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There is a theorem of Wigner that states that phase-plane distribution functions involving the
state bilinearly and having correct marginals must take negative values for certain states. The
purpose of this paper is to support the statement that these phase-plane distribution functions are
for hardly any state everywhere non-negative. In particular, it is shown that for certain
generalized Wigner distribution functions there are no smooth states (except the Gaussians for the
Wigner distribution function itself) whose distribution function is everywhere non-negative. This
class of Wigner-type distribution functions contains the Margenau-Hill distribution.
Furthermore, the argument used in the proof of Wigner’s theorem is augmented to show that
under mild conditions one can find for any two states f, g with non-negative distribution functions
a linear combination 4 of fand g whose distribution function takes negative values, unless fand g

are proportional.

I. INTRODUCTION AND PRELIMINARIES

The formulation of quantum mechanics by means of
phase-plane distribution functions involving the states bilin-
early allows one to exhibit quantum mechanical expectation
values as averages over the phase-plane of classical observa-
bles. Given a bilinear map' (f,g}—~>C,, mapping pairs of
states onto functions of position ¢ and momentum p, one can
formulate a correspondence principle between bounded self-
adjoint linear operators 7 of L *(R) and functions a(g, p) as
follows: T and a are said to correspond to each other when

(Tfg) = f f alg, P)C, (4> PMdg dp , 1)

forallfe L?(R),g € L *R). Here( , )denotes the usual inner
productin L }(R). Of course, in order that toany T (ora) there
is a unique @ = @ (or T'= T,) such that (1) holds, the map-
ping ( £,g)—C}, should satisfy certain properties. When one
takes f = g in (1) the left-hand side equals the expectation of
T in the state fwhile the right-hand side equals an average of
the classical observable a corresponding to 7, where C; , is
used as the weight function.

In view of the interpretation of C, ; as a distribution
function, one would like the following properties to be satis-
fied: (a) correct marginals, i.e., for all states fone has

fcﬁf(q,p)dp= |f@)° g€R, 2)

fcﬁf(q,p)dq= IF(p)%> PpeR, (3)
where F is the Fourier transform® of £, given by

F(p)= [ e~ igda, peR; @)
(b) positivity, i.e., for all states f one has

C,A9,p)>0, geR, peR. (5)

It has been shown by Wigner? that the requirements (a)
and (b) (together with the bilinearity) are incompatible. What
one can distill from the arguments in his proofs is this: when
/i1 and £, are two compactly supported states with f; 5% 0,
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f> =0, f1lg) f>lg) = 0 for all ¢ while the requirements (a) and
(b) are met, then C; (g, p) takes negative values, where
f= fi + f>. Hence, there is an abundance of states whose
distribution functions take negative values. A particular
strong result of this type, known as Hudson’s theorem,*
holds for the Wigner distribution® [See (11) below with
a =0]: the only square-integrable states for which the
Wigner distribution is everywhere non-negative are the
Gaussians.

It is the purpose of this paper to give generalizations on
both Wigner’s theorem and Hudson’s theorem. The starting
point we take in this paper differs slightly from the one taken
by Wigner in Ref. 3. Wigner assumes the existence of self-
adjoint operators M (g, p) of L *(R) such that for all states f,

Cirda, P =(fMlg,p)f), g€R, peR. (6)

We consider in this paper Cohen’s class of phase-plane dis-
tribution functions.5® This class is parametrized by means
of a function @ of two variables as follows: for any state fone
defines

ca.) = [ [ [ exel—2mitoy + p — o)

XPO7)flu+ Y7V flu— Lrdédrdu,

geR, peR. (7)

The distributions in Cohen’s class all have the shift proper-
ties
CErr.sla.p)=CFla+a,p),
CRrr e P)=Ciap+b) geR, peR,
where for all e € R, b € R and all states f€ L %(R),

(T, fNg) = flg +a)(R, f)lg) = e~ *"f(g), g€R.

g€R, peR, (8)

)
In this paper we pay particular attention to the choice
P, (0,7) = exp(2miabr), O€R, T€R, (10)

where a € R. This yields what may be called generalized
Wigner distributions C {7} that can be brought into the form
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Ci21g, P)=C 7. p)
= [ermr(a+(5-a))

X f(q—(—;—+a)t)dt. (11)
The choice a = 0 yields the Wigner distribution W ;, and
thechoicea = — }yields what is known in signal analysis as

Rihaczek’s distribution® R . - The latter distribution can be
written as

Rf,f(q’p)=e2ﬂqp WF(P), q€R, pER’ (12)

with F given in (4). The real part of Rihaczek’s distribution
was considered by Margenau and Hill.’° We observe here
that R, g, p) cannot be brought in the form (6) with a
bounded linear operator M (g, p) of L }(R).

Asis well known'! every C; , can be expressed in terms
of W, ,as

C1Plg, p) = Hw—ap bW, ab)da db,

geR, peR, (13)
with
olg, p) = ff e~ 2m6a+p (6 7)dO dr ,
geR, peR. (14)

As an aside we note that this @ can be used to relate the
operators M (g, p) of Wigner’s approach in (6) and the func-
tion @ in Cohen’s approach. To that end we assume that @ is
such that |C'?)(0,0)|<M || f||* for some M > 0. Then the op-
erator M (0,0), determined by

(£,M(0,0)) = C'7)(0,0), fgeL?R), (15)

is bounded, and we have, according to (13),

(/M (0,0)/) = H o(—a, — b)W, {a,b)da db,

feL*R). (16)
Hence, ¢( — a, — b) is what is called the Weyl symbol'? of
theoperator M (0,0),i.e.,¢( — a, — b }and M (0,0) correspond
to each other as in (1) when we take C ,, = W, (Weyl corre-
spondence'®). Observe that, because of the shift properties,
we have

Mg, p) =

»T_,M0O0T, R, gcR, peR.

