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DISCRETE PROLATE SPHEROIDAL WAVE FUNCTIONS
AND INTERPOLATION*

PH. DELSARTE?, A. J. E. M. JANSSEN# AnD L. B. VRIES

Abstract. We describe an algorithm for the interpolation of burst errors in discrete-time signals that
can be modelled as being band-limited. The algorithm correctly restores a mutilated signal that is indeed
band-limited. The behavior of the algorithm when applied to signals containing noise or out-of-band
components can be analysed satisfactorily with the aid of asymptotic properties of the discrete prolate

spheroidal sequences and wave functions. The effect of windowing can also be described conveniently in
terms of these sequences and functions.

1. Introduction. In this paper we consider discrete-time, real or complex-valued
signals s” = (s(k))icz. Letting m=1, 2,- -+, we assume that s(k) is given for all
integers k except k=0, 1,- - -, m—1. The vector z” =[s(0), - - -, s(m —1)] of unknown
samples is estimated according to the following principle. Assume that
Y kwot.m—1 |8(K)|* <oco. Define the Fourier transform S of s by

[Ee]

(1.1) S(6)= ¥ s(k)e™  (|6]=y),

k=—o0

and let 0 < a < 1. Then we choose z so as to minimize

(1.2) I |S(8)* dé.
a/2=|6|=1/2

This is a finite-dimensional least squares problem in z, and the z minimizing (1.2) is
given by

(1.3} Z=(1-Mo) (M t,+ M,t,),

where 1 = (s(k))x<o, 17 = (5(k)) > m—1 and My, M,, M, are submatrices of the low-pass
matrix M:

sin 7(k — I)a)
W(k_l) k=0,1,---,m—1,—c0<][<co

of which the columns with index I=0,1,---, m—1 constitute M,.
We observe that we can write down the formula (1.3) for Z for any s for which
M,t, and M,t, are well defined; for this to be the case it is not necessary that

(1.4) M:[M1|M0’M2]:(

1/2
J |S(8)|* db < co.

142

If e.g. 0,7 /2, s(k)=exp (2mik6,) for ke Z, then M,t, and M,t, are well defined as
conditionally convergent series.

The motivation for choosing 7 as in (1.3) is as follows. The signal s is called
band-limited to «/2 if its Fourier transform S(6) vanishes for @/2=|60| =3. For such
an s the Z of (1.3) equals z=[s(0), - - -, s(m—1)]" since we have

{1:5) z=Ms=Mt,+ Myz+ M,t,,
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so that indeed z= (I —M,) '(M,t,+ M,t,). The purpose of this paper is to find out
how stable formula (1.3) is under imprecision of data, such as additive white noise,
or the presence of out-of-band components in the signal. We are furthermore interested
in the magnitude and nature of the interpolation error z— 7 for such signals. The
interpolation method is sufficiently stable only for rather modest values of me, such
as ma = 5. This can be seen from (2.6) which shows that there are band-limited signals
of unit energy whose energy outside the set {0, I, - - -, m— 1} is of the order exp (—7ma).

Slepian has derived in [6] asymptotic properties, as m - 00, of the eigenvalues and
eigenvectors of M, in connection with discrete prolate spheroidal wave functions and
sequences. These asymptotic properties are known to be quite accurate, already for
values of m as small as 4 or 5, and can therefore be used for analysing the interpolation
method for modest values of ma. We refer to Figs. 3-7 of [6].

Let us summarize the contents of this paper. The largest eigenvalue of M, is
usually much closer to | than the others. This is apparent from [6], Figs. 5-7 (observe
that @ =2 W) from which one can see that 1 — A, is more than 10 (50) times smaller
than 1—A, for values of ma as small as 2 (3). Hence, there is a strong tendency for
z=% (= (I-M,)"'(z— Ms) according to (1.3) and (1.5)) to be a multiple of the
eigenvector of M, corresponding to the largest eigenvalue. We show in § 3 that the
components of this eigenvector are all of one sign (also see [7, § I11] and [5]). Hence,
the interpolation error tends to be of one sign; depending on the particular application
this property must be considered as a rather unfavourable feature of the algorithm.

