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INTRODUCTION

This paper presents a convolution theory for the test function space S
of smooth functions and the space §* of generalized functions as introduced
by De Bruijn (the terminology and notation is the one used in [B], where
these spaces are defined). The space S can be regarded as an example
of a test function space of the type studied in [GS], Ch. IV (actually,
our space § can be identified with the space S} of [GS], Ch. IV, § 2.3).
Since the spaces S and 8% are adapted to the needs of Fourier analysis
(cf. [B], section 8 and 9, and [GS], Ch. IV, § 6), it was to be expected that
it is possible to develop a satisfactory convolution theory for these spaces;
it 'seems however that no such theory has been published thus far,

Let us summarize the contents of this paper. Section 1 gives the main
definitions and theorems about the spaces S and S*, and some results
about continuous linear transformations in these spaces are mentioned.
This section is mainly included here for ease of reference.

Section 2 serves as a preparation. The convolution operators introduced
here involve smooth functions only, and they are defined as follows. If
g8, then the convolution operator T, of S is defined by

M Th@= | fe-ti@ (=)

* Supported by the Netherlands Organization for the Advancement of Pure Research
(Z.W.0.).
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for f € 8. Instead of the integral at the right hand side in (1) we can also
write (T'f, g-), where T is the shift operator over distance z, and g_ ig
the smooth function with values g-(t)=g(—t) for ¢ Q.

In section 3 we generalize the notion of convolution operator. The ¢
in (1) is replaced by a generalized function: if @ € §*, then the convolution
operator T'¢ of § is defined by

(2) (Tef)(@)=(T:f, G-) (x€Q)

for f € 8. Here G- bears a similar relation to @ as g_ does to g in the previous
paragraph. Special attention is paid to the case that T¢ maps § into 8,
and the class of all & € S* with this property is called the convolution
class %. For G'€ € we prove that T¢ has an adjoint, and that T'¢ can be
extended in a natural way to a continuous linear operator of §* We
also discuss some alternative descriptions of the class %.

Section 4 presents a link between convolution theory and Fourier
analysis. This involves what we call multiplication operators of § and S*,
If g € 8, then the multiplication operator M, of S is defined by Myj=g-f
for fe 8, where the dot denotes pointwise multiplication; this multipli-
cation operator can be extended in a natural way to a continuous linear
operator of S*. We obtain a useful characterization of the class € in
terms of the Fourier transforms of its elements. Furthermore the con-
volution theorem is generalized in section 4, and a version of Titchmarsh’s
theorem is proved. Finally we mention some results about the solutions
F e 8* of equations of type T¢F =0, where @ is a fixed element of %.

Section 5 contains some additional material. There we prove that the
class of generalized functions of the form M,G with gel, GeS*is a
proper subset of #. We make some remarks about convergence in %, and
finally we pay some attention to convolution theory for the spaces of
smoath and generalized functions of several variables.

NOTATION

We use Church’s lambda caleulus notation, but instead of his 1 we have
the symbol Y, as suggested by Freudenthal: If S is a set, then putting
Yzes in front of an expression (usually containing #) means to indicate
the function with domain S and with the function values given by the
expression. For example, if g € § then Ty = YsesT,f. In case it is clear from
the context which set S is meant, we write Y, instead of Yzes.

1. THE SPACES S AnND S*

1.1. We give a survey of the fundamental notions and theorems of
De Bruijn’s theory of generalized functions (as far as relevant for this
paper). Also, the main theorems of [J], appendix 1 about continuous
linear operators of S and §* are given. More details can be found in [B]
and [J].
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The class § (of smooth functions) is the set of all analytic functions f
of one complex variable that satisfy inequalities

|f(t)| <M exp (—nd(Re t)2-nB(Im t)?) ({eC),

where M >0, 4>0, B>0 depend on f. In § we take the usual inner
product, denoted by (,). Cf. [B], 2.1.

1.2. We consider a semigroup (N.).so of linear operators of S (the
smoothing operators); they satisfy Nais=N.Ng (x>0, f>0). These oper-
ators are integral operators (integration over B); the kernels K. (a>0)
are given by

-7

— ((22+12) cosh & — wusv (zeC, teq).

K, (z, t)=(sinh &)} exp A

Cf. [B], section 4, 5 and 6. The operators N. (x>0) can be defined on

the larger space S+ consisting of all mappings f: R —Q such that
Yier/(t) exp (—met?) € Z1(R) for every e>0.

We have N.fe 8 for fe8% x>0 (compare [B], section 20, where an

equivalent definition of S+ is used). Note that Z»(R) C S+

1.3. We summarize some properties of N, (x> 0).
(i) (Naf,9)=(f, Nag) for =0, fe 8, ge 8 (cf. [B], 6.5).
(i) If feS, =0, then there is at most one g €8 with f=N.g. Also,
if fe.S, then there exists an x>0, g€ S with f=N.g. And if f& S,
and the numbers M >0, 4>0, B>0 are such that

[f(t)] <M exp (—nmA(Re )2+ aB(Im£)2) (teq),

then we can find an «>0, M’'>0, 4'>0, B'>0, only depending on
A4 and B, such that the inequalities

lg(t)| < MM’ exp (—nd' (Re t)2+=B'(Im £)?) (teQ)
hold for the unique g8 with f=N.g (ef. [B], 10.1).

1.4. We list some other linear operators of S (cf. [B], section 8 and 11).
(i) The Fourier transform % and its inverse & *:

Fi=VYeec | € f(t)dt, F*=Yeec (Ff)—2) (f€8).
(ii) The shift operators T (¢ €Q) and B, (beQ):

Tof = Yecf(z+a), Bof="Y,ec e™™"f(z) (f€8).
(iii)) The operators P and @:

Pf=Vueck®, Qf=Vuecsf@) (f€8).
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1.5. A generalized function F is a mapping « € (0, co) — F, e 8 such
that NoFpg=Farp (x>0,8>0). We also write F(x) or N.F instead of F,,

It follows from 1.3(ii) that F =0 in case F.=0 for some a >0 (F e 8%),

If F 8% ges, then the inner product (F,g) is defined as follows:
write g= N,k with some &>0, he S (cf. 1.3(i1)), and put (F, g):=(F,, k)
(this number depends only on F and g; of. [B], section 17 and 18). We
have (N.F, g)=(F, Nug) for x>0, F e S*, ge 8.