(17)
We shall restrict ourselves in this paper to functions &

that are bounded. The boundedness of @ ensures that C'f)
€ L (R? for all fe L *(R?). In fact we have the estnmate14

[[1c2ha.prdgap<iisiesuol @, (18)

for all fe L,(R). It does not follow from boundedness of @
that C?}(0,0) can be expressed as in (15) with the aid of a
bounded operator M (0,0). As a counterexample we have
R (0,0)in (12). However, when (15) does hold with a bound-
ed M (0,0) it can be shown from (16) and the fact that
CPHa, p)=(fM (q, p)f) that all C'?)’s are bounded, con-
tinuous functions'® of (g, p).
A second restriction is that we want real C'?)’s only.
This is guaranteed when the @ in (14) is real valued16 (possi-
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bly as a generalized function). A third restriction is that we
want the C 7 )’s to have correct marginals. It is well known'’
that C'?) has correct marginals for all f € L *(R)if and only if
P07r)=@(0,00=1, R, 7€R. (19)
We now summarize the results of this paper. It is shown
in Sec. II, under a regularity condition on @, that for any two
smooth functions £, g with C'7} > 0, C'g) > 0 everywhere we
can find an @ € C such that C'¢) . -, .. " takes negative val-
ues, unless fand g are proportional. In Sec. III we consider
smooth states f for which Re C'¢)(g, p)>0in (g, p) sets of the
form (a,b ) X R. It is shown, for example, thatforsuchan fwe
have | f(g)| = exp(¥(g)) with ¢ concave on (a,b ) [it is assumed
here that f(g)#0 for ¢ € (a,b )]. We also show that, if a0,
there is no smooth state /' 5= 0 such that Re C'¢), (g, p)>0 for
allg € R, p € R. The restriction to smooth states is not entire-
ly necessary but makes the proofs run smoothly; a class of
functions which are sufficiently smooth is the set % of
Schwartz [it is, however, sufficient to require the states to be
sufficiently often differentiable and to decay as rapidly as
(1 + ¢%) ~* with k sufficiently large]. For |a| = } we have a
stronger result, viz. there is no fe L (R), £ O such that
Re R, ;>0 almost everywhere [see (12)]. A remarkable phen-
omenon here is that there do exist generalized functions
S 0 with Re R, >0 (in generalized sense). This is remar-
kable since the sets of smooth and generalized functions f for
which W, . = CQ,>0 everywhere are essentially the same,
i.e., (degenerate) Gaussmns We conjecture stronger results
than the ones proved in this paper. This is based on the fact
that we have not been able to find any @ (other than & =1,
Wigner distribution case) and any fe L*R) (other than
Gaussians) for which Cf)>0 everywhere.

Il. A RESULT FOR GENERAL BILINEAR PHASE-PLANE
DISTRIBUTION FUNCTIONS

We consider in this section bounded @ ’s for which C ¢}
is real valued and has correct marginals for all f € L %(R). The
arguments used in the proof of the theorem below are some-
what similar to those used by Wigner in Ref. 1.

Theorem 1: Assume that the set {(6,7)|P (6,7)5£0} is
dense in R?, and let £ == 0, g = 0 be smooth states such that
c?)>0, C“” >0 everywhere. Then thereisana e C, b C
such that C(® 7\ bar+ bg takes negative values, unless fand g
are proportional.

Proof: Suppose that
C) garis@P)>0, geR, peR, aeC, beC.

(20)
We shall show that f and g are proportional by using the
following steps.

(1) We show that

| f@)I’C Mg, p)=18@))’C'PHa, p), g<R, peR.

(21)

Let g € R, and take a, € C, b, € C such that a, f(g) + b, g(q)
= 0. Then

C'of+bogaof+bog(q’p) Os PER1 (22)

because of (20) and the correct marginals condition (2} ap-

pliedtoa, f+ b, g. Hence we haveforallae C,beC,pe R
(see Ref. 18),
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|a|*C'¢ g, p) + |b1°C %)g, p) + 2 Re abC %} (g, p)>0,

(23)
with equality when a = ao, b =b,. Let pe R, a, = —glg)/
flgh b=1, and write 4=C'¢4g,p), B=C3)a.p)
C=C'?)g,p) a=x+iy, ay =X, + iyo. Now (23} can be
written as

Pix,yp=Ax*+)y)+B
+2xReC—2yIm C>0, (24)

with equality when x = x,, ¥ = ,. Sinceforallx eR,y € R,

Pix,y)=A(x+A4 'ReC)
+A(y—A"'ImCP+B—A47'C|*>0,
(25)
and P(xy,y)=0 it follows that B=|C}%

= —A(x,— ip) i,
ICZalg, P = CEHa, PIC )G, )

(26)

C8ig.p) = j‘(q’ C'2a.p).

q
Now elimination of C, (g, p) gives (21).
(2) We have

|F(p)*)CP)g, p)=|G(P)*C'FHa,p), q€R, peR.

(27)
This is proved in a similar way as (21).
(3) There is a constant D > 0 such that
C®)g:p)=DC'EXg,p). q€R, peR. (28)
Indeed from (21) and (27) we get
C(‘” 2 2 2
¢(q p) |G(p)|2 — 'g(q)lz’ qeR’ pER, (29)
C'tHa,p) |IF(P)I*  flg)l

and (28) Tollows.

(4) The proof is completed as follows. We see from (13)
and (28) that p» (W,, — DW; ;) = 0. Here * denotes two-
dimensional convolution. Performing the inverse double
Fourier transform and using the convolution theorem we get
by (14)

®(0,7)[Ayy(6,7) — DA, (6,)] =0, OcR, reR.
(30)
Here
A, 6,7 = f e”""g(t + % T) g(t - -;—— r)dt,
@cR, reR, (31)

and A ;(6,7) is defined similarly. Since 4,4, , are contin-
uous functions and @ (6,7)#0 in a set of (6,7), which is dense
in R?, we conclude that 4,(6,7) = DA, A6,7) for all (6,7)
€ R2 It follows easily that g is a multiple of /.

Notes: (1) When we have a ¢ such that Moyal’s formula

f C®lia, PICBgr pdg dp = |(£8)? (32)

holds forallfe L2 (R),g € L *(R), then |® (6,7)] = 1 (see Ref.
19).

(2) When we take & (6,7) = cos 7afr, so that C'f)
= Re C'¢, [cf. (11)], the condition that {(6,7)| @ (6, ‘r);éO} 1s
dense in R2 is satisfied. We shall show in Sec. III that there
are no smooth states for which Re C'¢,»0 everywhere.
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(3) The condition of having correct marginals forces

@(0,0)=P(0,7)=1+#0 for 6eR, reR. The proof of
Theorem 1 shows that
|glg)>=D|f@ |G(p)*=D|F(p)?,
geR, peR, (33)

when C{%) . .r+ g 0 everywhereforalla € C, b € C. It does
not follow, however, from (33) that fand g are proportional.
[As a counterexample, take an feL*R) with |f(g)|

=|f(—g)| forallg e R, and let glg) = f{— g). Then |glg)|
| f(g)| for all ge R and G(p)= F(p) so that |G (p)|
|F(p)| forallpeR.]

