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A NOTE ON HUDSON’S THEOREM ABOUT
FUNCTIONS WITH NONNEGATIVE WIGNER DISTRIBUTIONS*

A. J. E. M. JANSSEN"
Abstract. We show that a (generalized) function f has a nonnegative Wigner distribution W(f,f) if and

only iff is a Gauss function (possibly degenerate). We prove, more generally, that the convolution of W(f,f)
with certain Gauss functions is nonnegative if and only iff is of the special type mentioned. As a consequence
we have that the only (generalized) functions whose Wigner distributions are concentrated on a curve of a
particular type are delta functions or exponentials exp(- rat + 2 rflt+) with a, fl, 3’ complex, Re --0. The
main tool used is Moyal’s formula for the Wigner distribution together with Bargmann’s integral transform.

1. Introduction. ForfL2(R), the Wigner distribution W(f,f)off is defined as

1; f x- dt (xl y_l).(1.1) W(x,y; f,f ): e-2iytf x+- -It is known that W(f,f) is a continuous, bounded, real-valued function that may take
negative values. The Wigner distribution was introduced by Wigner [15] as a device that
allows one to express quantum mechanical expectation values in the same form as the
averages of classical statistical mechanics. By means of the Wigner distribution one can
describe Weyl’s correspondence [7], [14] in the following elegant form (see for this e.g.
[4]). If a R 2 __> is an observable, then the expectation value of a in the state f is given
by

(1.2) ffa(x,y)W(x,y; f,f )dxdy,

i.e., instead of substituting a particular point (xo,Yo) of the phase plane in a (as one
does in classical mechanics), one integrates a against the "density function" W(f,f).
More recently there has been considerable interest in the Wigner distribution as a tool
for signal analysts to describe a signal in time and frequency simultaneously (cf. [3],
[5]). In both quantum mechanics and signal analysis one likes to interpret W(f,f) as a
density function of two variables. Such an interpretation is awkward, since W( f,f)
may take negative values as already said. Nevertheless, there is a fairly extensive list of
positivity properties of the Wigner distribution (cf. [3], [11]). These properties express
that certain averages of the Wigner distribution are nonnegative. A typical example is:
for any/L2() (cf. [21),

ff )2 2r,(--b)2)W(x(1.3) exp(-2rS(x-a y ,y f,f )dxdy>O,

for all >0, ,>0, aR, bR where 3,_< 1.
It is convenient to allow in this note certain generalized functions f which we shall

describe in [}2. We shall show that if fve 0 has a Wigner distribution that is nonnegative
everywhere (in a generalized sense), then f is necessarily of the form

(1.4) f ) exp( ra 2 + 2rfl r ,{ )
or

(1.5) f(t)--dta(t ),
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where a, fl, 3’, a, d are complex numbers with Rea_>0. If we restrict to fL2(R), this is
known as Hudson’s theorem [8]. The f’s in (1.4) are what we call Gabor functions
(although this name is usually reserved for the case that a is real and positive). We have
for thef in (1.4), by calculation,

(1.6)

(2)’/-exp(_2rtRe.g+2rr(Re8)_/Rea_2rr(x_Re/Reot)2ReaW(x,y; f,f )- Rect

2r(y+xlma-Im)2/Rea),
if Re a> 0, and

(1.7) W(x,y; f,f )=exp(-2rRe’c+arxRe)io(y-Im+xlma),

if Rea- 0. And for thef in (1.5), we have

(1.8) W(x,y; f,f )-ldl2exp(4crylma)8o(x-Rea).
We shall show more generally that if i,> 1, and (1.3) is nonnegative for all a and b,
then f must be of the form (1.4) or (1.5). This result shows that Gabor functions and
delta functions are fairly isolated objects in this kind of time-frequency analysis. As an
application we show that if W(f,f) is concentrated on a curve of a certain type, then f
must be of the form (1.4) (with Re a--0) or (1.5).