We further define (g, F):=(F, g) for F e 8%, ge 8.

1.6. We give some examples of generalized functions.
(i) If fe8*, then the embedding of f (notation: emb (1)) is defined by
emb (f):= Yaso Nof.
Cf. [B], section 20. We have for feSt,gel8

(emb (), 9)= | f0ig:

It may be proved that =0 (a.e.) if and only if emb (f)=0.
(ii) For b e, the ’delta function at b’ is defined by
mw" = {avn. {umON.RQF @v
Now (g, 6)=g(b) for ge 8 (cf. [B], 17.3 and 27.18).

1.7.  We next define convergence in 8. Let (fn)nen be a sequence in S,
and let fe 8. We write f, £ 0 if there are positive numbers 4 and B
such that fu(t) exp (w4 (Re t)2—zB(Im ¢)2) — 0 uniformly in teQ; we
write fu & fif fu—f 5 0. Similarly we define f@ £ 0 (x ] 0) and f@ 5 f
(x| 0) if f@ eS8 (x>0), fe 8. Cf. [B], section 23.

1.8. The following theorem on S-convergence is useful.

THEOREM. Let (fu),en be & sequence in §. The three following state-
ments are equivalent.

(i) fn 5 0.

(ii) There exist a>0 and g, €8 (n €1)) such that fn=Nagn, gn S 0.
(iii) There exists an M >0, 4>0, B>0 such that

|fa(t)l <M exp (—zd(Re t)2+aB(Im t)2) (¢ ed),

and f, — 0 pointwise.

PROOF. Equivalence of (i) and (ii) follows from [B], 23.1, and equi-
valence of (i) and (iii) follows from [J], appendix 2, theorem 1. (]

1.9. We proceed by defining convergence in S*. Let (Fy),n be a
sequence in §*, and let F € S*. We write F,, 5% 0 if N.F, % 0 for every
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a>0; we write F,, & F if F,— F 5% 0. Similarly we define F® £ 0 (8 v 0)
and F® S F (8] 0) if F® e 8% (8>0), F e §*.

[B], 24.2 states: a sequence (F),y in 8% is S*-convergent if and only
if limye (F, g) exists for every ge S.

It is not hard to prove from 1.8 that (Fa, fa) - (F, f) if F,55 F, =
where (F),ey is a sequence in 8* and (fa)ney is a sequence in S.

1.10. We are going to study continuous linear transformations of S
and 8%,

DEFINITION. A linear functional L of 8 is called continuous if Lf, — 0
for every sequence (fz)nen in S with f, 5 0. A linear operator 7' of § is
called continuous if Tf, 5 0 for every sequence (fu)nen in 8 with fa i 0.
The definitions of continuous linear functionals and operators of S* are
similar. (We use the word continuous instead of quasi-bounded, cf. [B],
22.2, and [J], appendix 1, 2.2.)

L1l. DEFINITION. A linear operator 7' of § is said to have an adjoint
if for every g € S there is a g* € S such that (77, g)=(f, g*) for every f e S.
Such a g* is unique, and g* depends linearly on g € §. If we define T *gi =g
for g € 8, then T#* is a linear operator of S, called the adjoint of T.

Note that if 7' has an adjoint, then so has 7%, and (T*)y*=1.

112, Exampre. We introduce some notation. If g € S, then we define

Q””{nnﬂmﬁu QI“H umn®A|NY mﬂl“" umﬂ.ﬂn|.mu.
Note that §e 8, g-€8, §-€ 8, and that (§)-=(g_)=4_. If F € 8*, then

we define F:=VYisoFa, F_:=Yuso(Fa)m, F-:="Yano(F,)-. Note that (by
symmetry of the K.'s; cf. 1.2) FeS* F_e8* F_ec8% and that
(F)-=(F-)=F-. We have (F, g)=(F,§), (F-,9)=(F, g-), (F-, 9)=F, 5)
for Fel* ge8s.

If T is a continuous linear operator of §, then we define

T:=YesTqg, T-:= Yoes(Tg-)-, T-:=Yoes(TG-)-.
Now T, T and T- are continuous linear operators of 8 with (T).=
T)=T_, and if T has an adjoint, then so have T, T_ and T_:
*=(T%), (T-)*=(T%)-, (T-)*=(T%)_.
If T is a continuous linear operator of §*, then we define

P VYres ..Rld.ﬂ. 4= {xnm*aﬂdhﬂlvl. P {m.m.w*ﬁﬂh_ﬂllul.

Now T, T_ and T- are continuous linear operators of S* and (T)_=

=(T_)=7..

1.13. THEOREM. L is a continuous linear functional of § if and only
if there exists an F € §* such that Lf=(f, F) (f € 8). Such an F is unique.
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PROOF. Follows easily from [B], 22.2. 0

1.14. tEHEOREM. Let 7' be a linear operator of 8. The four following
statements are equivalent,
(i) 7" is continuous.
(i) Yres(Tf)(x) is a continuous linear functional of S for every xe(,
(iii) TN, has an adjoint for every «> 0.
(iv) For every a>0 there is a >0 and a bounded linear operator T,
of 8 (bounded with respect to inner product norm) such that 7N, =
=NgT.

PROOF. This is proved in [J], appendix 1, 2.2 through 2.10. O

REMARK. A useful alternative formulation of (iv) is: for every M >0,
A=0, B>0 there exists Mg>0, A¢>0, By>0 such that

[(T1)(8)] < Mo exp (—ndo(Re t)2+nBo(Im ¢)2) (t Q)
whenever fe§ and
[f(®)| <M exp (—z4(Re t)2+=B(Im t)2) (t Q).

Equivalence of both conditions easily follows from the equivalence of (i)
and (iv), and from [B], 6.3.
The linear operators of 1.4 are continuous.

1.15. THEOREM. If T'is a linear operator of S with an adjoint, then
it is possible to extend T to a continuous linear operator 7' of S* such
that T(emb (f)) =emb (Tf)(f € 8), (T'F, f)=(F, T*f)(F e 8*, feS). Here
emb (f) for f € .S is to be read as emb (fy), where fo is the restriction of f

to B (cf. 1.2).

PrROOF. This is [J], appendix 1, theorem 3.2. O

We denote the extended operator again by 7'. For examples, see 1.4.

