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ABSTRACT

In this paper algorithms for the restoration of

unknown samples at known positions embedded in a neigh-

bourhood of known samples are discussed. First this

restoration problem is treated as a (non—adaptive)

linear minimum variance estimation problem. It is shown

that the optimal linear minimum variance interpolator

for unknown samples frcei an autoregressive process uses

only a finite neighbourhood of known samples, whereas in

general this neighbourhood is infinite. Secondly, for

signals that can be modelled as autoregressive processes

an adaptive solution to the restoration problem is

given.

INTRODUCTION

This paper discusses a method for the restoration, or

interpolation, of lost samples that occur at known

positions in a time—discrete signal. It can, for in-

stance, be applied in the field of digital audio (e.g.

Compact Disc ) where the samples are sometimes provid-

ed with flags indicating their reliability. Lost samples

may occur consecutively (bursts), as well as non—con-

secutively. The only requirement is that they are

embedded in a sufficiently large neighbourhood of known

samples. The method discussed in this paper can restore,
without audible distortion, up to 32 unknown samples at
a tine in a music signal, sampled at 44100 Hz. When

applied to speech, sampled at 8000 Hz, it can restore up
to 100 unknown samples. The organization of this paper

is as follows. First the restoration problem is discuss-

ed as a minimum variance estimation problem. The
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estimates are weighted sums of the known samples, the

weight coefficients depending on the autocorrelation

function of the signal. The results are derived for

finite sequences of samples and generalized to infinite

sequences. It follows that for autoregressive processes

the best linear minimum variance estimates use only a

finite number of samples. In this approach, however, it

is required that the process parameters (order, predic-

tion coefficients) be known. This is not always the

case. Therefore, an adaptive version of the interpola-

tion method is discussed in which both the parameters

and the unknown samples are estimated. This is done by

iteratively minimizing a function that involves

quadratically the unknown samples as well as the para-

meters, with respect to the parameters and subsequently

with respect to the unknown samples. It often turns Out

that only one iteration step already produces good

interpolation results. The paper is concluded with the

presentation of some results.

A LINEAR MINIMUM VARIANCE ESTIMATE

Let s=[s,.. ,sNT be a finite vector of samples taken
from a stationary time—discrete stochastic signal that
has zero mean. The superscript T denotes transposition.
Assume that s ,. .,s are unknown. Heret(l) t(m)
1<t(1)<. .<t(m)<M are known. The unknown samples are
estimated by

N

(1)
St(i)

j+t(l),..,t(m)

The coefficients Hi. from (1) are chosen such that they
minimize the total expected square interpolation error
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2
(2) W(t(1),..,t(m)) = E[ (s — ) J.t(i) t(i)i=1

The H. that minimize W(t(1),..,t(m)) are solutions of
13

N

(3) 1 H• .r(k—j) — r(t(i)—k) = 0,
133=],

j+t(1),. . ,t(m)

where i1,..,m, k=1,..,N, k+t(1),..,t(m) and

r(J)=E[sks.] is the .th autocorrelation coefficient of

Expression (3) can be brought into a more convenient

form as follows. Let H=(H 3. . where
ij il,..,m,j1,..,N

(Hit(j))ijl. .m=1 Furthermore, let

and let R be the

(N—m)xN—submatrix of R obtained by deleting the rows of

R with indices t(1),.. ,t(m). Then (3) takes the form

(4) (s) RHT = [0], (b) (Hit(j))i,j=l,..,m = -I,

[0] being the all—zero matrix.

The mxN—mstrix U that satisfies

T
(5) RU [u ,..,u ],t(1) t(m)

where u is the t(i)th unit vector of length N, can
—1)

be used to find the solution H of (4). Indeed, let

(6) G=(G •)it(j) i,31,. .,m

Then it can be shown that H, defined by

(7) H =

solves (4) if C is non—singular. Now 0 is non—singular

if R is non—singular and one sees that consequently

—1
(8) G = ((R ) )t(i)t(j) a,j"l,..,m

and that G is positive definite.

If the N—vector v is obtained from s by substituting

zeros for the unknown samples and if

then

(9)

Sometimes it is more convenient to solve from

(10) C2=-Gv=:z.

The vector z is referred to as the syndrome.
A further observstion is that one can derive an

expression for the error covariance matrix

1O4
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C:E[(i_x)L_x)T], for it follows from (9) and (4) that

(11) 2 = Hs-fx,

with x[s 1T Therefore— t(1)'"' t(m)

(12) C = E[H55THI] = lIRET = 0_—T =

Also,

(13) W(t(1),..,t(m)) = trsce(C) = trace (C1).

Until now the number of samples used to estinste the
unknown samples was finite. If R,H and C are allowed to
be (semi—>infinite matrices the previously obtained

results also apply for the estimation of unknown samples
in an infinite sequence. In that case there sre some

additional results. If &[g1,..,g] then

(14) (g) = g * , i=l,..,m,j—o',..,co,
fl 3 3t(1)

with the rows of C being shifted versions of an infinite

vector g, defined by

7'-
1 pl

(15) = — / —— exp(jOk) dO, Ie—a',..,a'
2r I 5(0)

-71

where r(k)exp(—jOk) is the spectrum of the

signal .. . Of course it is required that
S(0)>O for okr. A possible solution to the interpola-

tion problan for a case where this is not true is given

in [1].

For C one has

(16) = i,jl,..,m,

and for the z of (10)

a'

(17) z = I g — 'k' i,jl,. .,m.
k=—o t(i) k

Observe that in the case of consecutive errors G is
Toeplitz and (10) can efficiently be solved in 0(m2)
operations by using the Levinson algorithm.