In § 4 we study the interpolation error z — 7 when the signal s contains white noise
or out-of-band components. We also present a qualitative analysis showing the approxi-
mate location of the column index of the largest columns of the infinite matrix
(I—M,) " '[M, | M,] as well as the slow decay to zero of the columns when the column
index tends to . The reason to study this matrix is formula (1.3), expressing the
estimate Z in terms of the known samples by means of this matrix. In order that the
columns of this matrix tend to zero faster one could consider perturbations M of the
matrix M m (1 4) These perturbations should have the effect that the columns of
(I—M,)~ '[M, IM-)] tend to zero faster, while for signals band-limited to 8/2 (with

slightly smaller than «) still good interpolation results are obtained. The stability of
the perturbed method is still largely determined by the distance to 1 of the largest
eigenvalues of M,. Hence we give in § 5 approximating formulas and plots for the
perturbed eigenvalues.

The interpolation method discussed here has been tested on digital audio signals,
and the performance of the method for these signals is reported on in [2].

2. Discrete prolate spheroidal sequences and wave functions. We present some facts
from [6] in a slightly different notation. We let M, denote the Toeplitz matrix

(sin m(k— l)a)
W(k_[) .'-;,.':(H,---,m—l’

and we order its eigenvalues A, = A,(m, a) decreasingly so that 1> A,> A, > ->
Am-1>0. We denote the corresponding eigenvectors, normalized as in [6], by v =
(0c(r)) =01, .m—1- As in [6], ve(r) is defined for r<0, r>m—1 by

(2.1) A= g, SR

& o

and the sequences thus obtained are the discrete prolate spheroidal sequences.
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The discrete prolate spheroidal wave functions U, (8)= U,(m, a: 6) are given by

m—1 ]
(2.2) Ud0)=er T ve(r) e"™m17208
r=0
where &, is 1 or i according as k is even or odd (k=0, I, - - - ,m—1). Among the

many formulas satisfied by the U, and v, (see [6, § 2.1-2.3), we mention

(m—1=2 5= ~1
(23) Uk(l‘):ﬁsglAk]J. Uk(G) e'rrr(mAt._r)BdB:_Sk]Ak]Wk(mz _r)

«/2=|0|=1/2

for r <0, r>m—1, where W,(r):= ja/2§195§1/2 U,(0) exp (2miT8) db.
Further properties of the v, and U, can be described in terms of the tridiagonal
matrix D, defined as

o

Ao B i
B, A, B,
B, A,
(2.4) D=
Ap-s By
B,., A,

with Ay = ((m—1)/2—k)? cos ma, By =5k(m — k). This D has real, distinct eigenvalues
pr = pi(m, a). If we order them as p,> My o>, We have

d
——[(cos 270 —cos wa ) U (0)]+[i(m* —1) cos 276 — u, JU,(8) =0

5 -
(23) 47 db

for k=0, 1, -+, m—1, |6 =3. Furthermore, M, and D commute and have therefore
the same eigenvectors. Also, vy is the eigenvector of D with eigenvalue wu,.

In addition, we have the following asymptotic results, for m - co and fixed k:

Jor 8msin(ﬂ-a/2):|k“’2|: cos (7a/2) ]2’"
(5] LBy k! [ cos’ (ma/2) 1+sin (7a/2)] °
2.7) i =4m? = (k+L)m sin W§+0(1),
cos o —cos 278 | /2 (g{ _ )
(2.8) U (6)~ 'a"‘]"(m[ 1 +cos ma } ) 7 =050m),
b.R(8) cos ¢ (8), (6,=6=1).

Here J, is the Bessel function of Oth order, 6,, = 1/2 arccos (cos ma —m™?)

1/2

I_A 1/2
M] ’ bk=2(—l)[k/2][(1_’\k)sm w%} ;

(29)  a.= (—1)“"”[

cos a/2)
(2.10) R(8) =[(cos ma —cos 2m8)(1 — cos 20)]""/*,
(2.11) 8e(0) =T+(F@)+ Guo))|
o=a/2
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(2.12) F{cf):%narcsin blel,  Gr=XTl2

arcsin (o),

cos wo )2
cos (ma/2))

() [ () s3]
Valo) = cos (ma/2) Tsintae) 0 T

These asymptotic formulas are known to be accurate, also for moderate values of m
(see the figures in [6], and Figs. | and 2 of the present paper).