1.16. We finally devote some attention to (generalized) functions of
several variables. The previous definitions and theorems can be given
and proved (with the proper modifications) without any restriction for
the more dimensional case. For instance, the class S% (where n €1)) is
defined as the set of all complex-valued functions f of #n complex variables
that are analytic in all variables, for which there exist positive numbers
M, A and B such that

[flty, s ta) <M exp (m 3 (—A(Re )2+ B(Im #z)?))
¥=1

for (1, ..., ta) €Qnr.
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As an example of a smooth function of » variables we have
A® .. ® far=Yey ... tpec® i) - oo - faltn),

where f1 €8, ...,faeS.

The classes 87+ and 87* (of embeddable and generalized functions
respectively) are introduced in a similar way (the smoothing operators
Na,n are defined as the n-fold tensor products of N. (x>0)). Cf. [B],
section 7 and 21.

As an example of a generalized function of n variables we have

.NHH® . ® .m..ann{ﬁVo.N/..‘PN_H® ®.2.?~ﬂ=_

where F; e 8%, ..., F, e 8%
The notions of convergence and continuity are adapted correspondingly,
and theorems 1.13, 1.14, 1.15 hold for the present case.

1.17. The following theorem is important (we state it only for the
case n=2).

THEOREM. If 7 (1=1, 2) are continuous linear operators of S, then
the mapping T & T, defined by

(T2 @ To)f = Yieg, 29T Ve (Ta Ve f(t1, £2))(22)))(21)

for f & 82, is a continuous linear operator of 82, If T (i =1, 2) have adjoints,
then so has 71 ® T (with respect to the inner product in S2), and
(T1® To)*=T7 @ T¥. If furthermore Ty, T2 and T ® T are extended
to linear operators of §*, §* and §2* (according to 1.15), then we have
(I @ To)(F1 ® Fo)=T1F,® ToFs for I, e 8%, Fye 8%,

PrOOF. This follows from [J], appendix 1, 2.13 and 3.12. O

1.18. An example of an operator of 82 (not of the type discussed in
1.17) that can be extended to a continuous linear operator of §2* is the
following one. Define

fy+1lo f1—1
Zyf: =Yg, tpec2 | Akﬁm. Hv\w uv Qm@.

It is not hard to see that Zy is a continuous linear operator of 82 that
satisfies Z%=Zp.

2. PREPARATION

2.1. We introduce in this section convolution operators defined on S
in which only smooth functions appear. Some simple results are derived.
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2.2. DEFINITION. For g €S the convolution operator Ty is defined by
Tof:=Yeec | fle—tig@idt (fes).
—00

Note that T'f is the ordinary convolution of f and Yug(?) (it will have
some notational convenience in the subsequent sections to take Yeg (B
instead of g).

To avoid confusion with the translation operators 7 (a €Q) of 1.4(ii),
we shall always denote convolution operators by

Te,Tg.Th, ..., Tp, Tg, T, ...,
where

fel, gel, hel, ..., Fel8* Gel* Hel*, ...,

whereas translation operators are denoted by T, Ty, Tey eeuy Tz, Ty, T, .
with e €Q, beq, ce(, ..., xeq, yeq, ze(q,....

2.3. THEOREM. If ge&.8, then we have

(i) Ty maps § linearly and continuously into .

(i) T¢ has an adjoint, viz. 75 =T;_, and Ty="Tj3, (Ty)-="T,_ (cf. 1.12).
(iii) If ke 8, then T,Th=TxT, and T;h="Tsg.
(iv) If he S, then F(T;h)=Fg-Fh (pointwise multiplication).

PROOF. If {e 8, then it is easily seen that 7',f is an analytic function,
and we therefore concentrate on the estimation. Let M. 1, 41, By, Mo, A3, Bs
be positive numbers such that

|{z+iy)| < My exp (—ndia?+nBy?) (zeRB, yeR),
lg(z+iy)| < Mz exp (—nda?+aBxy?) (xR, yeR).

Using the optimal shift technique as displayed in the proof of [B], theorem
8.1, we obtain

; MMy A14» BB,
T _ - » :
: QNVAH..LI@QYA u\k&_—pfkﬁ.m mum@ﬁ udkm.u.lTkﬁu ® Jnuﬂ‘mHIT.WMM\ v
(xeRB, yen).

This proves smoothness of T,f, and it also shows continuity of 7%,. It is
trivial that 7', is linear.

Assertions (ii) and (iii) follow from elementary calculations which we
shall omit, and (iv) is the well known convolution theorem for S. O

3. CONVOLUTION OPERATORS AND GENERALIZED FUNCTIONS

3.1. In this section we define convolution operators Ty with F e S*.
We pay special attention to operators 7'y that map S into S, and it shall
be proved that such operators have an adjoint (so that we can extend
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them to linear operators of 8* according to 1.15). Furthermore we shall
derive a number of useful properties of these convolution operators.

3.2. perisrrioN. We define for F e 8* the mapping 7'r (cf. 1.4 and
1.12) by

Trf:=Yaec (Tof, F-) (f€8).

We shall write 7'y instead of Temn(s) in case f € S+ (ef. 1.2). Note that
in case f € § definition 2.2 and the present one yield the same operator 7.

3.3. THEOREM. If FeS§*and fe8, then Trf is an analytic function.

PROOF. It is sufficient to prove analyticity of the function Yeec (72f, F-)
in a point #, €. It is easy to prove (by using Cauchy’s theorem and a
continuous version of 1.8) that

{a.nxﬁao+a+aww —f@o+72) 5 Vo (20+2) (b O).
Hence, by 1.9,

w AE, m*lv Hﬁ{unnx.nmﬂa.*.ar m.lv,

and this shows analyticity of Yeec(Tf, F-) in wo. O

REMARK. We shall prove in 5.4 that Y.ecexp (—me2?)(Trf)(z) € 8 for
every >0, FeS* fef.

3.4. DEFINITION. The class € is defined as the set of all generalized
functions F for which Tx(8)C 8.

REMARK. This definition is somewhat uneasy to handle, but we shall
give alternative descriptions of the class % later on.

