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Abstract—It is shown that for any signal x(r) the minimum of

S_q. g_m [(r - ) + (f"f.—J:] S (1, f) de df
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over all normalized time-windows w(:) is achieved by the Gaussian
window w(r) = 2¥* exp (- ns?). Here (1,, f,) is the center of gravity
of the signal x(r), §{*' (1, f) is the spectrogram of t(r) due to the
window (), and the double integral is a measure of the spread of
S (¢, f) around (1, f.) in the time-frequency plane.

[. INTRODUCTION
When x(r) is a square integrable signal and w(r) is a square

integrable window, the spectrogram of x(r) due to w(¢) is defined
by

4

SPNe, f) = E x(r)w(r = 1)e " dr (1.1)
or, equivalently, by
s = || x@ws-gema] (2

with X( f) and W( f) being the Fourier transforms of x(r) and
w(r), respectively. We use here the definition

Y(f) = j _ riem iy (1.3)

for the Fourier transform Y( f) of v(7). In case x(r)is a signal
whose energy is well concentrated around a point (7. f,) in the
time-frequency plane, one would like $I* (1, £) to be well-con-
centrated around (1., f;) as well. As a measure for this. one could
take

@ £

L’ [t =0 + (F= £)'] S (e f) dr df
(1.4)

Bl ) = 5

—

which is a quadratic time-frequency moment around (.. f;). In this
correspondence we shall show the following. Assume that

_L |x())] ar = L |X(F)[ df =1 (1.5)

and let

poo

o= j_m {I.r(t)l2 de.  fo = E_mle{f)lz af  (1.6)

so that (7.. f,) is the center of gravity of x(r). Then £3 (1, f.) is.
among all w(r) with

Sm [w(r)|" dr = j |w(r)| df =1 (1.7)
uniquely minimized by the Gaussian
w(t) = 2" 3cexp (—wr?) (1.8)

with ¢ a complex constant with |¢| = 1.

This result is somewhat remarkable since the optimal w(r) is
completely independent of x(r). We prove our result by relating
L1 .(1, f,) to a different measure of concentration in the time-fre-

quency plane, viz., to

_v(r)sz.r

oy (7. g) = S_w (+ = T):

s - ol 09

where v is any signal and (7. ¢) is any point in the time-frequency
plane. We shall show that

(e f) = a3t £) + 02(0.0) (1.10)

so that minimization of Eiw(h- f.) reduces to minimization of
05.(0, 0), and that ¢2.(0, 0) is uniquely minimal for the Gaussian
wi(r)of (1.8).

[I. DERIVATIONS

We shall prove formula (1.10) under the assumptions (1.5) and
(1.7). We have from (1.4)

Eewltn £) =B (1) + B () (2.1)

where

o

B i) = | | e-wrseenag e

-

S (f) = j‘: 5: (F=£) S™ (t.f)didf  (2.3)
Consider I} .(1,). We have for any '
EZ S f) df = El S: ie)wile— rle > dr -df
= Sl |<()w(r = 0)[ a. (2.4)
Here we have used Parseval's formula (1. p. 63]
E:’ |Y(F)| df = rm | v()| dr (2.5)

with y(7) = x(7)w(r - ). Similarly, by using (1.2). we have
for any f!

L, S, f) dr = Lﬂ |X(g)W(f~ g)lzdg. (2.6)

Inserting (2.4) and (2.6) into (2.2) and (2.3). we get after a simple
manipulation

£.(0) = L (r = )| x(0)] dr + S_m 20| dr

) »

B = | _r-pixnfar+ | plwonf o
(2.8)

Here we have used (1.5) and (1.7). and the fact that

51 (£ =)

Adding (2.7) and (2.8) we readily obtain (1.10). )
We next show that w(r) of (1.8) uniquely minimizes o, (0. 0).
We have for any w(r)

X(F)[df=0. (29

«fa=| (r-5)

g2(0,0) = S_ 13|w(r)|2dr + j_mf3|W(fJ|:df
@ i 172 @ 1 I 2
= 2(] :1|w(:)1'm> <S_mf1 w(f)| df>
B o (2.10)
- 2x

'Formulas (2.4) and (2.6) were presented in [2. eq. (4.8) and (+.91].
without proof.
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In the first inequality in (2.10) ( which is the elementary inequality
a®* + b* = 2ab,a > 0, b > 0) we have equality if and only if

@

[ epwwfa={_pwofa @

In the second inequality in (2.10) (which is the classical Heisen-
berg inequality, see [I, p. 273]) we have equality if and only if
w(t) is of the form c(2a)'/* exp ( —war?) for some « > 0 and
some complex ¢ with |¢| = 1. Inserting this special form into
(2.11), we readily obtain « = 1, and the proof is complete.
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