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Abstract —One of the advantages of a Frequency-Domain Adaptive
Filter (FDAF) is that one can achieve convergence at a constant rate over
the whole frequency range by choosing the adaptation constant for each
frequency bin / equal to the overall adaptation constant divided by an
estimate of the input power at this frequency bin. A commonly used
method, applied in this paper, to estimate the input power is to do an
exponentially weighting with smoothing constant £ on the magnitude
squared of the input values at each frequency bin /. Furthermore, it is
known that a correctly implemented FDAF, using the overlap-save method,
contains five 2 N -points Fast Fourier Transforms (FFT). Two of these are
used to force the last N points of the time-domain augmented impulse
response to zero by applying a particular window function. In this paper, an
analysis is given of the FDAF where the window function is generalized,
Using these results, the convergence behavior of FDAF’s with various
window functions is compared. Furthermore, the analysis describes the
influence of 8 on the convergence behavior of the FDAF over the whole
convergence range.

I. INTRODUCTION

A DAPTIVE DIGITAL filters are extremely useful

devices in many applications of digital signal
processing, including channel equalization, sensor array
processing, and echo and noise interference cancellation.
In this paper, we will restrict ourselves to an echo cancella-
tion structure for acoustic applications. Typical examples
of this kind of applications are the loudspeaking telephone
[1] and audio teleconferencing [2] of which the basic echo
cancellation scheme is given in Fig. 1. The speech signal
x(k) from the “far end” speaker reflects via an acoustic
echo path as an echo signal e(k). This acoustic path can
be considered as a multireflection medium with an impulse
response which may have lengths up to several hundreds of
milliseconds. Together with the “near end” signal s(k),
this echo e(k) arrives at a microphone. The adaptive filter
uses a model of the acoustic echo path and makes a replica
é(k) of the echo signal e(k). Thus, the adaptive filter
cancels the echoes of speech signal x(k) on the “forward
path” which appear on the “return path.” Theoretically
the residual signal r(k)= s(k)+e(k)—é(k) in steady
state will almost be equal to the signal s(k).
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The two main problems with adaptive transversal filters
for acoustic echo cancellation configurations are

¢ the number of weights N, needed for the adaptive
filter to model an acoustic path, is very large, viz.,
from 500 up to 2000;

¢ the input signal x(k) is a correlated signal,

These two difficulties can be tackled with a Frequency-
Domain Adaptive Filter (FDAF). Namely:

® Using an FDAF results in block processing in which
one block of input data is processed simultaneously,
producing one block of output data. This block
processing can be done by efficient algorithms such
as Fast Fourier Transforms (FFT). In this way, the
amount of computational requirements in terms of
multiply-adds per one block of N output samples can
be greatly reduced compared with time-domain ap-
proaches. This is accomplished by replacing convolu-
tion with a multiplication of transforms which im-
plies a complexity reduction from O(N?) to
O(N log(N)).

® The eigenvalues of the input autocorrelation matrix
are given approximately by uniformly spaced sam-
ples of the input power spectrum. This implies that
weights associated with frequencies having little
power converge more slowly than those associated
with frequencies having greater power. A large varia-
tion in the input power spectrum leads to highly
disparate eigenvalues and therefore highly disparate
time constants, some of which may be very large.
Frequency-domai‘n techniques can easily be modified
to allow more uniform convergence of the weights of
the adaptive process. The weights are adapted inde-
pendently from each other and this corresponds ap-
proximately to one-tap Least Mean Square (LMS)
adaptive filters. The time constant of the /th weight,
assuming stationary inputs, is inversely proportional
to aPy, where « is the adaptation constant and Py
1s the input power related to that weight. In order to
make all weights converge at the same rate, the
adaptation constant can be made different for each
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Fig. 1. Basic echo cancellation scheme for acoustic applications.

frequency bin according to p,=a /13)1, , where }A’XI is
an estimate of the input power at the /th weight.

A disadvantage of an FDAF is that the linear convolu-
tion must be accomplished by a circular one. This can be
done by using the overlap-save method which implies that
FFT's are needed of length 2N. An overlap-save imple-
mented FDAF as described by Clark et al. [3] requires five
FFT’s. Two of them are used to force the last N points of
the time-domain augmented weights to zero. This zero
forcing has been done by using a particular window func-
tion in the time domain. Mansour [4] proposes an FDAF
without a window function. This configuration is less
complex (three FFT’s), but the convergence behavior is
worse than the FDAF as proposed by Clark [3].

In this paper, an analysis is given of the FDAF where
the window function is generalized. Using these results, the
convergence behavior of FDAF’s with different window
functions is compared. From this it can be shown that
there are efficient window functions with complexity al-
most equal to the FDAF as proposed by Mansour [4],
while the convergence behavior is comparable to the con-
figuration proposed by Clark [3].