Corollary: The condition C'?) >0, C'*) > 0 everywhere
can be replaced by the condition C "”}0 C{%)>0 every-
where when at least one of the functlons f-g and F G does not
vanish identically. To show this, we only have to provide a
new proof of formula (28). To this end we let 7 and J be two
open intervals where fand F, respectively, have no zeros. We
claim that there is a constant D, , such that C,, = D, ,C; ,
in the set S; , =I XRURX J, while | g/ f|*=D;, in I,
|G /F |* =D, , inJ. To see this we let (g, p) € S; , such that
C'?4g, p)> 0. Since C;,  is continuous, there are open inter-
valsI, C I,J, C J such that C'?){g, p)>0in I, X J,. Now
formulas (21) and (27) show that thereisa D, , >0 such that
Cla, p)= "”(q,p) in I, XJ,, while | g/ f|*=D
inl, |G/F | =D, ,inJ,. Hence, | g/ f|? is a continuous
function on [ and for every g € I there is an open interval I,
containing g where | g/ f|*is constant. Hence | g/ f|* is con-
stant on I. Similarly, |G /F |? is constant on J, and our initial
claim follows. When 7, J and K,L are four open intervals
such that fand F have no zeros in I,K and J,L, respectively,
we find four constants D, ;, D,,, Dy, Dg,. These con-
stants must all be equal since, eg, D;,=D;;
= | g(g)/ f(g)|% when g € I. It thus follows that there is a
constant D>0 such that C%)g, p)=DC "’j{q, p) for all
(¢, p) € R? with C‘f){g, p)> 0. Similarly, there is a constant
E>0suchthatC ("”(q, p) = EC®)q, p)forall(q, p) € R? with
C'%)g, p)> 0. Now when there is a point ¢ with f(g)g{g) #0 or
a pomt p with F(p)G(p)#0 we see that D #0#E and
E =D "". And then C{?) = DC'?) everywhere, as was re-
quired to prove. We note that there exist smooth f€ L %(R),
g€ L¥R) with fig =0, F.G=0. These examples can be
found by properly smoothing, multiplying, and shifting the
generalized functlon fo =2>_ _ _#&,, whose Fourier trans-
form equals F, = 5,,, .

m——oo

Hll. WIGNER-TYPE PHASE-PLANE DISTRIBUTION
FUNCTIONS THAT ARE NON-NEGATIVE

We consider in this section phase-plane distribution
functions Re C'?), with a € R and f'€ L *(R) a smooth state.
We are particularly interested in consequences for the state f
of non-negativity of Re C'?; in certain strips in the phase
plane. Our main result is that there are no smooth states f°
with Re C'%),>0 everywhere, except when a = 0. This sec-
tion is divided into four subsections. In Sec. IIT A we exa-
mine the consequence of non-negativity of Re C ¢, in strips
for the (smooth) state f. The results of this subsection are
based on the inversion formulas
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h(gs:=flg+ @ —ak)flg— B +ak)
= [ e ) ta.pip. 34)
H(ps):=F(p—{}+ak) F(p+{—ak)
~ [ ctpapda, (35)
or rather

8lgs):=4h(gs)+ L hlg, —s)

—f 2isp Re C(a) (q, p)dp , (36)
G(psk=3H(ps)+ 1 H(p,—5)

= [ e Re C'5)tq, iy )

Another important fact is C'¢k(g, p) = C'P{ —p.g), g€ R,
2 €R. In Sec. II1 B we give the proof of our main result for
smooth functions and 0% |@| # }, and in Sec. III C we treat
thecaseof fe L (R),a = + }. Thecasea = Ohas been con-
sidered in Refs. 4 and 20 and does not need a proof here.
Finally, Sec. III D contains some examples of generalized
functions f and numbers a such that Re C'?;>0 every-
where.
A. States with Re C{")>0 in a strip

We assume in this subsection that both £ and F are
smooth functions of g and p respectively so that all manipu-
lations below can be justified (it is not hard to give more
specific conditions that guarantee this).

Theorem 2: Let — « <a<b< o, and assume that
flg)#0, Re C'@/(q, p)>0 for g€ (a,b), peR. Write | f(g)|

= exp(¥{g)) with ¥ smooth. Then

(4 + ) ¥"(g) + 2°(¥'(@)*<0, ge(ab). (38)

Proof: Write f (q) = exp{¥(g) + ip (g)) with ¢ smooth on
(a,b), and insert the expansions

Plg + u) =@ (q) + up'(g) + } ’p "(g) + o(u?),
u—0, (39)

Ylg +u) = Yg) + ud/lg) + L u*P"(q) + ou?),

u—0, (40)
into the definition (34) of 4 (g,s) and % (g, — 5). We get
h (q.5) = exp(2¢lg) — 2asy'(q) + (} + @®1s"¥"(q)

+ ilsp '(g) — as’p "(g)] + o(s)),
(g, — ) = exp(2¢(g) + 2as¢'(g) + (} + @*)5*¢"(g)
+i[sp'(q) + as’p "(g)] + ofs?)), s—0.

(41)

Hence
glgs)= thigs)+ } hig,—5)
= Lexp(2¢lg) + (} + @?)s”Y"(q) + isp ‘(g))
X {exp( — 2asy'(q) — ias’p "(q))
+ exp(2asy’'(g) + ias’p " (g))}(1 + ofs”)
= exp(2¥ig) + (} + @**Y"(q) + isp '(g))
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X {cosh(2asy/(q) + ias’p "(g)}(1 + o(s?)), s—0.
(42)
Now
cosh(2asy'(q) + ias’p”(g))
=14 22%(Y'(g)] + ofs®), s—0, (43)
so that

| gg,5)] = exp(2¥ig) + (4 + 2®)*¢"(q))
X {1+ 22°(¢/(g))* + o(s*)}(1 + o(s?))
=exp(2¢g)){1 + (1 + &*)*¢Y"(g)

+ 2275 (¢'(g))” + ols?)}(1 + 0fs%), s—0.

