1Þ. Hence,

PðH ¼ z jB ¼ 0Þ

¼ d

dz
PðH5z jB ¼ 0Þ

¼ � n

2
fðAð j z j Þ þ Bð j z j ÞÞn�1ðA0ð j z j Þ þ B0ð j z j ÞÞ

� ðsign zÞ � ðBðj z j Þ � Aðj z j ÞÞn�1ðB0ð j z j Þ � A0ðj z j ÞÞg

which equals

n

2
pðLi ¼ j z j jBi ¼ 0Þ��
 ð1

j z j
ð1 þ e�xÞ pðLi ¼ x jBi ¼ 0Þdx

�n�1

ð1 þ e� j z j Þ

þ sign ðzÞ

 ð1

j z j
ð1 � e�xÞpðLi ¼ x jBi ¼ 0Þdx

�n�1

ð1 � e� j z j Þ
�

By using similar arguments we find that pðH ¼
z jB ¼ 1Þ ¼ pðH ¼ �z jB ¼ 0Þ. Since z 2 L if and only

if pðLi ¼ j z j jBi ¼ 0Þ 6¼ 0 we infer from the derived

equations that z 2 L if and only if pðH ¼ z jB ¼ 0Þ 6¼ 0

and if and only if pðH ¼ z jB ¼ 1Þ 6¼ 0. Hence, for z 2 L,

LðzÞ ¼ LBðH ¼ zÞ ¼ log
Dð j z j Þ þ ðsign zÞKð j z j Þ
Dð j z j Þ � ðsign zÞKð j z j Þ

¼ ðsign zÞlog
Dð j z j Þ þ Kð j z j Þ
Dð j z j Þ � Kð j z j Þ ;

where

DðzÞ ¼ 1

2

Ð1
j z j ð1 þ e�xÞpðLi ¼ x jBi ¼ 0ÞdxÐ1

j z j pðLi ¼ x jBi ¼ 0Þdx

" #n�1

ð1 þ e� j z j Þ

¼ 1

2
ð1 þ e� j z j Þ

Xn�1

j¼0

n� 1

j

� �
gðzÞ je�j j z j

with gðzÞ being defined in Theorem 3, and

KðzÞ ¼ 1

2
ð1 � e� j z j Þ

Xn�1

j¼0

n� 1

j

� �
ð�1ÞjgðzÞje�j j z j

This results in the following expression,

LðzÞ ¼ z� ðsign zÞlog

Pdn=2e
i¼0 ða2iðzÞ þ a2iþ1ðzÞÞe�2i j z jPdn=2e
i¼0 ða2i�1ðzÞ þ a2iðzÞÞe�2i j z j

where

a�1ðzÞ ¼ anðzÞ ¼ 0

and

aiðzÞ ¼
n� 1

i

� �
gðzÞi

for 04i4n� 1. By using this expression and by noting

that log ð1 þ xÞ ¼ xþ Oðx2Þ, the first part of the theorem

follows. It remains to be proven that LðzÞ is strictly

increasing in z 2 L. This follows from the following obser-

vations. We note that for 0 < z 2 L,

d

dz
LðzÞ ¼ 2

DðzÞKðzÞ
DðzÞ2 � KðzÞ2

� d

dz
log

KðzÞ
DðzÞ

DðzÞ > KðzÞ > 0, and

log
KðzÞ
DðzÞ ¼ ðn� 1Þlog

Ð1
j z j ð1 � e�xÞpðLi ¼ x jBi ¼ 0Þ dxÐ1
j z j ð1 þ e�xÞpðLi ¼ x jBi ¼ 0Þ dx

þ log
1 � e� j z j

1 þ e� j z j

is strictly increasing in 0 < z 2 L. A similar argument

holds for 0 > z 2 L. We note that the derivative of LðzÞ
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in z ¼ 0 equals (Kð0Þ ¼ 0)

2K 0ð0Þ
Dð0Þ ¼ 1 � gð0Þ

1 þ gð0Þ

� �n�1
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