The key argument, due to Hudson (cf. [8]), is the observation that for 3’ =8--- 1, the
expression (1.3) can be written as exp(-vt(a2+b:))lG(a-ib)l:, where G is an entire
function of order 2 (Bargmann transform off). Now, fL(R), W(f,f)>_O everywhere
implies that G (a- ib)4 0 for all a and b (unless f--=0). And Hadamard’s theorem can
be used to show that G, and hence f, has a special form. Since we also want to discuss
f’s which are not necessarily square integrable, we consider in 2 the Bargmann
transform in some detail for f’s in a convenient set of generalized functions.

2. Preliminaries. A convenient theory of generalized functions for discussing the
Wigner distribution was elaborated by De Bruijn (cf. [4]); we describe it here briefly.
We don’t want to use Schwartz’ theory of tempered distributions since this theory has
the disadvantage that functions like f(t ) exp(t ) and f(t) =/i(t) cannot be considered.
Also, the theory used in this note arises naturally in the context of the Bargmann
transform which will be used later on. Our test function space S consists of all entire
functionsf for which there are A >0, B>0 such thatf(x + iy)-- O(exp(-,n’Ax2 +,n’By2)).

/2 (cf. [6], [9]). We mayThis space can be identified with the Gelfand-Shilov space ,-1/2
describe S as the set of all fL2() for which (f,+,,)-O(exp(-na)) for some a>0.
Here kn are the Hermite functions, given by

(2.1)

n(x ) ( 1)n2,/4(4,a.)--n/:Z( !)--,/:Z ( d )n --2rxn e" x e (x,n--0,1,...);

we have H4,,,-(n+1/2)4,,,, where H=(x2- 1/4rZ(d2/dxZ))cr is the Hermite operator.
We denote the dual of S by S*" an FS* is an antilinear continuous functional on S.
We have (F,/,,)=O(exp(na)) for all a>0, if FS*. Yet another way to describe S and
S* is by means of the Bargmann transform (of. [2], [12]): for FS* we let

(2.2) (Br)(z)-e’rZ/Z(F, gz) (zGC),
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where, for w C,

(2.3) gw(t)--2/4exp(--rr(t--w)2) (tEe).

We note that (Bn)(z)-(zfff)n/Vri). Now B maps S(S*) one-to-one onto the set of all
entire functions of order 2, type <r/2 (order 2, type _<r/2). For details we refer to
[12].

It is important to note that

( ’//" 2 b2 ) ib) (a,b),(2.4) (F,G(a,b))-exp --(a + ) (BF)(a-

where Gv(a,b) denotes for 3’ >0, a R, bR the Gabor function,

(2.5) G(a,b)(t)- - exp(-r-’(t-a +2ribt-riab)

whose Wigner distribution is given by

)2 2r3’(y(2..6) W(x,y Gv(a,b ), Gv(a,b))-2exp(-2r3"-|(x-a -b))
(xR,yg).

We further have

(2.7)

(BF)(z)-2’/4(1 +a) /2exp -- +a rrz2+ +a

and

(1 )(2.8) (BF)(z)-2’/4dexp --rz2+2rraz-ra2 (z C),

where F is the f of (1.4) and (1.5) respectively. We conclude that if P(z)= az2-+ bz + c
with lal<rr/2, b C, cC, then there is exactly one F of the form (1.4) or (1.5) such
that (BE)(z)-- exp(P(z)).

We shall also need the operator e-n, which can be defined on S and S* for
Re a_> 0. We have

(2.9) B(e-’nF)(z)-e-’/2(BF)(ze ) (z C),

for FS* (cf. [2], [12]). For a>0, e-n is De Bruijn’s smoothing operator N (cf. [4]);
the kernel K of N is given by

(2.10) K(z,t)-(sinha) l/2exp
sinha ((z2+)cosha-2zt)

The Wigner distribution can also be defined for FS*; it thus becomes a gener-
alized function of two variables. An important formula is due to Moyal (cf. [4])" if
F S*,f S, then

(2.11) (W(F,F), W(f,f ))-l(F,f )l 2.
Note now that (1.3) follows from (2.6) and (2.11) in case 8- 3’-1.
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We shall also use the formula

(2.12)

W(x,y; N,,f,N,,f)-(Esinha)-lexp(-Err(x 2 +yE)tanh a)

ffexp(- 2r cotha((z x/cosh a)2 + (w -y/cosha)2))
.W(z,w; f,f )dzdw

for xN, yN; this is just another way to write [4, Thm. 16.1]. Here fS, but it is
easy to extend (2.12) so that it holds for FS* (cf. [10], where things like these are
treated in detail).