(44)
Since Re C'?/(g, p)>0, p € R, we see from (36) that

|2(9:5)| < 8(g:0) = | flg)|* = exp(2¢(g)), seR.  (45)
This can only be true when (38) holds, and the proof is com-
plete.

Notes: (1) When — oo <c<d< o and F(p)#0,
Re C? (g, p)>0forg e R, p € (c,d ), we have

(3 +a*)¥"(p)+ 2% (¥'(p)’<0, peled), (46)
where |F( p)| = exp(¥( p)) and ¥ is smooth on (c,d ).

(2) The condition (38) [and (46)] is weakest for a = 0.
Whena = Qwesee that (38) [(46)] means that (¥ }is concave
on (a,b) [(c,d)].

We next study the behavior of an f with Re C'% (g, p)
>0, where g is a zero of .

Theorem 3: Let |a| # 1, ¢ € R, and assume that f(g) =
Re C'?/g, p)>0, p € R. Then f"(g) =0, n = 1,2,... .

Proof: We have as in the proof of Theorem 2 that

lg(q,S)I = |% h (g.5) + % h (q! —S)'

<|&lg.0)| = f(g)*=0. (47)
Let n € N be the smallest number with f* (g} #0. Then

klgs)=flg+(—ak) flg—§ +ap)
= [(4 — @) (s"/nY) £"(g) + o(s")]
X [(— @ + a)is"/nt) F™g) + ofs™)]
= [(— 114 — a&®/(n)?]] f™(g) s
+o(s*"), s—0. (48)
Similarly,
hlg, —s) = [(— 16 — &*)"/(n]] f™(g) s>
+o(s), s—0. (49)
Hence

glg:s) = [(— 1) — a?)/(n!f*1] f*™(g)|*s*"
+ofs*"), s—0. (50)
This contradicts (47), and therefore f*™(g) = 0
Theorem 4: Let a#0, |a|# ) Assume that
— o <a<b< o, that Re C'?/{g, p)>0forge(ab), peR,
and that f(a)#0+#f(b). Then the set {g| f(g)#0]} is dense in
(a,b).
Proof: Suppose we can find an interval (cq,d,) C (a,b)
such that f(g) = O for g € (c,,d,). We can assume that both ¢,
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and d,, are accumulation points of the set {g| f(g)#0}. When
q € (cody) we have for se R

fla+ 3 —ak)flg— (G +ak)
+ fla——ak)flg+ (3 +al)=0. (51)

We consider the following cases.
(1)0<a <}. We can find ¢, <c,, d, >d, with f(c,)7#0
# f(d,), ¢, tco, d,, Ldy. Now if we let

qn = é(cn + dn) + a(dn —Cy )’

n=12.., (52)

S = dn = Cns
then we have ¢, +( —als, =4d,, ¢, —(} +als, =¢,
while g, — (1 — a)s, € (co.d,) for large n. We conclude that
the left-hand side of (51) with ¢=g¢,, s=s, equals
£(d,) flc.)#0 for large n. We thus have a contradiction.

(2) — 1 <a <0. This case is similar to the previous one.

(3)a> 1.Letc, <cybesuchthatc, 1o f(c,)#0. Now
if we let

qn,m = %(cn + cm) + a(cm —C, )’

nm=12,.., (53)

Snm = Cm — Cns

we have qn,m + (,lg - a)sn,m =Cpm» qn,m - (% + a)sn,m =C,-
Wecan take n solarge thatg, ., + (4 + als, ., € (co,do)- Here
Gno = Mc, +co) +alco—c,) S, =¢o—c,. Observe
that qn,uo >Cos and that qn,m <qn,oo L4 sn,m <Sn,oo ’ qn,m qul.eo
when m— « . Hence, when m is large enough, g, ,,, > ¢, while
9pm + ( + als, , <d,. Therefore, the left-hand side of (51),
with ¢ =g,,., § =S,.» equals f(c,,) flc,)#0 when m is
large enough. We thus have a contradiction.
(4) @ < — }. This case is similar to the case @ > }.

B. Smooth states /0 with Re C{’}>0 everywhere do
not exist: case 0 # |a|# }

We now start the proof of the statement that there are
no smooth states f with Re C'?, >0 everywhere for the case
03 |a| # 1; the case @ = 0 is covered by Hudson’s theorem
and the case |a| = } will be considered in Sec. III C. The
proof is lengthy and consists of several steps; it can be out-
lined as follows. Suppose that we have a smooth fs£= 0 with
Re C'%),>0 everywhere. It will be shown in Lemma 1 below
that the zero set of f must be unbounded above and below; at
the same time it will be shown that we must have |a| < }. In
Lemma 2 below it will be shown that f cannot vanish identi-
cally on any interval. The remainder of the proof consists of a
careful analysis of f around its zeros. When f(a) = 0, we
have

fla+(—al) fla—{ +ak)

= —Fle—G—afla+@+ak), seR. (54
This identity can be used to show the following (Lemma 3):
Leta be a zero of f for which thereis a8 > 0 such that f{g)#0
for ge{a — 8,a). Then there is a smooth function %,:
{0, 0) — C such that

k.lg)= — k. ([} +a)/(} —a)lg), ¢>0, (55)
while
fla+q) =k, lg)fla—q), ¢>0. (56)

Then it can be shown that the zero set of f has the form
{a+ bl|l€Z), wherea e R, be R. Wefinally derive a con-
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tradiction by showing the identity

k@) =k, »lg—b)k,(2b—qk,_,lg), b<g<2b,

(57)

in which the left-hand side behaves smoothly as g | & where-
as the right-hand side oscillates violently as g | b because of
the factor &, , (g — b) and (55).

Lemma I: (i) Let O< |a| < }, and assume Re C'¢,>0
everywhere. Then the zero set of fis unbounded below and
above.

(ii) Let || > . Then Re C'¢; takes negative values.

Proof: (i) Suppose there is a b € R with f(g)#0 for ¢ < b.
Then we can write | f{g)| = exp(¥{g)), where ¥ is smooth and
satisfies (38) for ¢ < b. In particular ¢ is concave on ( — co0,b ).
Since f | f(g)|*dg < » we must have that 1(g)—> — « as
g— — . Furthermore we can find a g,<b such that
¥'(go) > 0. Now ¢'(g)>¥'(q,) for ¢ < g, and, according to (38),

@) — e = [ L are — e (a0 —
1/¢'(q) — 1/¢/(q0) WP dr< —c,(90—49) 9<4o,
(58)
where ¢ = 2a%/(} + a?) > 0. Therefore
1/¥(9)<1/¢¥'(g0) — cal@o — 9), 9<40- (59)

The left-hand side of (59) is positive for g<g, whereas the
right-hand side of (59) tends to — o when ¢— — «. Con-
tradiction. Hence, fmust have zerosin ( — «0,b ). Inasimilar
way we conclude that f has zeros in any interval (a, o).