3.5. EXAMPLES.
(i) If fe 8, then emb (f) e €.
(ii) If a €, F =64, then Tp=T_3 (cf. 1.4(ii)), so 8, € %.
(iii) If F'=Péy, then Trp=P, so Psye € (cf. 1.4(iii)).
(iv) If f is an integrable function defined on B with a compact support,
then emb (f) e %.
(v) If P is a measure on B, and if there is an ¢>0 such that

J dP(t)=0 (exp (—mea?)) (x0),
iz

then F, defined by
@ = § T0aPO (es)
(cf. 1.18), belongs to .
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3.6. The following lemma turns out to be very useful in this section.
temva. If Fe®, felS, then Tpwf S Trf (a ) 0).

PROOF. We first note that 7' is a continuous linear operator: if » eQ,
then Yres(T'rf)(z) is a continuous linear functional of S (cf. 1.10 and 1.14),

For 5> 0, a eQ we have (Trwf)(a)=(NaTaf, F-) and using the formula
NuTo= exp (—na? cosh x-sinh &)T4 cosh «Ria sinn «Na (that easily follows
from [B], (11.11)), we obtain

(Tr@f)a)= exp (—mna? cosh «-sinh &)(Ta cosh alia sinn «Vaf, F.)
= exp (—ma? cosh a-sinh «)(T#(Riz sinn «Vaf))(a cosh »).

We are going to estimate Rig sinn «Vaf for a €Q, > 0. It is not hard to
prove from smoothness of f that there is an M > 0, A>0, B>0 such that

[(Naf)(t)| < M exp (—nA(Re t)2+nB(Im 12 (ted, «>0).

(This may be proved by using the optimal shift technique of the proof
of [B], 8.1.) Hence, using the inequality

12 at| < a2+ (Re t)2+ (Im £)2 (@ eQ, t eq),

|(Ria ston «Nof )(E)| = lexp (272at sinh «)(N.f)(t)| <
<M exp (—n(4 —sinh «)(Re )2 +a(B +sinh «)(Im t)2) exp (w/a|? sinh «)

for every a e, t €, «>0. This shows that for sufficiently small x>0
[(Bigsinh o V. f)(2)| < M exp (— mmﬁw.o\ )2+ 27B(Im t)2) exp (m|a|? sinh «)

for every a eQ, teQ.
Now we use continuity of T'r. It follows from 1.14, remark that there
are numbers My>0, 49>0, By>0 such that

[(T'7(Ria sinn 2NV af))(@ cosh a)| <
<My exp (—ndo(Re a)? cosh? &+ zBo(Im a)? cosh? «) exp (z|a|? sinh «)

for sufficiently small x>0 and all @« eQ. Hence

(T ref)(a) <
< Mo exp (—ndo(Re a)? cosh? a + zBy(Im a)2 cosh? o) X
X exp (2x|al? cosh & sinh x)

for sufficiently small x>0 and all a Q.
It is easy to see now that there exists ay>0, M;>0, 4;>0, B1>0
such that

O<ax<a = |(Trwf)(a)l <M1 exp (—ndi(Re a)2+=By(Im a)?) (a Q).

Since T'rwf — T'rf pointwise we easily conclude from a continuous version
of 1.8 that Tpmf S Trf. O
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8.7. A lot of properties of the 7T'r's with F € € easily follow now.

THEOREM. Let Fe%. Then Fe ¥, F_ €% and F-e € (cf. 1.12), and
furthermore 7r and T's_ are adjoint operators.

PROOF. We shall only prove that F_ e € (the other cases can be treated
similarly). Let ge 8. Using the relation 7%5_g=(T»j_)- that holds by
2.3(ii) for A€ 8, we obtain by 3.6

Tra=9=Tpw Q.|U|mv (T'rg-)-
if x | 0. Furthermore T'zwy_g — T7_g pointwise. So T'5_g=(Trj-)-€ 8,
and hence F_c&.
We further have for fe S, g8 by 2.3(ii) and 3.6
(Trf, 9)= lim (T puf, g)= lim (f, Tzam=9)=(f, T'5-9),

&40 a+0

so T'r and T'F_ are adjoint operators. O

REMARE 1. According to 1.15 we can extend T'r to a linear operator
of 8% in case F' € ¥. We denote this extended operator again by T'r. The
following properties are satisfied

(i) Tr(emb(f))=emb(Tzf) (feS),

(i) Gae8* (neM), Go 2 0 =TrG, 5% 0,
(i) (TrG, g)=(G, T5_g) (Ge8* gel).

REMARE 2. For F €% the following relations hold:
Tr=T5 (Tr)-=Tp-, (Tr)-=T5-.
3.8. THEOREM. Let Fe¥%, Ge% We have TpTe=TcT5.

PROOF. First assume that F € %, G' € emb (8), and let f € 8. We have
N._m.man x" lim N._m.:a_ Ndn\." lim %Qm._.m.—a_ \" m_..nﬂm__w

x40 a0

(the limits are in S-sense by 3.6). The general case is reduced to the above
one by noting that

TeTef = :w TrT gionf = :.Mm-— TewTrf =TT rf

(the limits are again in S-sense). O
3.9.  Another theorem of the above type is the following one.
THEOREM. Let Fe®, Ge¥. We have T3G=TsF, Trze=TrTs.

PROOF. Let us first note that TG and TaF are well defined by 3.7,
remark 1.
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To show T3G@=TzF first assume that F €%, Geemb (8). Then
TG = lim T55G = lim T'g(emb (F(x))=TsF

a0 30
(the limits are in S*-sense). Here we used 2.3(iii) and the fact that

emb (F(x)) & F(« } 0). The general case can be reduced to this one by
noting that )

TFG = lim TF(emb (G(«))) = lim TgmF =T5F

x40 x40
(the limits are again in S*-sense), where the latter equality follows from
(Teal, f)=(F, Twen_f) = (F, Te_f)=(TaF,f) (x| 0)

holding for f8 (cf. 1.9).
Now we show Tr36¢=TrTq, and we use therefore the relation

ToTx=TxTa (aeC, K € %),

that follows at once from the definition of Tx. We easily see from 3.7,
remark 2 that (I'7@)-=T%_G-, so

(Trgef)@)=(Taf, (T5G)-)=(Tof, T5_G-) =
=(TrTsf, G-)=(T2Twf, G-)=(Te(Trf)) ()

for fe 8, ze(. Hence %amaum:qu. O

REMARK 1. The preceding theorem states (among other things) that
Tr maps % into % in case F € ¥. For if G € % then Prpe=T7Tq, and
T7T¢ maps § into 8, hence TxG e %.