3. The main result. In [9], a generalized function of 2 variables is called non-
negative (>0), if (O, tp)>0 for every nonnegative test function tp of two variables. It
can be shown from the Riesz representation theorem (also cf. [9, App. 4]) that for such
a there is a unique Borel measure # on 2, such that

ffexp(-re(x+y))dt(x,y)<o for all e>0,

and such that (,p)-ffq(x,y)dl(x,y) for all test functions tp. This notion of
nonnegativity agrees with the familiar notion of nonnegativity, a.e., if is an ordinary
function.

THEORE 1. Let F S*, and assume that W(F, F)>_0. Then F is of the form (1.4) or
(.).

Proof. Let ’- W(F, F), and assume thatF0. This implies by (2.11) that :# 0,
whence/o 0. We conclude from (2.11)and (2.6) that

(3.1) I(F, G,(a,b))I2--(W(F,F), W(G,(a,b), G,(a,b)))

)2--2r( -b)E)do(x=ffexp(-r(x-a y ,y)>0,

for all a , b R. That is, (F, G(a, b)) v 0 for all a g, b . We see from (2.4) that
(BF) (z)vO for all z C. Since BF is an entire function of order 2, type _<,r/2, we
conclude that BF is of the form (BF)(z)-exp(P(z)), where P(z)-az+bz+c, with
lal_<rr/2. Hence, by (2.7) and (2.8), and injectivity of B, F is of the form (1.4) or (1.5).
This completes the proof.

As an incidental note we remark that with a similar method one can show the
following. Assume that F S* has a radially symmetric Wigner distribution. Then F is
a multiple, of a Hermite function q. Here we call a generalized function of two
variables radially symmetric if (, tp o U) (, tp) for all test functions qo and all 0 g,
where ( tp o Uo )(x,y ) (x cos 0+y sin 0, x sin 0 +y cos 0 ) for (x,y ) R 2. For the proof
one observes that, by radial symmetry of W(F,F) and W(GI(0,0), GI(0,0)) and (3.1),
the expression I(F, G(a,b))l2 only depends on a2+ b2. This implies that I(BF)(z)I only
depends on Izl, whence, by the maximum modules principle, (BF)(z)-cz for some
cC, n-0, 1,.-’. Hence F=dq, for some dC. Also see [11], [13], where it is proved
that

W(x,y; ,)-2(-1)"exp(-2vr(x2+y2))L,,(4r(x2+y2)),
with L, the n th Laguerre polynomial.

It is fairly easy to generalize the previous theorem as follows.
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THEOREM 2. Let FS*, 8>0, y>0, y> 1, and assume that F is not of the form
(1.4) or (1.5). Then the convolution of W(F,F) with exp(-2rrix--2ryy2) takes nega-
tive values.

Proof. We see from (2.9) that N F is not of the form (1.4) or (1.5) if ct >0. Hence,
by the previous theorem, W(NF,NF) takes negative values. Then (2.12) shows that
the convolution of W(F,F) and exp(-2rcotha(x2+y2)) takes negative values. This
proves the theorem in case

In general we can express, by a transformation of variables and (3.2) below, the
convolution of exp(-2rx2-2ryy2) and W(F,F) at the point (a,b), as the inner
product of exp(-2ro((x-ae)2+(y-be-)2)) and W(Z,F,ZF). Here /9-(37)1/2,
e-(/y)/4 and Z, is the operator defined by (Z,f)(t)-e-l/Ef(e-lt) for fS, and
extended in the obvious way (cf. [10, 1.15]) to S*. We use here that for fS, xff,
y,
(3.2) W(e"x,ey; f,f )- W(x,y; Z,f,Zf ),

a formula that can be generalized straightforwardly so as to hold forfS* as well. It is
clear that if F is not of the form (1.4) or (1.5), then neither is ZF. Since we can find an
a>0 such that p-cotha, we conclude from the special case already treated that the
proof is complete.