U(o)=-1 +2(
(2.13)

12!10—’:

.

| I | | 1 |
00 02 04 06 08 10x1G°

S

Fic. 1. 1=Xg(m, @;y) as a function of y for m=6, a =0.6 (solid line); the dashed line is the linear
approximaition obtained from (5.11).

3. Positivity of the zeroth eigenvector of M,. We shall show in this section that Vg
has positive elements only. We present in addition some observations that concern the
conjecture that (I — M)~ has positive elements only; one of the authors learned this
conjecture from F. A. Griinbaum in 1981.

Uy has positive elements. In §2 it was noted that v, is the eigenvector of D
corresponding to the kth eigenvalue. Consider the three-term recurrence relation

(3.1) Biv1Pisi(x) = (x — A) pi(x) — By pr—y(x)

for k=0, 1, -+, m—2, with the initialization p-1(x) =0, po(x)=1. This generates the
polynomials py(x), p,(x),- -, p._,(x) with pr(x) of degree k and lim,_ . p(x)>0.
In addition, set

(32) Pm(x) = (X —Am—l)pmﬁ](x) - Bmfkpm—?.(x)'

It is easy to show from (3.1) and (3.2) that the eigenvalues u, of D are the zeros of
the polynomial p,,(x), and that the corresponding eigenvectors v, of D equal v, =
Tl Polper), Prlpei), * + + , Py (i)]™ for some o, €R, o #0. In particular, the zeros of
pm(x) are real and distinct, and this also holds for the pi(x) with I < m. Moreover, the
zeros of py(x) strictly separate those of p,.,(x). This is easily proved from (3.1) and
(3.2). Hence, all zeros of all p/(x) with 1=I=m—1 lie between w,,_, and u,, the
extremal zeros of p,,(x). Since lim,_. p;(x)>0for 1=I=m—1 we have i) >0 for
I=l=m—1. In view of vo(I) = oypi(pe) and the normalization of vy we see that all
components of v, are positive. (An argument of the same nature yields:
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FIG. 2. 1=A(m, a; y) as a function of y form=8, «a=03, k=0, | (solid lines); the dashed lines are
the linear approximations obtained from (5.11).

u(0), - -+, u(m—1) has exactly k changes of sign and at most k zeros.) We were
kindly informed by one of the referees that a proof of these results can also be derived
from [1, § 7.11]. ,

Conjecture: (I —M,)™" has positive elements. We have extensive numerical
evidence that the matrix (I — M,)™" has positive elements only. Once this conjecture
has been proved, positivity of all components of v, follows from the Perron-Frobenius
theorem.

Since I — M, is a symmetric Toeplitz matrix, it makes sense to find a formulation
of the positivity condition for (1 — M,)™" in terms of the quantities that appear in the
Levinson-Durbin algorithm for the fast solution of a Toeplitz system of linear equations.
This can be done as follows. Denote r,=sinwka/wk, and let RP =
(8 = T =01, pe1s PP =[=1,, - - - ,—1,]  forp=1,- -, m. It follows from elemen-
tary matrix theory and [4, § C], that (I — M,)~" has positive elements only, if and only
if a(p,p)<0 for p=1,---, m. Here a(p,p) is the pth component of the vector
[R'”T7'r'®). While it is known that |a(p, p)|< 1 for all p (cf. [4]), we have numerical
evidence that a(p, p) > —sin (7a/2) as p 0. (This formula is accurate for small values
of p already.)

In terms of the interpolation algorithm the conjecture admits the following formula-
tion: if s(k)=0, k#—1,0,- -, m—1, s(k) is unknown for k=0, 1, - - - ,m—1, and
s(=1)=1, then ,,_,=—a(m, m)>0.

4. Application to the interpolation algorithm. We analyse the interpolation
algorithm of § I, employing the asymptotic properties of the eigenstructure of M,
(accurate as they are for small values of ma already). In the following subsections
we consider the effect of additive white noise, and of the presence of out-of-band
components, and we study the asymptotic behavior of the norm of the columns of the
interpolation matrix (1 — M,)~'[M,|M,].
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4.1. Band-limited signals corrupted by white noise. We first show how additive
white noise affects the interpolation. It turns out that the interpolation error must be
expected to be pulse-shaped.