Since in practical applications we do not know the
power spectrum of the input signal x(k), this is normally
calculated by some averaging process. For this reason, the
analysis given in this paper will furthermore describe the
convergence behavior of the FDAF when the estimation of
the input power Py is done by using an exponentially
weighted average, with smoothing constant S, of the mag-
nitude squared of the input values at frequency bin /.
From this part, it appears that for a small final misadjust-
ment, which implies a small adaptation constant « as used
in data transmission, we can vary the rate of convergence
over a very large range by choosing different 8. On the
other hand, when dealing with a large final misadjustment,
and thus with large a, the influence of 8 on the rate of
convergence is very small. In all cases, however, the best
choice for B is as large as possible, which is in contrast to
the choice 2a=1- B as suggested in [5, p. 174].

To support the theory, some graphs will give theoretical
and simulation results describing the convergence behavior
of the FDAF. As references to work done in the same
field, we mention [6] which gives an analysis of the FDAF
where the power estimation is done by uniformly averag-
ing over the last K measurements. The paper [6] does not
describe the influence of the window function and the
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overlapping of the input sequence. In [7] and [9], an
analysis is given of a Time Domain Block LMS algorithm
while [8] and [9] give an analysis of the Time Domain LMS
algorithm. In [10] the influence of the smoothing constant
B 1s given for small adaptation constant a.

II. OVERLAP-SAVE IMPLEMENTATION OF AN FDAF

It is well known that linear convolution /correlation in
the time domain may be performed by multiplication in
the frequency domain. This can very easily be imple-
mented with the aid of FFT’s by using the overlap-save
method. Fig. 2 shows for the echo cancellation problem
the overlap-save implemented FDAF as described by Clark
et al. [3]. In this figure, the FFT’s are denoted by F’s, while
signal paths with double lines in the figures refer to paths
in the frequency domain, and single lines refer to time-
domain signal paths. In the text, we will use lower case
characters for the time-domain signals, while upper case
characters are used for frequency-domain signals. The
unknown echo path impulse response is given by ', while
the length of this echo path equals N. Denoting the
time-domain adaptive weights by w,(m), the adaptive filter
has to perform a linear convolution between the input
signal x(k) and these weights. To do this, the input signal
is segmented into blocks of length 2N. These blocks are
transformed to the frequency domain by a 2N points FFT.
The Ith frequency bin X,(m) in the mth data block is
multiplied by the weight W,(m), which is the Fourier
transform of the N adaptive weights w,(m) augmented
with N zeros, to obtain the filter output E‘,(m). The
overlap-save procedure is now executed by overlapping the
input segments over a length of N (segml), discarding the
first N points of the circular convolution output (segm?)
and choosing a window function g as

gi 0

to force the last N points of the weight function w to zero.
The principle of the frequency-domain LMS algorithm is
to update the weights as long as there is correlation
between the signals x(k) and r(k). The overlap-save pro-
cedure to determine this correlation is now executed by
overlapping the input segments over a length of N (segml),
discarding the last N points of the circular output, which
1s implicitly done by the time-domain windowing function
g; as defined in (1), and augmenting with N zeros in front
of the segment of r(k) (segm3).

Denoting matrices by bold-face characters and vectors
by underlined bold-face characters, the frequency-domain
algorithm in vector-matrix notation becomes

fori=0,---,N—1
fori=N,--- 2N -1

(1)

W(m+1) = W(m) + 2aFeF 1By (m) X*(m) R'(m)

w©)=(0,---,0)" with m=0,1,--- (2)
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Fig. 2. Overlap-save implementation of FDAF.

where

'I(m) = (I'V()(m)s T I/V2N—1(m))T
F

g =diag(1,---,1,0,- - -,0)
ﬁx(’”) =diag(13X0(m),- : "ﬁXZN_l(m))

X(m) = diag(XO(m),- =, X (m),- -, Xyn_1(m))

X*(m)
X, (m)= ;0 x((m ~1)N+i)e /%

R'(m)=(Ry(m), -, Ryp_(m))7

From (2), it follows that the weights W,(m) are updated
as long as there is correlation between the signals x(k) and
r(k). This correlation is calculated by the product
X*(m)R'(m). By decorrelating the input signal, the con-
vergence speed can be accelerated [4). This can be accom-
plished by normalizing the input power spectrum which is
done by the inverse of the estimate of the input power
matrix P;Y(m). The factor FgF~! achieves the window-
ing.