_ REMARK 2. Let FeS8* We mention the possibility to extend the
linear mapping T'r (which maps § into the class of all entire functions)
to a linear mapping of the space ¥ into S*. This is done by putting

Trf:=TiF for fe%. In case F € % this definition coincides with the one
given in 3.7, remark 1.

REMARE 3. In 3.7, remark 1 we have extended the operator 7'z to a
linear operator of 8* (in case F € ¥). If F € S however, there is a more
direct way to define this operator on §*, namely by putting 7'zG =TsF
for G € 8* (this TgF has been defined in 3.2, and is an entire function).
It is not obvious yet that this alternative definition yields the same
operator, i.e. that emb (TgF) equals T'»G (as it is defined in 3.7, remark 1)
for G e S8* The proof is pretty hard, and will be postponed until 5.5.

REMARK 4. Let Fe¥, GeS* We can define the convolution F + G
of F and G by putting F »« = TrG. If we restrict ourselves to F € &,
G € %, then this convolution product has the usual properties. We mention
commutativity (follows from the preceding theorem), and associativity:
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if He S*, then I % (G« H)=(F x G) « H, for
Fx(G+xH)=T#GxH)=T3TgH=
=TrgH=TsscH=(F @) « H.

We mention furthermore Titchmarsh’s theorem for ¥: if Fe¥, G ¥,
then F' « @=0 = F =0V G@=0. This will be proved in the next section.

3.10. We consider an alternative description of the class ¥ which is
related to Weyl correspondence (cf. [B], 26). If ' € §*, then we can define
for every g € 8 the continuous linear funectional (cf. 1.10 and 1.18)

Yres(f ® §, Zu(E @ F))

of S (E is the function emb (Y:1)). For every g € S we can find (by 1.13)
exactly one Kpge 8* such that

(f® g, Zv(E @ F))=(f, Krg) (fe8).

This Kp is a linear mapping of § into S*.

If Fe¥, ge S, then we can prove that Kggecemb (8). It suffices
therefore to show that Kpg=emb (Teg), where G is the element of S*
that satisfies (@, f)=(F, Y2)/2f(x)/2)) for f € 8 (cf. 1.13; note that G € ¥).
This equation holds in case F €emb (S), and the general case can be
handled by using Tewg > Teg, KrwgS Krg if x| 0. The converse of
the above statement is also true, i.e. if Kpgeemb (8) for every ge 8§,
then F € %. We shall prove this in 5.6.

3.11. One of the main features of the convolution operators is the
fact that they commute with the time shifts 7' (2 €Q). That this fact
actually characterizes the convolution operators is expressed in the
following theorem.

THEOREM. Let 7 be a continuous linear operator of S that satisfies
TTe=T,T for every a € B. Then there is a ('€ ¥ such that T'=T¢.

PROOF. We note that Yres(T'f)(0) is a continuous linear functional of S.
This means that there exists an H € 8* such that

(THO)=(f, H) (feh).
Now we have for every fe 8, zeC
(TH(x) = (T2TF)(0) = (T'T'f)(0) = (T'af, H).
This proves the theorem with G'=H_. O

corROLLARY. Let T' be a continuous linear operator of § that commutes
with all time shifts 7', (@ € B) and all frequency shifts Ry (b €(). Then
there is a ¢ €( such that T =cl. This is proved as follows. We infer from
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3.11 that there is an H € € such that (Tf))=(T2f, H) (f€ 8, x €Q); we
have H=T%8. Since T, and hence 7'* commutes with all frequency shifts
we have RyT*8y=T*Rudo=T*d (beR). So, by a theorem that will be
proved in 4.11, remark, T*d; is a multiple of 8. Hence 7' is a multiple
of I.

REMARK. Let T be a continuous linear operator of S satisfying TP = PT
(cf. 1.4(iii)). It may be proved from 3.11 that there is & ¢ € € with 7 — Te.

4. FOURIER TRANSFORM AND GENERATIZED CONVOLUTION OPERATORS

4.1. This section is devoted to the Fourier transform in its relation
to convolution theory. We shall generalize the convolution theorem, and
we shall give a characterization of the class % in terms of Fourier trans-
forms. Some remarks are made on the equation 7'+F = 0 with fe€, Fel*

4.2. DEFINITION. Let b be a mapping of Q into 0. We define the
multiplication operator My by
Mnf:=Yiech(2)f(z) (f€ ).
We also write k-f instead of Maf.

4.3. rEmMA. If A:Q —(Q satisfies Feso[Yzech(z) exp (—mez2) € 8],
then M} is a continuous linear operator of § with an adjoint, viz. M.

PROOF. Almost trivial. ]

REMARK. The M} of the above lemma can be extended in the familiar
way to a continuous linear operator of 8%, which is again denoted by M.
We shall also write A-F instead of M,F if F e S*.

4.4. DEFINITION. Let .# be the class of all generalized functions F for
which there exists an analytic g satisfying Fesol Yzecg(z) exp (— mez22) € 8]
such that F=emb (g) (cf. 1.6(i)). On # we define the mapping emb-1
by putting emb~{(F) =g if F € .#, F=emb (g), where g satisfies the above
description (note that such a g is unique, hence the mapping emb-1 is
well defined on .#).

4.5. The following characterization of € is very useful.
THEOREM. Fe¥ <« FFc. 4.

PROOF. Let F e%. We have for every fe 8
(FF)x) Ff=(FF(x) Ff=F (Traf) S F(T5f)
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if « |, 0 by [B], Theorem 9.1, 2.3(iv) and lemma 3.6. It easily follows that
g:=Yieclimayo ((FF)(x))(z) is an analytic function that satisfies

Yeecq(z) exp (—mez?) € 8 for £>0.
Furthermore % F =emb (g) since we have for every he 8

(FF, h)=lim (FF)(x), h)=

a0

uza:hﬁxésﬁ&u:35%
%0 —oo —oc
Hence #F e 4.
Now assume that FF e . It suffices to show that for every f € S the
function Yiec(T:f, F-) € S. Note therefore that for every zeQ
lim (7T.f, F_(«))=(T.f, F-),

ad0

and that the proof will be complete if we can show that this limit is
achieved in S-sense.
We have by 2.3(iv) for every a>0
F(Tref) = (FP)a) FF.
Now let M >0, A>0, B>0 be such that
(F1)x+iy)| <M exp (—nda®+aBy?)