4. An application. It is believed that the only curve a Wigner distribution can be
concentrated on is a straight line; this is true only if certain restrictions on the curve
are imposed (cf. the examples at the end of this section). We shall give a proof for the
following simple case. Let C be a continuously differentiable curve in the plane with
parametrization y" II -->R 2, where we assume that Iy’(t)l>0 for all t. Assume that for
all oR there is a straight line passing through Y(t0), but not tangent to C, such that
there is e>0, >0, with the property that the distance between y(s) and l>_e, if
Iy(s)-Y(t0)l_>& This condition is satisfied, e.g., if C is the graph of a continuously
differentiable function defined on . Now let FS* be a function whose Wigner
distribution is concentrated on C in the following sense" there is a continuous function
h" C, such that h(y( ))- O(exp(elY( )12 )) for all e>0, and

(4.1) (W(F,F), q)- h(7(t))q(y(t))lT’(t)ldt

for all test functions of two variables. We shall show that this implies that F is of the
form (1.4) (with Rea-0) or (1.5), so that, in particular, C is a straight line. To this end
let y(t0) -(a, b) be a point on C and consider for Re ct >0 the function g, , b, given by

(4.2) g,,b(t) exp(--ra(t--a +2ribt-riab) (t),
whose Wigner distribution W,, ,,, b is given by

(4.3)

Wa’a’b(X’Y)’- Rea exp(-2r(x-a)2Re-2r(y-b+(x-a)Ima)2/Rea)"
We have by (2.11) and (4.1)

(4.4) O<_(W(F,F), W,,,,b)--f h( y( )) W,,,b(Y( ))lY’( )[dt

Cf. [1]. thank Alan Weinstein for calling my attention to this paper.
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Now let be the line through 3’(t0) whose existence is assured by our assumptions, and
take a such that { x,y)ly b x a)Im a) is the graph of I. (If is parallel to the y-axis
we can use a similar argument with

2 1/2

)2- exp(-r3’-(t- a + 2ribt- riab)
instead of g,, b, where we take 3’ 0). If we let Rea 0, the right-hand side of (4.4)
tends to Coh( 3’( to ))13"( to )I, where C0>0 is a number that depends only on the angle
between and the tangent line at C through 3’(t0). Hence h( 3’( t0 )) _> 0. We easily see
from our theorems and (1.6)-(1.8) that F is of the form (1.4) (with Re ct--0) or (1.5).

Notes. The condition "h continuous" can be relaxed to "h measurable" at the
expense of elegance of the proof. It is furthermore likely that the conditions on the
curve C can be relaxed somewhat as well. On the other hand, consider the function
f=nSn, whose Wigner distribution is given by 1/2k,l(--1)klk/2@l/2, where the
summations are over all integers (this follows from a straightforward calculation and
the Poisson summation formula, written in the form Ynn(X)=Yne--Zrinx). The points
of the lattice (-, ) can be joined by a smooth curve C; such a C does not satisfy our
assumptions, of course. Another objection is that the function h cannot be continuous
in this case. This is not a serious point, however, as can be shown as follows. Let k0:
R R be continuous, and assume that k0 vanishes outside [-, 1/2]. The Wigner distri-
bution of ko,f (where f is as above and denotes convolution) is obtained by
convolving W(f,f) and W(k0, ko) with respect to the first variable (cf. [5, 4.1 ]). We get

2;(4.5) W(x,y; ko ,f ko ,f ) - k,I

(this formula can also be derived by directly using the Poisson summation formula).
Since W(ko,ko) is concentrated in the strip [-1/2,1/2],, we see that W(ko,f,ko,f) is
concentrated in the set ((x/,k)llxl_<-, k, l7/). The components of this set can
be embedded in a smooth curve, and the function h now becomes continuoUs, since
W(k0, k0) is continuous.

A second example showing that one has to be careful with the statement, "W(f,f)
cannot be concentrated on a curve unless this curve is a straight line," is the function
f(t) cos 2 rrt, whose Wigner distribution equals 1/4(2 (y) + 8-2r(Y) + 20(Y)CS4rx).
Now W(f,f) is concentrated on the three lines y-0, y- --+ 2 rr, and these lines can be
embedded in a smooth curve.
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