HI.  ANALYsIS OF AN FDAF wiTH EXPONENTIAL
POWER AVERAGING AND GENERALIZED
WINDOW FUNCTION

To analyze the FDAF, we first give some definitions,
notations, and assumptions in Section ITI-A, while in
Section III-B, the most important characteristics are given
to describe the dynamic behavior of the adaptive filter. In
Section III-C, the analysis is given of the dynamic behav-
ior of the FDAF (2), where the window function g is
generalized, while the power estimation is done with an
exponential averaging network. Namely

Py (m) = BBy (m 1)+ (1~ B)1X,(m)?
with0<g8<1 (3)

weight vector; T denotes transpose,
adaptation constant,
2 N-point FFT matrix,

diagonal window matrix defined in (1),
estimate of diagonal input power matrix,
input signal matrix in frequency domain,

complex conjugate transpose of X(m),

FET of x(k),8 = /N, x(k) =0 for k <0,

residual signal vector in frequency domain.

where 8
network.

Since all processing is done with block processing tech-
niques, the description of the FDAF is carried out in
vector—matrix notation. For this reason, we refer to Fig. 3
for the analysis, which is an equivalent of Fig. 2, where all
signals are in vector—matrix notation.

is the smoothing constant of the power averaging

A. Definitions, Notations, and Assumptions

We assume the frequency bins of the mput signal to
consist of independent complex Gaussian stationary ran-
dom variables with zero mean. This implies that

E[Xk*(m)Xl(m)]={gX for k #]

. fork=1 (4

where E[-] is the mathematical expectation. This inde-
pendency assumption implies that we assume the input
signal to have an autocorrelation function over maximal N
points. All signals are segmented into blocks and these
blocks are described by vectors. The input signal in the
frequency domain, however, is represented in a diagonal
matrix since this notation allows the adaptive algorithm 2)
to be described with well-known vector-matrix arithme-
tics. Furthermore, we assume that cach frequency bin
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Fig. 3. Vector-matrix diagram of FDAF.

X (0), X, (1),- -+, is jointly Gaussian distributed with co-
variance matrix

1
=3
1 1
-7 1 3 Py.  (5)
1 1
2 LT3

When the input signal is a white-noise signal, this covari-
ance matrix is exact because of the 50-percent overlapping
of the input sequence by N samples (segml from Fig. 2).
From experiments, it appears that input signals which can
be modeled by an all-pole filter have almost the same
covariance matrix.

The power matrix of the input signal is diagonal and is
defined by

Py= E[X*(m)X(m)] =diag(PX0,- : ':PXZN_I)' (6)

Using the same approximations as given in [11], where the
circular autocorrelation matrix C, is constructed from the
Toeplitz autocorrelation matrix R, in such a way that
their eigenvalues are approximately the same, we have

P,=F-C_F*. (7)

The frequency bins S,(m) of the signal s(k) are also
assumed to be complex Gaussian stationary random vari-
ables with zero mean. These frequency bins are defined as
IN-1
S(m)=3Y s((m—-1)N+i)e-i
i=0
with 5(k) =0 for k <0. (8)

Furthermore, it is assumed that X,(m) and S,(m) are
independent. The purpose of the acoustic canceller is to
cancel the echoes of speech on the “forward path” which
appear on the “return path.” Conversations always will
contain periods during which speech is present in both
directions at the same time (double talk). Since this double

talk problem is beyond the scope of this paper, we will
assume that a double-talk detector is incorporated to pre-
vent misadjustment of the echo canceller. For this reason,
the signal s(k) may be represented by a white-noise signal
which includes all imperfections. This implies that the
power spectrum of the signal s(k) is flat, i.e.,

E[Is(m)?]=B; VI
and
Ps=diag(Ps0"",PszN_l)=Ps'1 %)

where I is the 2N X2N identity matrix. From Parseval’s
relation, it follows that the average power of one block in
the frequency domain is equal to the total power of one
block in the time domain. This implies for signal s(k)

1 2¥N-1 1
— P.=—.9N.P.=P
2N EO s~ o NP F
2N -1
= X E[s*((m-1)N+)]. (10)
i=0

The window matrix g is generalized as

g=diag(g0,---,g2N<1) (11)
The segmentation blocks (segm2) and (segm3) of Fig. 2

may be combined as a segmentation window v, which is
defined as
_f0 fori=0,---,N—1
”"_{1  fori=N,--- IN-1. (12)

In Fig. 3, this function is generalized as the segmentation
matrix

with0< g, <1.

v=diag(vy, -, v,5_,) withO<o, <1, (13)
Since g and v are diagonal, the matrices
G=FgF' and V= FoF-! (14)

are circulant [12]. In Appendix I, we use the fact that most
of the energy of the matrix C,=¥-V* is concentrated at
the diagonals (C,), ,,, (C,) 1, and (C,), ;| which are the
main and first codiagonals of C,. This implies that the
generalization (13) must be within this scope.
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The Fourier transforms are carried out with the 2N-point
FFT matrix F from which the (k, / )th element is given by