THEOREM 4.1. Assume that s(k) = x(k)+ n(k), where x = (x(k)) . is band-limited
toa/2 and (n(k)).., is additive white noise with variance o*. There are random variables
P k=0, 1,--+ m—1 with [p]=0, €[ pp]=0"A(1=A,)"' 8, such that zy— 5=
Yo P, where 21 =[x(0), x(1), - - -, x(m—1)].

Proof. We may assume that z,=0. We let t" =[¢]]0/t7] so that

m—1

M t,+ M,t, = M, E:(I—MO);'MI =¥ (1=A) " (Mt v) 0

k=0

When g, = (M1, v, ) it can be shown from the definition of the v, and the orthogonality
relations satisfied by the v, (over the ranges {0,1,---,m—1} and {---,-2,—1}U
{m,m+1, -}, see [6]) that €[q,]=0, €[qcq;]= A (1 —A,)8,. Hence, the theorem
is proved with p,=—(1—A;) "' g

Note. In view of the asymptotic properties of the A, as given in (2.6) it follows
that usually 1 — A, is much smaller than 1 —X,, | — A, is much smaller than 1 — A,, and
so on. Hence, in the sum E::OI pivx the term with k=0 is usually dominant. It is now
clear from the result of § 3 that adding white noise to band-limited signals often results
in one-sided interpolation errors. Compare Fig. 2 in [2].

4.2. Signals containing out-of-band components. The following theorem can be
used to determine the effect of out-of-band components on the interpolation result.
As in the previous subsection, the interpolation errors must be expected to be pulse-
shaped.

THEOREM 4.2. Let |8 =1, |0 # /2, and let s, = (exp (27ik6))cez be partitioned
in the usual way as [t/y|z4|t3s]. Then we have z,— 3,=0 or Z,:";O' ¢ (@) v, according as
10| <a/2 or >a/2, where c,(8)=(1—A,) 'ex' Xexp (wi{m—1)0)U.(8).

Proof. We have (see § 1) (Ms,)(r) =s,(r) = z(r) or 0 according as |8| <a/2 or
>a /2. Hence Z, = z, or —(I — M,) ' Mz, according as |8| < «/2 or >a/2. For |8| > a/2
we have zo—Z,=Y, o (1—Ac) '(ze, u)ve and by (2.2) we have (z, )=
er exp (mi(m—1)0) U,(8). This proves the theorem.

Note. It follows from (2.8) that U, asymptotically (for small k) is rapidly oscillat-
ing in the set a/2=|60| =3, with a slowly varying amplitude |b,R(6)| on a large part
of that set. Since b is proportional to (1—A,)"/?, we see that the most important term
inthe sum Y, ¢(0) vy is usually the one with k = 0. This implies that the interpolation
error z, — z, tends to be one-sided. Compare Fig. 3 in [2].

4.3. Asymptotic behaviour of the columns of the interpolation matrix. We conclude
this section by indicating roughly the behaviour of the columns (I — M,)”'y'” of the
matrix (I — M,)”'[M, \ M.,], where

o _ (Sin m(r— I)a) T
Y\ a0

=01, ,m—1
By the definition of the v,’s we have

m—1

(4.1) ([—Mu)ily(r): E (1“’/\k)_|/\kvk(?')vk-

Note that the contribution over the set {r|r <0, r>m —1} of the square of the norm
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of the kth term in this sum equals

(4.2) ( ZO+ >Z ;)(1—Ak)‘zr\ilvk(r)l%(l—/\k)‘M—
(see [6]), and this is clearly largest for small k. Hence, we must find information about
the asymptotic behavior of v,(r) for k small and r<0 or r>m—1. To that end we
use the expression (2.3) of v, (r) in terms of W,. .