(ii) Suppose Re C'7,>0 everywhere and |a| > 4. In the
proof of (i) it was not used that 0 < || < }. Since f 5= O we can
find a g, € R with f{g,) #0. Now let a: = inf{qg,| f(g)#0 for
g €(q1,90)}. Thena> — oo, f(a) = 0,and thereisab > asuch
thatf(q)#£0forg € {a,b). Asf(g)#0for g € (a,b ) we have, ac-
cording to (38),

| f1"(@) = [¥"(g) + (¥'(g))] exp( ¥(g))

2 —_—
<~ ST RO, gelad).
(60

Hence | f| is concave on (a,b ) and lim,,, | f|(¢) > O (this limit
may be + «). But

If|'(q) = exp( — i arg f(g))[ f"(q) — i (arg f)'(q) f(g)]
= exp( — i arg f(g)) f'(q)

—i|flg)l (argf)(g) qe€(ab), (61)

and the real part of the right-hand side tends to 0 on account
of Theorem 3. This results in a contradiction, and the proof
is complete.

We assume from now on that 0+ || < §.

Lemma 2: The set {q] f(g)#0]} is dense in R.

Proof: We proceed according to the following steps.

(1) fcannot have compact support. For otherwise Fis an
analytic function. According to Lemma 1, F has zeros, and
at a zero, p, of F we have according to Theorem 3 that F ) p)

= 0. This is impossible in view of the analyticity of F and the
fact that f=£ 0.

(2) f cannot vanish identically on a semi-infinite inter-
val. For suppose that f(g)=0 for g¢<a, where
a: = max{q,| f(g) =0, g<q,}. We know from step (2) that
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the support of f is unbounded above. Hence, in view of
Theorem 4 there are no intervals [¢c,d ] with d >c¢>a such
that f'vanishes on [¢,d ]. By Lemma 1 we can find ag > a with
flg) =0. When a <0, we see from (54) that f(g + ({ — a)s)
Xf(g — (4 + a)s) =0 whenever s3>(} —a) ‘(g —a). How-
ever, when (} —a)~ (g —a)<s<(} + a)” (g — a) we have
g+@3—as>a, g—(@}+ajs>a, so that neither
flg+ (3 — als)norf(g — (§ + a)s)can vanish identically for s
in any subinterval of (} — @)~ '(g — a), (} + @)~ '(g — a). This
contradicts the continuity of /. When a > 0 we can derive a
contradiction in a similar way. It follows therefore that the
support of fcannot be bounded below, and in a similar way it
can be shown that the support of f is not bounded above.
This completes the proof of step (2).

The proof of the lemma is now easily completed by us-
ing Theorem 4.

We assume now that —} <a <0.

Lemma 3: Let a be a zero of f for which thereisa§>0
such that f(g)#0 for ¢ € (@ — 6,a). Then there is a smooth
function k,: (0, 0 )—>C such that k,(q) = — k,(Bg),fla + q)

=k,(g)fl@a—q),g>0.Heref=( +a)/} —a)<1.
Proof: With B as given above we can write (54) as

fla+q) fla— Bg)= — fla—q)fla+ Bg),

geR.

(62)
Therefore, when f(a — q)#0+# fla — Bq) (in particular
when 0 < g <9)

fla+q)/ fla—q)= — fla+ Bqg)/ fla—Pq). (63)
Define
k.(g):=fla+q)/fla—gq), 0<g<é, (64)

and extend the domain of k, to (0, ) by setting for g>6
ka.(g):=(— 1)k, (¢B7) , (65)
where n = 1,2,... is such that gB8" € [ 86,6 ). We claim that
this k, satisfies the requirements. Indeed, we have the identi-
ty k,{g) = — k,(Bq) for 0 <g <8 because of (63), and the
extension of k, according to (65} is such that this identity
remains valid for g>8. It is also clear that k, is smooth.
Finally, let g, > 0. We want to show that f(a + g,) = k, (¢,)
X fla — qo). When 0 < g, <6 this follows at once from the
definition (64). When g,>8 we take n = 1,2,... such that
4o B" €[ B6,8). The set {g] f(g)#0} is open and dense in R
according to Lemma 2. Hence we can find a sequence
(@i )k = 1,2,.. With g, B" €[ B6,6), g.—4, and fla — ¢, )#0,
fla — Bgy)#0,...,fla— B"'q.)#0. It follows from (63)—
(65)that f(a + q,) = k,(qx) fla —q,) forallk = 1,2,... . By
taking the limit k— o and using continuity of fand &, we
conclude that f(a + g,) = k,(qo) fla — qo), and the proof is
complete.
Corollaries: (1) Let a be a zero of f for which thereis a
6>0 such that f(g)#0 for g € (a,a + 8). Then there is a

smooth function /,: {0, )—C such that /,(g) = — I,(5g),
fla—q)=1L{gfla+q), ¢>0  Here B={+a)
—a)<l