(F)i=e M  with§=a/N (15)
and with the property
1
Fl=— .F* 16

The variance of the difference signal é(k)=e(k)- é(k)
appears to be an important quantity to describe the
dynamic behavior of the adaptive filter. The frequency-
domain transformation from the mth block of this dif-
ference signal is

E=E(m)~E(m) = X(m)-H - X(m)-W(m)
= X(m)-D(m) (17)

where

T W2N_1(m))T
D(m)=H - W(m)=F-d(m)
d(m)=h~w(m)

The Block Mean Square Error (BMSE), which is equal to
the average power of one block of the difference signal in
the frequency domain, is given by

Pe(m) = 5[ (X(m)-D(m)}* (X(m)-D(m))]

= E%trace(Px-A(m)) (18)

where the assumption is made that X (m) and D(m) are
independent while A(m) is the covariance matrix of the
difference vector defined by

A(m) = E[D(m)D*(m)] (19)

while trace (-) is the trace of a matrix, This covariance
matrix is related to the time-domain covariance matrix as

A(m)=Fs(m)F*
with

8(m) =E[d(m)d"(m)]. (20)
Another quantity we will need is the minimum attainable

BMSE, which is equal to the average power of one block of
the echo signal in the frequency domain. This is defined as

Pe= 5 E[(X(m)H ) (X(m)H )]

2N-1

= Y E[e*((m-1)N+ i)].

i=0

(21)

B. Convergence Behavior Characteristics

The characteristics of interest which describe the conver-
gence behavior of the FDAF are as follows.
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Stability: The largest value o, of the adaptation con-
stant « that yields a stable algorithm, This implies

exists if and only if 0 < a < ag.

(22)

lim P;(m) = P;
m-—coo

Final Misadjustment: The fractional amount by which
the steady-state BMSE exceeds the minimum attainable
BMSE is called the final misadjustment and is defined by

M=

lim

m — o0

(23)

Pe(m)\ Py
P, | P,

The Rate of Convergence: The rate of convergence of the
BMSE to its steady state can be measured by the sum of

frequency-domain impulse response vector,
augmented time-domain impulse response vector,
original impulse response vector of length ¥,
frequency-domain weight vector,

time-domain weight vector,

frequency-domain difference vector,

time-domain difference vector.

the following series [7], [8]:
o0
J= X [Pg(m)~ Py]
m=0

with small J indicating fast convergence. From (24), it is
clear that J is the “total area” under the function
Pz(m)— Pg. Fitting through P;z(m) an exponential func-
tion, with time constant a, defined as

(24)

Pg(m) = (Pz(0)~ Pg)e /"4 P, (25)

and expressing J as
J=f(a,B)-(Pz(0)- Pz) (26)
— @)

" WI-(1/f (@ B))]
is evident.

Another well-known quantity characterizing the rate of
convergence is v,, [13], which gives the number of itera-
tions which are required to reduce the residual signal r(k)
by 20 dB. The relations between Uy and 7 is

10
"2~ 1010 (e)

r=2317.

(28)

C. Analysis

With the notations as introduced in Section 1II-A, the
update algorithm (2) becomes

W(m+1) = W(m)+2aGP5 ' (m) X*(m)VR(m). (29)
By using (see Fig. 3)

R(m) = X(m)-D(m)+S(m) (30)
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Fig. 4. The factors E;;(8) = E[]Xk(m)[Z'ﬁg‘f(m)] as a function of 8.

the update algorithm (29) becomes
D(m+1) = {1—2aGﬁ,;l(m)X*(m)VX(m)} -D(m)
=2aGP; (m) X*(m)VS(m). (31)

We will first set up the difference equation for A(m). By
using the independency assumption between the matrix
X(m) and the (zero mean) vector S(m), this difference
equation follows from (31) and is given by
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are given in Appendix II, while plots of E,\(B), E,,(B),
and E}, E (B) are given in Fig. 4. Furthermore, E(B)in
(33) is composed from the functions E,;(B) according to

Eu(ﬁ) = {Ezz(ﬁ)‘ Efl(ﬁ)_EuElo(B)} Ef
+E12E1o(ﬁ)‘§u2- (36)
Using (20), the time-domain transformation of (33) is
given by
8(m +1) = S(m)—ZaEu(B)EUg-S(m)
—2aE(B)28(m) g
+4a’g-{ E5(B)Z8(m) + E,(B)
[ F~diag (A(m))(F~1)*]} -g
+4a’PE Eg(B) S g [FTIP (F1)¥] 4.
(37)

Since (8(m)),2c,<(8(m))kk-(8(m)),,, the convergence to
zero of the diagonal elements of 8(m) ensures the conver-
gence of the off-diagonal elements. We shall therefore
concentrate on the dynamic behavior of the diagonal ele-
ments of the matrix 8(m). Some time after the conver-

A(m+1) = A(m)—2aG-E[ﬁ;l(m)X*(m)VX(m)] A(m)
—2aA(m)-E[ X*(m)V*X(m) B7'(m)] - G*
+4a20-E[1‘>;1(m)X*(m)VX(m)-A(m)-X*(m)V*X(m)ﬁ,;l(m)] -G*

+40°G-E[ P! (m) XX(m)V-E[S(m)§*(m))] V*X(m) By'(m)] - G*.