for every x € R, y € B. Since FF e .#, we infer the existence of a g that
satisfies Feso[ Ysecg(z) exp (—mez?) € S] such that F =emb (g). This means
that there exists an M;>0, B;>0 such that

lg(x +iy)| < M1 exp (3nwda?+nB1y?)
for every z € R, y €B. It is not hard to show that there are numbers
M3>0, Ba>0, xp>0 such that

O0<a<ap = |(Neg)(z+iy)| < M2 exp (dnda®+nBay?)

for every z € R, ¥ € R. Since N.g=(FF)(x) for every x>0, we see that
(FF)(x)f 5 g-f if « | 0 (here we have used a continuous version of 1.8),
so F(Trawf) & g-Ff, and hence Trmf S F*(g-Ff) if a0 (cf. 1.4(i)).
This shows that TFf=%*(g-%f), and hence that Trfec S. O

COROLLARY. If Fe¥, fef8, then F(T5f)=emb{(FF)-Ff. This
follows easily from the second part of the proof of the above theorem.

4.6. EXAMPLES
(i) Let F:= Yiece®s®. It is not hard to check that #F is the embedding
of Yiec(—4) *e-#=* (principal root), and it follows that F e %.
(ii) Let A: be the function defined by kr:=1/27 3. Its Fourier trans-
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form is given by

Y sin 2mAt
A om0

hence emb (k:) € €.

(iii) Let (dn)nez be a complex sequence that satisfies |dn| =0(e*) (n€Z)
for some ¢>0, and let F:=332 _o dudn (cf. [B], 27.24.2(ii)). Then
FF is the embedding of the analytic function Y, e —eo dy e 2winz,
and it is not hard to show that F e %.

4.7. tHEOREM. If F €%, G €8, then F(T56)=emb-1(FF). FG.

PROOF. The case with & € emb (S) follows from 4.5, corollary, and the
general case is deduced from this one by noting that

F(T76) = lim F(TFG(s)) =

240
= lim emb=}(FF)-emb((FG)(«x)) =emh-1(FF). G,
&40
where the limit is achieved in S*-sense. O

4.8. rTHEOREM. If FelS* FFecemb(8+), Ge¥, and if TsF =0, then
F=0 or G=0.

PROOF. By 4.7 we have emb{(F ). FF=0. Write g=emb1(FF),
and let f € §* be such that emb (f)=%F. Then g- FF —emb (g-1), for we
have for he S

(0-FF, 1)=(FF, §-1) = (omb (1), §-) -
~ T rog@ita= T gofeRad=(emb (g-, .

It follows from 1.6(i) that g.f=0 (a.e.). We conclude by analyticity of g
that g=0 or that f=0 (a.e.), and so G=0 or F=0. O

4.9. We enter somewhat further into questions of the type: if fe &,
F e 8% and TsF =0, then what can we tell about F. As we see from 4.7
such questions can be translated into (g= %7, G=FF):if ge.#, Ge8*,
and if emb-1(g)- G =0, then what can we tell about @. In [S] these problems
have been solved for the space K’ (dual space of K), but we cannot use
the techniques employed there, since we have (by lack of non-trivial
elements of § of compact support) not the occasion to consider the
elements of §* locally, as it is done in [S] for the elements of K’ (cf. [S],
Ch. V, § 4).

We shall prove here some simple results in this direction, and we shall
mention some further theorems without proof.
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4.10. TEHEOREM. Let ge.#, and assume that emb—1(g) has no zeros.
If Ge8S* and emb1(g)-G=0, then G=0.
PROOF. Put h:=emb-i(g). We infer from the fact that
Y.h(2) exp (—mez2) € 8

for every >0, and the fact that % has no zeros, that there are complex
numbers ag, a1 and as with Re (as) <0 such that

h(z)= exp (@o+az+ax?) (zeq).

If x>0 is such that coth a>|as|, and if we denote for ¢t e(

—7

b= Y snh o exp (T ((2-+ Eoosh - 2:1)) IR,

then we have k:e S, h-ki=0a(t) (cf. 1.6(ii)). Hence for ¢t €Q
0=(h-G, k)= (G, hh-Tep) = (G, 8a(t)) = Ga(l)
(cf. [B], 27.18), so G«=0, and therefore G=0 by 1.5. O
4.11. TEEOREM. If G'cS8*, QGF=0 (cf. 1.4(iii)), then there is a ce(
such that G'=cdo. This ¢ is uniquely determined by G.
PROOF. Let a>0 be fixed. We infer from [B], (11.9) and (11.11) that
N.@Q =cosh & QNx+1 sinh & PN,
so we find
cosh & QGa—+1 sinh o PGa=0.
The solution of this differential equation is given by
Q= YiecGx(0) exp (—m2? coth &) = Ga(0)(sinh x)*(do)a-

Hence, with ¢:=Ga(0)(sinh &)}, (G —cdp)a=Ga—c(do)e=0. It follows from
1.5 that G=cdp.
Uniqueness of ¢ is trivial. M

REMARE. It follows easily from the above theorem that an F e 8%
that satisfies T2 F=F (a € R) is the embedding of a constant function.
For we have PF=limp.o 1/27ih (TpF —F)=0 (the limit is in S*-sense),
hence QF F =% PF =0, This means that FF =¢dp with some ¢ €(, and
hence F=emb (Yiece). Also, if FeS* R,F=F (ben), then F=cdy for
some ¢ (.

4.12. Theorem 4.11 can be generalized as follows. Let

nemf), mmeq, ...,aneq, v1 €T}, ...,va €T,
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and let A:=VYiec TTi_, (2 —ax)* If G € 8* satisfies h-G=0, then there

are complex numbers dig; (1=0, ...,ve—1; k=1, ..., n) such that
n -1

(=) F= 2% 3 du P'é,,
k=1 I=0

The numbers dz; are uniquely determined by F.