(2) Let a be a zero of f for which thereis a § > Osuch that
flg)#0 for g € (a,a + §)v(a — 8,a). Then the function &k, of
Lemma 3 has no zeros. Indeed, k,(g)#0 for 0 <g <46, and
hence, by (65), k,(q)#0 for ¢> 0.
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Lemma 4: The zerosetof f is of theform {a + /b |l € Z}
forsomeaeR,beR.
Prooft We can find an a€R, b>0 such that f(a)
= 0= fla + b)whilef(g)#0for g € (a,a + b). Assume the
interval (@ — b,a) contains a zero a — ¢, of f with 0 < ¢, < b.
With /, as in Corollary 1 we see that /,(c))=0, as
fla + ¢p)#0. Since I,(q) = — I,(Bq) for ¢>0 we get that
fla—coB") =0forn=1,2,... Hence a is an accumulation
point of the zeros of f less than a. We can find zeros ¢ and d
of fwith a — } b<c<d<a such that the interval (c,d) is
zero-free [otherwise fwould vanish identically on a subinter-
val of (@ — } b,a), which cannot happen by Theorem 4]. Ac-
cording to Lemma 3 we have f(d + ¢) = k;(q) fld — g) for
all > 0. Since f(d + g)#0forge (@ —d,a+ b — d) we see
that f{d — q)#0 for ge (@ —d,a+ b —d). In particular
fla—b)= fld—(d—(a—0b))#0 since d—(a—b)
€(a —d,a+ b—d). However, by Corollary 1, f(a—b)
=/,(b)fla+b)=0. Thus, we have a contradiction.
Hence, f has no zeros in (@ — b,a) while f{a — &) = 0. It fol-
lows now by induction that f(@a—2b)= fla— 3b)
= .. =0,whilef(c)#0forc <a,c#a — b,a — 2b, ... . Simi
larly, fla+2b)= fla+ 3b)= - =0 while f(c)#0 for
c>a,c#a+ b,a+ 2b,a + 3b, ..., and the proof is complete.
We shall now finish the proof of the main result of this
subsection. We assume for convenience that a =0, b= 1.
According to Corollary 2 to Lemma 3 the functions k; with
integer / have no zeros, are smooth and satisfy k;(q)
= —k/(Bq), fll + 9) = k,(g) f(I - g) for ¢> 0. Therefore,
k,(g) is bounded away from 0 and oscillates violently when
g | 0. We shall show that

kilg — 1) ko2 — g)k_(q) = kolg), (66)

Indeed, we have for 1 < g <2 that f(g) = ko(q) f(— g), and
at the same time

flo=kilg—1) fl—lg—)=kilg—1) f2—g)
=kilg—1) k(2 —q) flg —2)
=kig—Dkf2—q)f(—1+(g—1)

=kilg— 1) ko2 — g}k _s(g — 1) f(—q). (67)
Since / has no zeros in { — 2, — 1) we conclude that {66) holds
by equating the two expressions for f{g). From (66) we easily
derive a contradiction: lim,,, ko(g), lim,,, k2 — g),
lim,, k_,(g) exist and are unequal to O whereas
lim,,; k(g — 1)does not exist.
This completes the proof of our main result for the case
— } <a <0. The proof for the case 0 <a < } is practically
the same.

Note: We can ask ourselves how close we can get to
proving Hudson’s theorem for the Wigner distribution by
employing the same techniques as in this section. It is not
hard to show that any smooth fwith W >0 everywhere has
no zeros, and that | flg)| = exp(¢(g)), |F(p)| = exp(¥(p)),
where 1 and ¥ are concave functions defined on R with
Mg > — o asg— + «, ¥V (p)—> — w0 asp— + «. Wehave
not been able to find examples f [other than Gaussians
f(g) = exp( — myg* + 2w8q — me) with Re > 0, 8eC, € € C]

l<g<2.
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such that both log | /| and log |F | are well defined and con-
cave everywhere on R.

C. Square-integrable states / with Re C{*}>0
everywhere do not exist: case || = }

In this subsection we shall show that there is no
Jf€ L*R) such that Re C'//?>0 almost everywhere (unless
f =0 almost everywhere). The reason why the proof in Sec.
III B for (smooth) f’s fails whena = + listhatformula (54)
does not provide useful information when f(a) = O. [The re-
sult of Theorem 2 is still valid and shows that
¥”(q) + (¢'(g))°<0 on any interval where f has no zeros; this
Theorem 2 implies that | /| is concave when fis smooth on
such an interval.] We therefore have to resort to entirely
different methods. We shall show that the main result in this
case also holds for all fe L ? (R), which are not necessarily
smooth. Furthermore, the proof is more constructive in the
sense that one can more explicitly indicate the regions where
Re C#,'7? takes negative values.

Since C'}Pg, p) = C';/"?(g, p) it is sufficient to con-
sider the case a = | only. We have

Re C'\"Pq, p) = Re[™ Flg)F(p)] .

The proof can be outlined as follows. Assume for a while that

flg) is positive on an interval [a,b ]. Then non-negativity of
(68) for all ¢ and p implies that Re[e*™#F(p)]>0 for
gelabl, peR When |p]| is sufficiently large, {e*™%
|g€la,b]} = {z| |z| = 1},1eaving for F( p) no other possibil-
ity than F( p) = 0. Hence F( p) = O for | p| sufficiently large.
When f'is continuous and nonzero in an interval a slightly
more sophisticated argument gives the same conclusion.
When F'is continuous and nonzero in an interval as well, we
can argue in a similar fashion that f(g) = O for |g| sufficiently
large. This then gives a contradiction since f and F cannot
both be compactly supported. The reasoning is essentially
the same but gets more technical when f€ L *(R) since one
has now to consider Lebesgue points®' of fand F, instead of
continuity points.

We proceed with the proof according to the following
steps, where we denote the sets of Lebesgue points of fand F
by LP, and LP;, respectively. We suppose that Re[e*™%
f(g)F(p)] >0 almost everywhere, where £ 0.

Step 1: When g, € LP;, p, € LP, and f(q,) #0#F ( po),
then Re[e* %7 f(g ) F ( po)] >0. Indeed if this is not true, we
can find a §>0 such that Re[e*™#zw] <O for all zeC,
weC, geR, peR with |z— flg)] <6, |w— F(py)| <8,
lg — go| <8, | p — Po| < 8. Since g, € LP, we can find*' an
€;, 0<€, <8, with u({g € [g, — €,,90 + €11 | fla) — flgoll
<&8})> €,. Similarly, we can find an €,, 0 <€, <6 such that
M P € po— €2p0 + €| |F(p) = F(po)| <6})> €. With
e =minfe,e,) we get u({(g, p)|Re[e™® flg)F(p)]
<0})> €%, and this contradicts the assumption that
Re[e*™ f(q)F(p)] >0 almost everywhere.