Using the results of Appendix I, we get
A(m+1) =A(m)-2aE,(B8)Z,G-A(m)
| ~24E,,(B)S,A(m)- G*
+402G-{ EA(B)S2A(m)
+E,(B)diag(A(m))}-G*
+40’PE,, E1y(B)E,.G- P71 G*. (33)

The vector A(m) contains the diagonal elements of the
matrix A(m), while the “average area” functions 2, and
2, are given by
_ 1 2N-1
3, =— ;
v 2N §0 Ul

B 1 2~v-1 '
o=— 2
and X, N igo v;.  (34)

The function E, (B) is defined as the mathematical expec-
tation

E;j(B) = E[|1 X, (m)|" B)(m)] (35)

where P x,(n) is the exponentially weighted power average
as defined in (3) with smoothing constant 8. For our
analysis, we need among other things E,;(8) and E(B),
which are dimensionless quantities and therefore indepen-
dent of the frequency bin k. Furthermore, the product
E12(B)E o(B) is needed, which is also dimensionless and
thus independent of k. For convenience, this product will
be abbreviated as E,, E,o(B). Explicit formulas for E(B)

(32)

gence process has started, the matrix 8(m) may be ap-
proximated by a diagonal matrix. This implies that A(m),
which is related to §( m) by (20), is a circulant matrix [12].

By defining 8(m) as the vector containing the diagonal

elements of the matrix 8(m) and using (7) we can rewrite
(37) as

d(m+1) = A-3(m)+ bPSf,(,gz-l,
where

m=0,1,--. (38)

- 1
a- (1-2eEu(B)%.0) 05, ()5 17

1 -
b= 4‘12__E12E10(B)Eu2

2N
1=(1,---,1)7
— 1
%= a7 (R

1) Stability: The largest value of the adaptation con-
stant «, that yields a stable algorithm depends on the
behavior of the vector 8(m). The convergence of this
vector depends on the eigenvalues of matrix 4. Conver-
gence occurs if and only if the eigenvalues of A are all
within the unit circle. Similar to the derivation given in [8),
we get

a>0
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and

4o 2N -1 g?
1+_EU(B) Z : 5
2N =0 {1-2aE(B)Z,g,) -1

which implies that

>0 (39)

L EB) o
CE, (BT, TE
where = 5o 15 @ “weighted area” function defined as
1 2N¥N-1 g
«= S a7 E ’ NI . (41)
4O2N D 1-aE(B)2,g

2) Final Misadjustment: Since 8(m) is diagonal in final
state, we can rewrite Pz from (18) using (7) as

a,>0 and <1 (40)

Pg(m) = Py trace (8(m)) = PA™-8(m) (42
with the average power P, defined as
Py=2N(R )y (43)
The final misadjustment is now given by
M=Pg,;-Bbl-(1-4)""g>1
=Lg/p € (44)
with
Pg, g = Pg/Pg and st=(Rx)oo'(R;l)oo- (45)

For an input signal with a flat spectrum, the factor P,
equals one. When the input signal is taken to be a highly
correlated signal for which the spectrum is given by 1—
cos(¢), this factor is two. In general, this factor will be
close to one. For this reason, we will assume for simplicity
that ﬁx =1. Using the Bartlett formula as given in [8], we
can write

(I-a) " g?= (- f(a,B),---)  (46)
with
_ 8i
fi(a. ) _( 4‘1E11(.3)§u(1_ aEu(B)Eugi) )/
E/(B) 1

(1‘ “En(B) f‘i) “7

With this, the expression for the final misadjustment

becomes
E12E10(B) iuz— )/
A——— = §g,,,

M=Fse\*E(8) 3,

E,(B) 1 _
(1—am§—023,0). (48)

3) Rate of Convergence: The rate of convergence J is
given by
=]
J=P" Y (8(m)-8) =P,1"(I-4)""-(8(0)-8)

m=0

(49)

where § =lim,, _, , 8(m). Using the results of the Bartlett
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formula (47), J can be rewritten as
_2N-1
J=Py ¥ fi(«.8)-((8(0)),~(3),)  (s0)
i=0
where the functions f,(e,8) are given by (47). The time
constant of the ith weight is, similar to (27), given by

~2
M= B (1)

The overall time constant 7 of the adaptive filter is a
function of all 7, but is mainly determined by those 7, of
the weights w, which have to converge to the largest value
h; of the echo path impulse response. In general, we can
use the a priori knowledge that the absolute value of the
global envelope of the echo path impulse response is a
decreasing function with i, while we assume for simplicity
at this moment that |k, is maximal at i=0. For this
reason, the overall time constant can be approximated by
T=T,.