The asymptotic behavior of W, (1) as m gets large can be determined from the
asymptotic behavior of U,(6) in the range a/2=6=1! which is given by (2.8) and
(2.6). Ignoring the contribution of the set «/2=60=4,,. we obtain an approximation
of Wi(7) by considering Z,(7)+(—1)*Z.(r), where

(4.3) Zalr)=b; _[ e’ ™R(8) cos ¢, (6) db
af2=8=1/2
with b,, R and ¢, given by (2.9)-(2.13).
The integral in (4.3) is fit for application of the stationary phase method. We can
write the formula (2.11) for ¢.(8) as

o

(4.4) ¢"'(9)_§+J (F'(o)+ Gila)) do.

/2
By employing some trigonometric identities it is seen that

—m7 sin o _ m(k+1/2)sin (7 /2)/sin 7o

(45) F'(o) Gilo)=

Jsin? 7e —sin’ (ma/2) Jsin® 7o —sin® (ma/2)

Let 7> 0. According to the stationary phase principle the largest contribution to the
integral (4.3) comes from the 6-region where #.(#) is close to +277, i.e. where
F'(8)+ Gi(0) is close to £277. Now when k is small compared to m, we may ignore
Gy It turns out that F’ increases on [a/2,3] from —co to —ms/(cos (7a/2)), and
F"(3)=0. Hence, it can be expected that |Z,(7)| is close to its maximum value when
7 is such that F'(3) = —2ar7, i.e. 7=m/(2 cos (7a/2)). Furthermore there are no sol-
utions 6 of the equation F'(6) = —277 when 0<7<m/(2 cos (wa/2)), hence it must
be expected that |Z.(7)| is small for r in the vicinity of 0. Finally, when |r|>
m/(2 cos (7a/2)), the contribution to (4.3) of the #-region where F'(6) is close to
—2mr is of the order R(6,)|F"(6,)|"""?, where 6, is such that F'(6,) = —2r. Using the
explicit formulas for R and F and noting that 8,—a/2=O(mr '), we find that
|Zi(7)| = O(bym'?r™") when 7 gets large and k is small compared to .

This provides sufficient information for getting an idea how v.(r) behaves for
small k and <0 or r>m—1. As a result we see from (4.1) that ||(/ — M,)~'y'"|| can
be expected to be largest for |r—(m—1)/2|~m/(2cos (mwa/2)). It was found by
computer simulations that this estimate is quite accurate, also for moderate values of
m. Furthermore, it is seen that the decay rate of v,(r) is not impressive: it can be
expected that v,(r) = O(r™') as r— o,

5. Perturbing the low-pass matrix M. In this section we replace the matrix M of
(1.4) by a windowed version of it so as to obtain an interpolation matrix whose columns
tend to zero faster (see 3rd subsection of § 4). This windowing is achieved by replacing
the numbers r, =sin wka/ 7k in (1.4) by r.(y)=rW(y'"?k), where W is a smooth
even function on R with W(x) -0 when x = o0, and y> 0 is small. One should choose
W and y such that the interpolation results are satisfactory for all signals band-limited
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to B/2, where B is only slightly smaller than «. To judge the stability of the interpolation
method thus obtained, one should know how the eigenvalues of the windowed version
of the matrix M, behave as a function of v. It turns out that for Gaussian W one can
derive, for the largest eigenvalues, perturbation series the first 2 terms of which provide
an accurate approximation in the relevant y-range.

We start with the following observation.

THEOREM 5.1. Assume Y, |s(k)]’<co. Let Q=(q(k ~ 1)) km01 1, —c0 0o
where q(—k)=q(k) for keZ, Y _.lq(k)F<co and Qy=(q(k—1))eioos..mr is
positive  definite.  Partition Q=[Q,|Qo|Q,), s =[t]|z[t]], and let p(0)=
Yo . q(k)exp (=2mik6). Then 7= Qo ' (Qt,+ Q,t,) minimizes the integral

2

de

oo

Z §(k) eZm‘kB

k=—c0

1/2
(5.1) 1(0)3:J p(0)

—~172
as a function of a=[a(0), a(1), - -, a(m—1)]", where §(k)=a(k) or s(k) according
as 0=k=m—1 or not.