In genersi g has infinite length. Therefore, in

practical applications a finite approximation must be

used to calculate z in (17) . However, if

is an autoregressive process of order p,

then g has length 2p+1. This can easily be shown as

follows. For an autoregressive process ()Ic=—a' ..

of order p and with prediction coefficients .
one has

Authorized licensed use limited to: Philips. Downloaded on February 13, 2009 at 04:54 from IEEE Xplore.  Restrictions apply.



p
(18) a.sk. = ek, k—U',..,w,

j=O

where (ek) is a white noise process with zero

mean and variance The signal spectrum S(9) is given

by

2 p
(19) S(s) a ( b exp(—j6k)

e k
k=—p

where

p-I kI
(20) lo—P,,P.

On substituting (19) into (15) one has for g

(21) =

Also, G=o 28, with

o2bk, Ikl<p,

otherwise.

(22) B =ij
It(i)—t(j)I<p,

otherwise.

If, in this case, one defines the syndrome z by

p
(23) z = —

bkvt(i)k.
k=-p

then can be obtained as the solution of

(24) B2z.

Part of the results of this section can be found in

[2,3].

ADAPTIVE INTERPOLATION OF AUTOREGRESSIVE PROCESSES

In this section the interpolation of autoregressive
processes is discussed in the case that the parameters

as well as the unknown samples 5t(1)'"'5t(m)
have to be estimated from the data sl,..,SN. It is

assumed that t(1)>p+1 and that t(m)<N—p. This problem is

discussed in great detail In [4].

Although several algorithms exist for the estimation

of p [5], the rather arbitrary choice 3m+2 is used

instead. It produces satisfactory interpolation results

for the experiments done with digitized niisic and

speech. If a=[a1,..,a]T and x=[st(1))..st(m)]T then

27.1.3

the estimates a and are those values of a and x that

minimize

N p N

(25) Q(a,x) = a 5k—P
= Ie

k'p+1 j=O kp+1

with s x , for i1,. .,m. This choice can be motivat—
t(i) i

ed by the facts that a) minimizing Q(a,x) as a function

of a under the assumption that a is known leads to an

estimate solving (24) and b) minimizing Q(a,x) as a

function of a under the assumption that x is known and

that (sk) has a Gaussian distribution is the

same as maximizing the likelihood function

(26) L(a,a)
2(s ,. .,s Is ,. . ,s , a ,a)'N S1•

. ,S 4-l N 1 p e —

= (____._)2 exp(— —f—)2iro 2oe e

as a function of a. Note that in L( a,a) a conditional

probability density function is used instead of the

commonly used unconditional probability density func-
tion. Maximizing L(o2,a) as a function of a is the same

as minimizing Q(a,x) as a function of a.
thSince Q(a,x) contains 4 order terms, this minimiza-

tion is a non—trivial problem. One can try the following

iterative procedure. Starting with a zeroth estimate

(0) (0)
(i =0, for instance), one produces a first

estimate 1) for a by minimizing Q(a,0) as a

function of a. Then, by minimizing Q(â,x) as a

function of x, one produces a first estimate *(1) for a.

This can be repeated to obtain second estimates and

a(2) and so on. It is clear that Q(a,x) decreases to
some non—negative number but it seems hard to determine

whether this number is a global minimum or not.
The result of the minimization of Q(a,x) as a

function of a with known a was given in the previous
section. An additional remark is that solving (24) by

means of a Cholesky decomposition, in which B is

decomposed as a product B=LLT, with L a lower triangular
matrix, is very stable. It is shown in [4] that the

magnitudes of the nonzero elements are all bounded by
b2, b0 being defined in (20) , and that in particular
the Lii, i=l,..,m, which act as divisors, are bounded by

l<L11<b'2. It has not been observed for music that

b.
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has been tested extensively on digitized music and

speech, both represented in 16 bits. Some typical

results are presented below. The original signals, with

the correct values of s , i1,..,m, substituted, are
t(i)

marked with A, the restored signals obtained after one

iteration are marked with B and the restored signals

obtained after 3 iterations are marked with C. For a

further account of the performance of this algorithm the

reader is referred to [4].

S
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Figure 1. Interpolation results for a fragment of

Beethovens Violin Concert. Sampling frequency 44100 Hz.

Segment length N = 512, burst length m = 16, process
order p 50. The position of the burst is marked on the

time axis. A: original error free signal, B: result of 1

iteration, C: result of 3 iterations.

Time (seconds)

Figure_2. Interpolation results for a fragment of male

speech. Sampling frequency 8000 Hz. Segment length

N 512, burst length m 100, process order p = 50.
Note that p=3m+2 does not hold here. The position of the

burst is marked on the time axis. A: original error free

signal, B: result of 1 iteration, C: result of 3
iterations.
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Minimization of Q(a,x) with respect to a with known x

leads to the well—known covariance method [6] for

estimating the prediction coefficients a1,.. ,a from a
given sequence of samples i'•' '5N Instead of the
covariance method the more popular autocorrelation
method [6] can also be used to estimate a1,..,a.
Experiments have revealed that this modification hardly

affects the results.

The iterative procedure just described already pro-

duces good results, without audible distortion, for

digitized music if m<16 and for digitized speech if

m<lOO after only one iteration, although more iterations

can improve the results.
The interpolation algorithm described in this section

(0
-i-'
co

D

40—

a-

C

L 0-

-40—

-80—

'f b A e
- 1 20

18 22 26 30 34 38 42 46
•

1016

27.1 .4

Authorized licensed use limited to: Philips. Downloaded on February 13, 2009 at 04:54 from IEEE Xplore.  Restrictions apply.