IV. ANALYSIS AND SIMULATION RESULTS FOR
THREE WINDOW FUNCTIONS

In this section, we will study the convergence behavior
of FDAF’s with various window functions and an
exponential power averaging with smoothing constant B
both by using the simulation and analytical results as
derived in the foregoing section. Window functions of
interest are as follows.

¢ Clark [3] proposes an overlap-save FDAF configura-
tion which contains five FFT’s with a window function as
defined in (1). The used window will be referred to as the
“Block-N " window.

® Mansour [4] proposes an FDAF configuration
without a window function which contains three FFT’s. In
Fig. 3, this implies a “shortcut” window function which
will be referred to as the “Block-2N” window and is
defined as g; =1 for i=0,---,2N —1.

® Using the a priori knowledge about the decreasing
behavior of the global envelope of the echo path impulse
response, an efficient window function was proposed in
[14] for an FDAF configuration containing three FFT’s.
This window function will be referred to as the “Cosine”
window and is defined as g, =1+ 3 cos (8i) for
i=0,---,2N~1 with # =7/N.

Although the segmentation window v is generalized in
the analysis, we will assume here that it is defined as in
(12). This is the segmentation window as it appears in the
overlap-save configuration of Fig. 2. This implies that
2,=3,=1 and ¥2=1. Furthermore, Table I sum-
marizes the analytical results, describing the convergence
behavior of the FDAF’s both as a function of the three
mentioned window functions and the smoothing con-
stant S.

The final misadjustment M is expressed in decibels as
10log(M) =1010g(PS/E)+1010g(c), with ¢ defined as in
(44). The quantity 10log (Ps,g) =10log(Pg)—10log(P,)
gives the ratio of the power level of (noise) signal s(k) to
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TABLE I
CONVERGENCE BEHAVIOR OF FDAF WITH THREE PARTICULAR
WINDOW FUNCTIONS
Stability Final Misadjustment Rate of Covergence
O<a<a, M=Pgp e uzok:Z.SEEE'Z’ZEH_
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= Ex+Ey E _ EitBs _ EitEy-E
afe) = + ala) =
! 4(1+y/1-a 2) 4 Biyf1-aZt

Bi=8.8) B=g@ &= Eyiu

the power level of the echo signal e(k) in one block. In
our simulations, this factor was equal to — 30 dB. For the
echo path, we choose the impulse response of a loudspeak-
ing intercom system from which the impulse response (Fig.
5) was sampled at 10 kHz which results in N = 512. The
FFT’s are thus of length 2N =1024. To simulate with
“speech like” signals, a white-noise signal was passed
through a formant filter (12th-order all-pole filter).

Both final misadjustment and rate of convergence are
functions of the adaptation constant «. In this paper, we
are not interested in the actual value of « (this value can
be calculated by the formulas given in Table I), but in the
convergence properties as a function of both the smooth-
ing constant 8 and of various window functions. For this
reason, we made curves (Figs. 6 and 7) in which a was
eliminated by construction. These curves show the final
misadjustment on the vertical axis and the rate of conver-
gence on the horizontal axis with a varying in the range
0 <a<a, The a=0 point is at the lower right corner,
where a very good final misadjustment is reached after a
very long time, while the a = @, point is in the upper right
corner, where it takes a long time to reach a very bad final
misadjustment. Since the upper part of the curve gives the
same rate of convergence as the lower part, but with a
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worse final misadjustment, it is clear that only the lower
part for 0 < a < a, /2 is of practical interest. Fig. 6 shows
a curve which gives the final misadjustment 10log(M) as a
function of the rate of convergence v, with the smoothing
factor B as a parameter. The bounds for the smoothing
constant are 0 <f <1, while three different curves for
B =0.05, 0.55, and 0.9 are plotted in Fig. 6. In general, S
should not be chosen too close to the bounds 8=0 or
B=1. For 8 =0, the exponential network does not aver-
age. This implies that, for each /th frequency bin, the
adaptation constant « is divided by its momentary value
of the input power spectrum. This value may become very
small and can cause the algorithm to become unstable,
Also, we should not take g8 too close to 1 because then the
convergence behavior is very much dependent on the ini-
tial values of ﬁx, (0). For that case, we have ﬁx, (m) = ﬁx, (0]
V m. Since we did not describe this initialization effect in
our analysis (for this we refer to [10]), we initialized ISX
with the power spectrum of the input signal.