Step 2: Let g € LP, with ¢ > 0, f(g)#0, let C'be the conic
set {zlargze(ma,mb)] with b—a<1, and let F(C)
= { peR|F(p)e C}. Then we have, forn =0,1,...,

L@ nLPnF(C)= ¢,

(68)

(69)
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where I, (g) is the interval

—1 _
I(q) = [2n+ j+ 7 argflg) a,
2q
2n+3+ 7 'argflg)—b

2q
whose midpoint (2n + 1 4+ (1/7) arg flg) — Y@+ b))/2q
and length [1 — (b — a)]/2q are denoted by m,, (q) and / (g),
respectively. Indeed when p e I, (q) " LP. n F—(C) we have

Re[e*™™ f(q)F(p)] <0, and this contradicts the result of
step 1.
Step 3: Let g, € LP, with g, > 0, f(g,) #0, and let

Vse: = {4 €(g0 — €90 + €)| | flg) — flgo)l <6} nLP, (71)
for 6§ >0, €>0, € < 4 go. Furthermore let J, (g) be the closed
interval with midpoint (2r/2q) 4+ my(q,) and length } /(g,).
Wecan find 6§ >0, €e>0such thatJ,(q) C I,(g)forge V;,.
Indeed this is achieved when & and € are so small that
|mo(g) — molgo)| < (go)-

Step 4: Let €(n) = 4q,/(2n + 1). Then the set of mid-
points of J,(g) with |¢ — go| < § €(n) equals (m, (qo) — (1/,)
X [2n/(2n + 3)], m,(go) + (1/g0)[2n/(2n — 1)]).

Step 5: We have?' lim, o u(V;,.)/2€ = 1 for every 6 > 0.
We can take 7 so large that (g, — €(n), g, + €(n))\ V5 4, con-
tains no intervals of length > 1 g, /{g,) €(n). The latter num-
ber is <« le(n), and when gq,, q,€(g, —€ln), g, + €n)),
191 — @21 < 4 g0l (gole(n), then J,(g,) nJ,(g2) # ¢. Hence,

S.(qo):= U

V,

J.19)»
9E€ Vsen)

and this set contains the interval of length =4qg '
X (2n + 3)~'n with midpoint m, (g,). Hence the S, (g,)’s
overlap when » is large enough.

Step 6: When p € S, (g,) n LP, we have F(p) ¢ C. For
otherwise pel,(g)nLPrnF~(C) for some geV;,,,
which contradicts (69). Hence F( p) ¢ C when p > 0 is suffi-
ciently large.

Step 7: By taking three different conic sets C,, C,, C; as
in step 2 with C, u C, U C; = C\ {0}, we see that F(p) =0
when p >0 is sufficiently large. Similarly, F(p) =0 when
— p>0is sufficiently large.

Step 8: By interchanging ¢ and p we see that f(g) =0
when |g| is sufficiently large. The proof is now completed by
noting that fand F cannot both be compactly supported.

Note: As the proof shows, it is not necessary to require
f€ L*R); the requirement that £, F can be identified with
locally integrable functions is sufficient. For instance, when
f€L'(R) we have that F is continuous and bounded, and

Re[e*™# f(q)F(p)] takes negative values.

, (70)

J.g) D U

|g — gol < L €(n)

(72)

D. Examples of generalized functions f with Re C{*)>0
everywhere

In this subsection we give examples of generalized func-
tions fand @ € R such that Re C'?,>0 everywhere (in the
generalized sense). It was already noted in Sec. I that the
existence of such f’s and ’s is remarkable in view of the fact
that the sets of smooth and generalized functions f with
W; ; = C'),>0 everywhere are essentially the same. In con-
structing examples of f’s withRe C'7),>0 we are led by what

A. J. E. M. Janssen 1992

Downloaded 01 Oct 2009 to 83.137.211.164. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



may be called the interference formula

IC‘},"f(qmvl)l2 i
=(3-a) [ (s -ay2a o)
x%,(i—t—Za,i—:_—Zb)dadb. (73)

The way this formula is used is as follows. Assume we have
,an f, which can be thought of as a sum of functions each of
which is “‘coherent” in the sense that its Wigner distribution
is concentrated (and positive) in a rather small region of the
phase-plane. Due to the presence of cross terms in C !¢, each
pair of components of /' will produce what is called a ghost.
Although averages of these cross terms over sufficiently
large regions are small, provided that the regions to which
the Wigner distributions of the components are confined are
more or less disjoint, the amplitude is not. Hence, negative
values of Re C %), are likely to be found in the regions where
the ghosts appear. What formula (73) tells us is how the re-
gions where we can expect ghosts vary with a. For example,
when f= f, + f,and W, ., W, . is concentrated around
(g1, p1) and (g;, p,), respectively, one can show from (73) that
C'?; has a ghost around the point

Blg1 + @) Y Py + P +algy — 92,2 — ). (T4)
Hence, if one wants to construct examples f= 3, f,,, with
each f,, “coherent” in the above sense, such that Re C'%,>0
everywhere, one should take care that for each pair f,,, Som
producing their ghost according to (74), there is an f;, whose
Wigner distribution is positive in the region where the ghost
appears. It should be noted that all Re C ‘};’ s, tend to be con-
centrated and non-negative in approximately the same re-
gions as W, . ; this can be seen from formula (13), with
@ (0,7) = cos malr,¢lq, p) = a~ ' cos ma ™~ 'gp, which exhib-
its Re C'?) . as the convolution of W, . and a function @,
which is posuive and slowly varying near (0,0) and rapidly
oscillating far away from (0,0). In this way we achieve that
the negative values of Re C'? . are masked by the positive
values of Re C'¢) .

We start w1th the case @ = 1. Although formula (73)
degenerates in this case, the above noted principles are still
valid. As is strongly suggested by the proof in Sec. III C, we
should look for f’s for which either for Fis supported by very
small sets. We consider below f’s that are supported by dis-
crete sets.

Example 1: Let f = 6,, where a € R. Define forbe R

ey(p): =exp(— 27ibp), peR. (75)
Then F(p) =e,( p), and
CYP =6, ® ¢>0. (76)

Example 2: Letf= 6, + 6,,whereae R, beR,a # b.
Then F(p) = e,(p) + e,(p), and
Re[CP(g, p)] = (1 + cos 2mla — b) p)(8,(q) + 6, (q)),
geR, peR, (77)
which is non-negative everywhere. Note that the ghosts of §,

and &, (whose Wigner distributions are 8§, ® ¢, and §,
® e, respectively) appear on the lines ¢ = @ and ¢ = b.

Example 3: Let f=32___5, Then F(p)
=2%_ __ 6,,and thus
1993 J. Math. Phys., Vol. 26, No. 8, August 1985

cii= 3 5, 06,50 (78)
Notes: (1) The following can be shown. When
f=Z2r_ __ c,8, and Re C'[/?>0, then either (a) infinitely
many of the ¢’s are #0 (b) only one ¢ is #0, or (c) only two
¢’s#0. In case (c) the two ¢’s that are #0 have equal mo-
dules. If F is smooth, only the last two options can occur.