We still can go further. Assume that % € emb-1(.#), and let & have its
Zeros in a, as, ... with multiplicities v, v2, ... . Let 7, be the set of all
elements F' € 8% of the form (), and let ¥ be the union of all V,’s. We
assume that 37%ijeieo0 7i/|ax[2<oco. Then every F eS8* that satisfies
h-F=0is 8*limit of a sequence in V, and every F & §* that is S*.limit
of elements of V satisfies h-F =0,

We note that every element % of emb-1(.#) has order <2, and this
means that the limit exponent of % does not exceed 2 (cf. [Bi], Ch. VI, § 4):
if a1, as, ... and »1, »s, ... are as in the above, then Shetigl=o Pif|ar|2t < oo
for every £>0. In case that the order of h is less than 2, we have
Sietal+0 ¥x/|ax|2< oo, so the above theorem applies to A. We do not
know how to handle the general case in which functions % like Yeec(exp
(miz%) — 1) oceur (here 3%w1,jau+0 7x/|ax|2=00).

5. SOME FURTHER REMARKS ON CONVOLUTION THEORY

5.1. In this section we give some further theorems and definitions
about the class €. We shall also pay attention to convergence in %, and
to convolution operators in 87 (n eT)).

5.2. We are going to show that g-G €% if g € S, G € §*. This means
that TiF e # if fe S, F e 8% (of. 4.5 and 4.7), and it will turn out that
TiF =emb (TFf) (in particular T'sf € 8+). The following lemma is useful
in the proofs of the above statements.

LEMMA. Let fe S, g € emb-1(.#), and let M1>0, 41>0, B;>0, My>0,
As>0, Bo>0 be such that

|f(z)| < M exp (—nA1(Re 2)2+2By(Im z)2),
|9(2)| < Mz exp (—zAds(Re 2)2 + aBs(Im 2)2)

for every z €. To every ¢ with 0<g< A4;+ 4, there exists a ¢>0 and
& >0 (only depending on Bi, By and ¢) such that for every F € §*, y eQ
(Il l| denotes inner product norm in 8)

(- Tot, F)| < MLMCIF(B)] exp (~ s 22— (R )2+ 2By (Im ).

1+4ds—¢

PROOF. We have for every y e(, ze(

9()(Tyf)(z)] < M1Ms exp (nP(z, ),
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where P is defined by

P(z, y) = —(d1+ 43)(Re 2)2+ (By+ Bs)(Im z)24+ 241 |Re z Re y|
+2B1|Im z Im y| — 41(Re )2+ Bi(Im y)2 (2 e, y ().
Let & satisfy 0<e< A;+ As. Applying the inequality 2|ab|<ya?+ .ti.@m
(valid for e eR, beR, »>0) to 2|[RezRey| and 2(ImzImy| with
y=1+(ds—e)A7" and y=1 respectively, we obtain

Ao—
P(z, y) < —e(Re )2+ (2B1 + Ba)(Im z)2 — 4, i 3 (Re 4)2+ 2B (Im y)?

1+42—¢
for y e, zeC. Now put for every y e(

By = Yeec 9)(Tof)(E) exp (ks S (Re g~ 2Bs(Tim ).
Then we have hy €S, and
|hy(2)| < M1 M3 exp (—me(Re 2)2+m(2B1 + Ba)(Im z)2) (2 Q).
It follows from 1.3(ii) that we can find & C>0 and a >0 (only de-

pending on & and 2B+ Bs) such that for every y e{ there exists an Iy € §
with hy=Ngly, |[ly||<M1M:C. So we have for every y e(

(g T4, )| < MMOLF (@) oxp (—ds 27— (Re y)f-+ 2By (Tm )
if F e 8* (here we apply
(G, F) =Ny, )] = [y, P < M DMCIF B, 0

5.3. TEEOREM. If ge 8, G e 8% then g-Ge%.

prOOF. Let fe 8. Then Ty.¢f = Yoec(f - Tuf, G-). Analyticity of Ty.qf
follows from theorem 3.3, and it follows easily from lemma 5.2 that
%n. Qﬂ es. O

5.4, TaEROREM. If fe 8, I 8% then emb (7T5f) e .#.

PrROOF. Take g=Yiecl and F_ (instead of F) in 5.2 to conclude that
T#f e 8+. It further follows from lemma 5.2 and theorem 3.3 that
Yiec exp (—mez?)(T'7f)(z) € 8 for every ¢>0. Hence emb (T'5f)e#. [

5.5. We can prove now the statement in 3.9, remark 3.

reEEOREM. If F e 8%, fe 8 then TiF=emb (T'Ff).

PrOOF. We first prove the formula with F € ¥. We have in that case
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by theorem 3.9, theorem 8.7 and 3.7, remark 1 for every ge S

(T7F, g)=(TF(emb (f)), g)=(emb (f), Tr_g)=
=(f, Tr_g)=(T5f, g)=(emb (T5), g),

hence T7F =emb (T#f) by the uniqueness part of theorem 1.13.

The general case is reduced to the above one as follows. Denote
he: = Yiec exp (—ndz2), and define Fis:=hy-F for §>0. Now Fs e € by 5.8,
and we have TjFs=emb (T'5,f) for 6>0. The proof will be complete if

we can show that 75F, 55 TiF, emb (TF,f) 5 emb (T7f) if 6 | 0. We note
therefore that Fy 5. F if & } 0, so, by 8.7 remark 1, we have Hmmr.m” T;F
if 6 |, 0. Furthermore we have (T5,f)(y) = (T5)(y) if 1 0 for every y eQ,
and it is easily proved now with the aid of lemma 5.2 and 1.9 that

emb (T5,f) > emb (T'#f) if 6 | 0. O

REMARK. Note that not every element of € can be obtained as the
product of a g € § and a G € 8* (cf. theorem 5.3), and so not every element
of .# can be obtained as T7F with some fes8, FefS*

EXAMPLE. k:=emb (Y.ece®) € € cannot be of the form g-G with
some g € 8, G € 8%, For if so, then we consider the sequence (fa)nen defined
by fn:=Yeecem~a+n® (n € T)). Now we have fn-G5 0, but (fn-g, @)=
=(fn, 9-G)=(fn, k)=1 (neM).