From simulations and analytical results, it appears that
the influence of the smoothing constant B on the conver-
gence behavior of the FDAF for all window functions is
similar. For that reason, Fig. 6 only gives the results for
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the Block-N window. Fig. 7 depicts the results of the effect
from the various window functions on the convergence
behavior of the FDAF with B8=09. From Fig. 5, we see
that the echo path impulse response 4, is nonzero for i in
the neighborhood of N —1. To overcome the problem that
the Cosine window would have a relatively too small value
in comparison to k, for i~ N — 1, we have shifted the
Cosine window over some distance, Namely, g =1
+ 3 cos(8(i—40)) for i=0,--- 2N —1.

V. CoNcLUSIONS

From Fig. 6, the following conclusions can be reached.

1) For small final misadjustment, and hence a very small
adaptation constant a, the influence of B is very large. In
that case, we can vary the rate of COnvergence over a very
large range by choosing a different B. This is in agreement
with the result of [10], where the analysis was made for a
very small a. For a near to a, /2, which are the points in
the curves with the smallest Uy, the influence of B is
negligible.

2) The number of iterations used to reach a final mis-
adjustment decreases when B increases. This implies that
we should take the smoothing constant B as large as
possible, taking into account the initialization effect as
mentioned before. This in contrast to the choice 2a=1-8
as suggested in [5, p. 174].

3) The analytical results are systematically a little too
low. The reason for this is the approximation made for the
factor 1010g(13X) =10log((R )y (R;")y) =0 dB. For a
nonflat spectrum, this factor may rise up to 2 or 3 dB.

From Fig. 7, the following conclusions can be reached.

4) The convergence properties of the FDAF with the
Cosine window are comparable to the configuration with
the Block-N window. The FDAF with the Cosine window,
however, can be implemented very efficiently in the
frequency domain, as suggested in [14], and contains only
three FFT’s, whereas the Block-N configuration contains
five FFT’s,

(Ea)kl= E[I;;kl(m)Xk*(m)X,(m)] V)= Ell(ﬁ)‘gu

The (k, I)th element of matrix E, is given by

(Eb)k,=ZZE[ﬁgl(m)ﬁ,;,l(m)xk*(m)X,(m)X,,*(m)X,(m)]-(r);(V*)qr(A(m)),q.

We will evaluate (A5) for k =/ and for k # {. For k =
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5) The number of iterations needed to reach a certain
final misadjustment for the FDAF with the Block-2N
window, realized with three FFT’s, is about twice as high
as for the configuration with the Block-N or Cosine
window. In practical situations, the echo path impulse
response may have some delay 7,. The Cosine window can
be shifted, without significant complexity increasement,
while still having convergence properties which are com-
parable to the Block-N configuration. In general, we can
say that a priori knowledge about the global envelope of
the echo path impulse response can be used to reduce
complexity.

As a final remark, we mention that the analysis of the
FDAF with nonstationary input signals and the analysis of
the tracking capabilities of the FDAF are beyond the
scope of this paper but are subjects for future research.

APPENDIX
ANALYSIS OF THE EXPECTATIQN MATRICES IN (32)

In this appendix, we give the mathematical expectations
of the matrices which appear in (32). For simplicity we
define

Ea=E[ﬁ;1(m)X*(m)VX(m)] (A1)
E, = E[ﬁ;l(m)X*(m)VX(m)A(m)

X(m)V*X(m) BT (m)] (A2)
E.= E[ Py (m)X*(m)V-E[S(m)S*(m)]

V*X(m) B Y (m)]. (A3)

Using the Gaussian assumption and by denoting the
(k, I)th element of matrix by (-) « and using the fact that
V is circulant, we get

()= L LE[ B2 (m)| X (m)PX* (m) X, (m)] - (V) . (V) g (A(m))

= LE[B2(m) X (m) 21X, (m) 2] (V) ul> (A(m)),,

= Ex(B)Z5(A(m)) 4 + E[ﬁ)az(m)le(m)IZ] EkE[IX,(m)IZ]I(V)MIZ(A(M)),,

= EZZ(B)Eg(A(m))kk - E12E10(B)§3(A(m)) kk

+ E[ B2 (m) 1 X, (m) 2] LE[1X,(m)1?] (A(m)) (V) 2.

for k=1
=0 for k #1. (Ad)
(A5)
(A6)
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For the moment, we will concentrate on the last term of
this equation. Assuming that (V)* is mainly con-
centrated on the diagonals (exsn )iy and € P
and making the assumption that