(2) The only square-integrable states that have non-neg-
ative Wigner distributions are the Gaussians. When one
passes from square integrable to generalized states, the situa-
tion remains the same, except that one has to allow certain
degeneracies (delta functions and exponentials, cf. Ref. 20).
Such a thing does not hold for the distributions Re C'}/?. A
second deviation is found when one considers the behavior of
the distributions under smoothing by means of Gaussians. It
has been shown in Ref. 20 that a (generalized) function f for
which G, » W, >0 everywhere must be a (degenerate) Gaus-
sian when ¥ > 1. Here

G,(q, p) = exp(—27/g* + p%), q€R, peR. (79)
When we consider as an example f = §, + z5,, wherea € R,
beR,zeR,z> 1, we have

Re[C/P(g, p)] = 8.(g)(1 + z cos 2m{a — b) p)

+ 28,(q)(z + cos 2mla — b) p). (80)

The second term at the right-hand side of (80) is non-nega-
tive; the convolution of the first term with G equals

1
—— exp( — 271497
2y

X(l +zexp(—77;—/—(a—b)2) cos21r(a——b)p) (81)

and is non-negative everywhere when
zexp( — (7/2y)@ — b )*)<1. Hence, when |b —a| is suffi-
ciently large, a small amount of smoothing will turn
Re C'}/? into an everywhere non-negative distribution.

We finally consider some examples witha = — k + |,
where k is an integer #0,1 and fis a sum of delta functions.
We note that the ghosts of §, and 8, manifest themselves in
C'?.onthelinesq = a + k (b — a),g = b — k (b — a). Hence,
we must consider sums consisting of either one or infinitely
many terms.

Example 4: Let f= 8, where a € R. Then

CP =6, ® ¢>0. (82)
Example 5:Whenf=32>___§,,then
cY. = >y 6,956,>0. (83)

Example 6: When f=X=_

Clgp)=k~" 3

n,m= -— o

+ 8= (PPt 1 (@)1 + €729, (84)
and the real part of this distribution equals
D>
X [6mk(q) + 6,mi 4 1(g)] >0 (85)
Notethatwhen V: = {nk + 1|l =0,1;n € Z}, wehavea € ¥,

o Bn + 6,0, 1), wehave

[ank -t ( p)‘smk (q)(l + eliﬂ'q)

8-+ (PN + cos 2mg)
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beV,a+kb—a)eV, b—k(b—a)eV. It can further-
more be shown that Re C{?) takes negative values when
g8=27 o Om—1 +0m + 8 i1)

ACKNOWLEDGMENT

The author thanks T. A. C. M. Claasen for stimulating
discussions on the subject.

'We have Cyr, | b oq, + ag, = 96C;q, +adC, . + bEC, , + bdC, , .

ZWe designate states by lowercase symbols and their Fourier transforms by
the corresponding capitals.

3E. P. Wigner, in Perspectives in Quantum Theory, edited by W. Yourgrau
and A. van der Merwe (Dover, New York, 1979), Chap. 4.

“R. L. Hudson, Rep. Math. Phys. 6, 249 (1974).

SE. Wigner, Phys. Rev. 40, 749 (1932).

SL. Cohen, J. Math. Phys. 7, 781 (1966).

"T. A. C. M. Claasen and W. F. G. Mecklenbriuker, Philips J. Res. 35,217,
276, 372 (1980).

8A.J. E. M. Janssen, J. Math. Phys. 25, 2240 (1984). We write in the present
paper C'¢} instead of C{*) to accommodate some of our proofs notational-
ly, and to better emphasize the bilinear dependence on the state f.

°A. W. Rihaczek, IEEE Trans. Inf. Theory IT-14, 369 (1968).

104, Margenau and R. Hill, Prog. Theor. Phys. (Kyoto) 26, 722 (1961).

!1See Refs. 3, 7, and 8 and L. Cohen, J. Math. Phys. 17, 1863 (1976).

2A. J. E. M. Janssen and S. Zelditch, Trans. Am. Math. Soc. 280, 563
(1983).

13N. G. de Bruijn, Nieuw Arch. Wiskunde 21, 205 (1973).

4This can be deduced from the equality of the left-hand sides of (21) and (24)

1894 J. Math. Phys., Vol. 26, No. 8, August 1985

in A. J. E. M. Janssen, Philips J. Res. 37, 79 (1982), Sec. 3. Also, seeJ. G.
Kriiger and A. Poffyn, Physica A 85, 84 (1976), Sec. 12.
13This follows from the fact that for any f'€ L *(R) and any € > 0 one can find
a step function s with || f— s|| <e. Now C%Xg, p) = (.M (g, p)s) is uni-
formly continuous by (17) and boundedness of M (0,0) and |C (g, p)
— C'}ig. P)I< IM©OOlle( |l 71| + lisl) for all g R, p € R. Here | || de-
notes the L 2(R) norm. .
1t can be shown that C'?) is real valued for all f € L R) if and only if ¢ is
real. This is done by choosing f{g) = 2'* exp( — mg?) so that W, {g, p)
=2 exp( — 2mig* + p?)) and observing that s W, =0y =0. The
distributions C'7), with a0 are, in general, complex valued. We consider
therefore Re C'7,, which can be brought into the form (7) by taking
@ (8,7) = cos mabr, i.e., plg, p) = a~ ' cos ma"'gp.
1"See, e.g., Refs. 7-9.
15We use here that C'f)(g, p) = C®)(g, p). This follows from the fact that
W, .a.p)= W, /g, p), formula (13), and the fact that ¢ is real by as-
sumption.
15See the paper quoted in Ref. 14.
20A. J. E. M. Janssen, SIAM J. Math. Anal. 15, 170 (1984).
2'When f: R—Cis locally integrable we say that g € R is a Lebesgue point of
Sfwhen

timo " £+~ flaldu=0.
€} €J ¢

The set of g € R that are not Lebesgue points of / has zero measure. When g
is a Lebesgue point of fwe have

tim L p((u e [ — eell| flg+u)— fla)l <6}) =1
€0 2¢

for every 6 > 0. Here u is ordinary Lebesgue measure.

A. J. E. M. Janssen 1994

Downloaded 01 Oct 2009 to 83.137.211.164. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