5.6. We are going to prove the statement at the end of 3.10. With
the notation used there we have to show that F € € in case K rg € emb (S)
for every ge 8. Let fe S, geS. We have (Krg,/)=(EQ® F, Zu(f ® §))
by definition and 1.18, and it is not hard to see from [B], (21.4) that
(E® F, Zu(f ® §))=(G, Ty_f), where @ is the generalized function that
satisfies (&, k)= (F, Ys)/2h(x)/2)) for k € S (cf. 1.13). Hence, by 3.7, remark 1
and 5.5,

A.N.&._Q_ 3“ ﬁm“ NH.QID"A“N‘MQ_ WVH (emb ANJQQV“ \v

This means that Krg=emb (T¢g), and by analyticity of 7'¢g we conclude
that T'gg €S. Hence G %, and so Fe%.

5.7. We make some remarks on convergence of convolution operators.

DEFINITION. Let fn €% (neM)), fe¥. We write f» S0 if T;g95 0
for every g €8; we write fn-S f if fu—fS 0.
If fa €% (neM), then the following statements are equivalent.
(i) fn 50,
(ii) fn 3 O,
(i) (fa)-50,
n..__.Aﬂv vw.m.n.mt_um.-ﬁs.m.umlv OH_“
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(v) Fgeslemb1(Ffa)-g 5 0],
(vi) Fress[emb-1(Ffn)-F - 0].
The proofs are almost trivial.

5.8. THEOREM. Let f,€% (neT)). We have
Treclfn & 1< Voes[(Tr,0)nen is S-convergent].

PROOF. If f € € is such that f, & f, then we have Ty,g—Tyg="T7,-g5 0

for every geS.
Now assume that (Tf,g)men is S-convergent for every ge S. Denote

Tg=limy.c Ty,g for g € 8. It follows from [J], appendix 1, 2.12 that T
is a continuous linear operator of S, and T'T,=T,T for every a e uw.qmo
by 8.11, there is an f € € such that 7'="T;. It follows at once that fz > f.

O

5.9. THEOREM. Let f€®, fanc% (neM), ge¥, gne¥ (neM), and
assume that fn S f, gu S g. Then fn *xgn S fx g (cf. 3.9, remark 4).

PROOF. Let we S, and denote
hni=emb Y Ff,) (neM), kn:=emb(Ff,) (neT)),
h:=emb-1(F[), k:=emb }(F7), vi=Fu.

By 5.7(v) it suffices to show that kn-ka-v % h-k-v. Therefore we note
that hy-kn-v 5 h-k-v pointwise, and that there isan M >0, 4>0,B>0

such that
|hn(2)kn(z)v(z)| < M exp (—wd(Re 22 +aB(Im z)?) (2€Q, ne 1))

as one easily sees from the fact that kn-v5 k-v, hnowi how (weS).
So, by 1.8, hn-ku-v 5 h-k-v. 0O

rEMARE. The above theorem is a special case of the following one. If
(Tw)nens (Un)nen are sequences of continuous linear operators of 8 for
which (Tag)nen, (Ung)nen are S-convergent for every g &S, then

mqn" {qm.w.._.mw.b. %am-u q“ = {o.m,w:bw Q..:m_

are continuous linear operators of S, and we have T,U,g % T'Ug for
every g €S.

5.10. EXAMPLES .
(i) If (fn)nen is an S-convergent sequence in S, then (emb (fu))nen is an
%-convergent sequence in €. If (gu)nen is a %-convergent sequence

in €, then (gu)ren is an S*-convergent sequence in S*. .
(ii) If fe %, then emb (Naf) & f if « | 0 (we have of course a similar
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definition .ow ¢ -convergence for this case as in 5.7). This is lemma 3.6.
(iii) If (dn)nez is a complex sequence satisfying dn=0(e-*%) (neZ) for
MmEm e>0, then 37° _ dud, is a %-convergent series in the sense

at

Yeec e _y Gng(n+12) 5 Yoec 3 dug(n+2)

(N — oo, M — oc) for every geS.

(iv) If gy:=Yiecy! exp (—my2?) (y>0), then emb (g,) < o (y — oo). If
.P_H_Eﬂ %(==n (z>0), then emb (k) S & (v} 0). More generally:
if he €, and (emb=1(Fh))(0)=1, then Vih & & (A — oo), where Vik
is the generalized function that satisfies

(Vah, f)=(h, Yeecf(z/2)) (f€8) for >0

(cf. 1.18). This may be proved by using F V=11V, 4% (Ai>0), the
equivalence of 5.7(i) and 5.7(v), and 1.8.

(v) Let g 8§, u_w €8 (neM), Gel* G,eS* (neM), and assume that
a4, QaMHQ. Then g-Gn £ g-@G. For it easily follows from 1.9
&Wm& gn-Gus g-G. So if f € S, then we have TY,.¢q,f — Ty.¢f point-
wise, and it may be proved from lemma 5.2 that T, .¢,fS Ty.of.

We also have: if ge 8, G e 8*, then g-@(x) S g-G (] 0).

5.11. We finally make some remarks about convolution theory for
(generalized) functions of several variables. It is possible to develop the
theory as it is presented here almost entirely for the more dimensional
case (an exception should be made for the results of 4.12). We shall
restrict ourselves here to the case of functions of two variables.

The definition of T'x with K € 82% becomes

N._.ERH {nﬁ.snnm un & Mﬁiﬂ. .Nlu (fe &J.

where K_ is the generalized function YasoY(zuwjec? (Nu2K) (—2z, —w)
(cf. 1.16). In order to prove the two-dimensional version of apmou.ﬁr 3.3
we can use a theorem of Hartogs ([BT], Ch. III, § 4, Satz 15) about Sum
analyticity of functions of several variables.

We introduce the set €2 as the class of all generalized functions K for
which 7'z maps 52 into itself. The crucial lemma 3.6 still holds for the
present case, and its proof differs only from that of lemma 3.6 in notational
respect. This enables us to prove the two-dimensional versions of the
theorems of section 3 and 4. We mention in particular theorems 3.5 and
3.7 (the definition of the class .#2 is obvious).

An important example of an element of %2 is the tensor product of
two elements of €. Let g1 €%, g:€¥. We claim that g1 ® g. € €2, and
that Ty, @ go=T4, @ Ty 4(cf. 1.17). To prove this note that

(FQF)N®g2)=F g1 Q@ Fgae M2,
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hence, by the two-dimensional wversion of theorem 3.5, g1 ® gz € €2
Furthermore we have

Ty, go(h1 @ ha) =Ty ln @ Tgohe for hes, haes,
and the proof can be completed in the style of [J], appendix 1, 2.13.
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