Proof. Insert in the integral for I(a) the definition of p and write out the integrand

as a triple sum. Performing the integration and using I'ff/z exp (27ik0) df = 8,, for
integer k, one gets

(52) I{a)=(Qqa, a)+2 Re[(a, Q6+ Q1)1+ C,

where C is a constant determined by 1, and t,. The proof is easily completed now.
Now consider the windowed matrix

(5-3) M(?) = [MI(Y)[MO(’)’)]Mz(Y)] = (rkfu'(y))kz(),l,---‘mf1_—‘:1:-:.'-:&.-

The function p(6)=p(8; y) of Theorem 5.1 is given by

(54) p:(I_Xa)*l:bvs

where x,(0) =0 (|8|=a/2), x.(8) =|(a/2=|6|=1), the asterisk denotes convolution
for periodic functions of period 1, and

(5.5) g (8)= Y W(y'?k) ke,
k=—c0

According to Szegd’s limit theorem, the eigenvalue distribution of the matrix Q, in
Theorem 5.1 as m - oo is asymptotically equal to the value distribution of the function
p. Hence, the largest eigenvalues of My(y) in (5.3) tend to decrease with increasing
y >0 (provided that ¢, = 0). Moreover |1 (y)] is a decreasing function of y> 0. Hence,
there is definitely a tendency for the columns of (I = My(y))"'[M(y)| M,(y)] to
decrease in magnitude when y increases and also to tend to zero faster when the
column index tends to co. The price to be paid is that when ¥ is too large the function
p is too large around 6 =0 which results in unsatisfactory restoration of signals with
significant low-frequency components. More specific numbers and figures are presented
at the end of this section for the case of a Gaussian window W

We shall now use some perturbation theory to find approximations for A, =
Ar(m, a; y), the kth eigenvalue of M,(y). To that end we assume that W has a power
series expansion around 0,
o W2y
(5.6) W)= 3 2O

e K
n=0 (2!1)'
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It is a rather immediate consequence of the theory in [3, Chap. II, § 2] that, for small
¥=0,

(57) Ak(')’): Z Ck,nyna
n=0

where the coefficients €k can be expressed in terms of the unperturbed Ar and the
numbers (M{"v, v;), where

(V):M

(5-8) M, (20)! ((k_l) Vrk—l)l\u':(),l,'--,m-l-

For example, the first three terms of the expansion for A.(y) are
M(l) : 2
(5.9) Ak-‘_T(Mg”vk: Vk)+'yz[(M§)2)Vk, Vi) — X I 4 TNl Vil .
j#k }\.J_)\k

It is possible to express the coefficients Ckn 1in terms of the U,’s. Indeed, it is not hard

to show that
2W(2v)(0) V d?.:ufl o . .
(5.10) (M5, 5)={@atyaon V| ggr1 UU (5) J THEVEL,

0, j—iodd.
In (5.10) the derivatives of the U,’s at &/2 can be expressed in terms of w, and U,(a/2)
by evaluating and differentiating (2.5) repeatedly at 8 = a/2 (where cos 270 — cos 7o =
0). We thus find the first order approximation (k small compared to m) for Ae(y):
myW?(0)
2sin (wa/2) cos® (wa/2)

(5.11)

1 .2 (a4 l _ (63 ]
. [E(mzl)sm“ 'rrg—(k+§)m sin 71-5-}-2}(1 —Ar).

We finally present some results for the window function W(x)=exp (—x°). With
respect to the choice of y we note a trade-off between faster decrease of the columns
of the interpolation matrix and deterioration of the interpolation results for in-band
signals with spectral energy close to the bounds of the interval [—a/2, a/2]. For values
of ma in the range [2, 4] we noticed that making the elements my,(y) of the interpolation
matrix (I —My(y)) 'M(y) vanish up to 3 decimal places for k=0,1, - m—1,
I=-100 or =200+ m —1 required a v in the range [107°, 1072]. Taking vy larger than
1072 resulted in unsatisfactory interpolation results for exponentials s(k) = exp (27ik6)
with 8/2=|6|= «/2 with B up to over 20% smaller than «. Figures 1, 2 show graphs
of I =Aw(m, a; y) as a function of y in the range [0, 107*]. In this range and for the
values of m and « as chosen in the figures, the linear approximation (5.11) turns out
to be quite convincing. This further underlines the accuracy of Slepian’s asymptotic
results.
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