E[1Xes(m)]-E[1Dy, ((m)?] = E[1X,(m) 2]

we can write this last term as
E[B2(m)IX(m) 2] ZE[X,(m)P](A(m)) (V) o
=E[13;f(m)|Xk(m)|2]
‘E[IXk(m)IZ] ~(A(m))kk2|(V)k,|2
zEllElo(B)'(A(m))kk'iuz-

This results in

(Eb)kk = (Ezz(ﬁ)_ EIZEIO(B))Eg(A(m))kk

(A8)

+ EpEp(B)E,2(A(m)) 4. (A9)
The nondiagonal elements of E, are
(Eb)kl = Elzl(ﬁ)ig(A(m))kl- (A10)

Combining the equations for k =/ and k # [ gives

(Ep)i = E121(.3)§3(A(m))k/
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right-hand side of (35). The results we reproduce are for
the limiting case m — oo, which is realistic since m in (35)
is usually large, but at the end of this appendix we shall
indicate how to deal with the case of finite .

E[ID,(m)P] = E[1X,_,(m)12]-E[|D,_, (m)?]

(A7)

It is slightly more convenient to replace m by m—1 in
(35). We have

E(B;m)=E[Pyi(m~1)-|X(m —-1))%]
1 IZO|2ie(-vr(Q;.‘z.;))

"1 Jem ((1-B)y8Yz,2)

~dz (A15)

where we have set z = (z,,---, Zp_ )" = (X(m - 1)
,* -+, X(0))7. Here, Q,, is the leading m X m section of the
infinite matrix Q, given by

(A16)

+ E,(B)A(m)) for k=1
= and |Q,| denotes the determinant of w10 [16], it is
= EX(B)ZYA(m)),, for k+#1. (Al1) show1|1 that ¢ ]
7/ wf1-G(A)\ AL
E,, = lim E, (8;m) = . dA '=0,1,---, j=1,2,---
J(ﬁ) et j(B ) (j—i)!(l—ﬁ)j'/(; ( A ) F()\) ! /

Eo(B)=u""i, i=0,1,.--.
In this equation, E, (8) is defined as
Eu(:B) = (Ezz(.B)_ EIZI(B)_ E12E10(.B))§¢2:
Rl E12E10(_.B)§uz- (A12)

For the last matrix, we have

(E.),, = PSZE[ﬁil(m)ﬁ;ll(m)Xk*(m)X,(m)]

'(V)kz(V*)tl

= PsEnE(B)22Pr! fork=1  (A13)

APPENDIX I1
ANALYSIS OF THE NUMBERS E;(B) N (35)

We reproduce in this appendix the results of [15 and 16]
as far as relevant for the present paper. We only need to
consider

Eu(ﬁ), Ezz(ﬁ)’ E12E10(B) = Eu(:B)'Elo(B)- (A14)

From the definition in (35) and the assumption in Section
HI-A on the joint probability density of X, (0), X, -,
it follows that the quantities in (A14) are independent of
E (B =Py . It is convenient to choose E(B)=1/m.
Note also that we now can drop the index k in the

(A17)

Here, G(A\) = (I + AU)7™1), ,, the left upper corner ele-
ment of (I +AU)™', F(A)=|I+ \U|, the determinant of
I+ AU, and U is the infinite matrix

1 _%BI/Z
v=| - %31/2 ,8 _ %BE!/Z
_%B3/2 Bz —%,35/2

£A18)

The functions G(A), F (A),A>0 can be calculated con-
veniently according to the formulas

1 1 e
LA=iave() M Fony T L 008,
(A19)

G(A) =

Formula (A19) allows for a very rapidly converging con-
tinuous fraction expansion of G(A). Moreover, in [16, sec.
5] it is shown that 1/F(\) decays rapidly (like e(*/21)
with s =log(A /28'/%), y = log(B)), especially when B is
close to 1. Hence, it is feasible to calculate the integrals in
(A17) numerically. Details are presented in [16, sec. 2].
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Some of the inequalities derived in [16, sec. 4.1] are

E;(B) < EyyEyo(B)

2
2-8
Furthermore, it is shown in [16, sec. 4.2, sec. 4.3] that
ELE (B)— 0 as B0, that E,,(B) < E;;(B) for B close
to 0, and that E,,E((B) <1 for B close to 1, and the
limiting behavior of the quantities in (Al4) has been
determined. Fig. 4 gives the plots of these quantities as a
function of 0 < 8 <1.

We note that many of the results given here also hold
for the case of finite m. One just has to replace G(A) and
F(A) in (A19) by G, (M) = (I +AU),."),, and F,(A)=
KI+AU),,|, respectively, where the index m refers to
taking the leading m X m section of I + AU. The relevant

formulas for this case are given in [15, sec. 2] and {16, eq.
(2.19)].

1
ﬂ <E;(B)<1

En(B) < (A20)
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