T-SP/39/1//40410

Optimality Property of the Gaussian Window Spectrogram

A. J. E. M. Janssen

Reprinted from
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Vol. 39, No. 1, January 1991

Optimality Property of the Gaussian Window Spectrogram

A. J. E. M. Janssen

Abstract—It is shown that for any signal x(t) the minimum of

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\left(t - t_x \right)^2 + \left(f - f_x \right)^2 \right] S_x^{(w)} \left(t, f \right) \, dt \, df$$

Manuscript received July 18, 1988; revised May 16, 1989.
The author is with Philips Research Laboratories, 5600 JA Eindhoven,
The Netherlands.
IEEE Log Number 9040410.

over all normalized time-windows w(t) is achieved by the Gaussian window $w(t) = 2^{V4} \exp{(-\pi t^2)}$. Here (t_x, f_x) is the center of gravity of the signal x(t), $S_x^{(w)}(t, f)$ is the spectrogram of x(t) due to the window w(t), and the double integral is a measure of the spread of $S_x^{(w)}(t, f)$ around (t_x, f_x) in the time-frequency plane.

I. INTRODUCTION

When x(t) is a square integrable signal and w(t) is a square integrable window, the spectrogram of x(t) due to w(t) is defined by

$$S_x^{(w)}(t,f) = \left| \int_{-\infty}^{\infty} x(\tau)w(\tau - t)e^{-2\pi i f \tau} d\tau \right|^2$$
 (1.1)

or, equivalently, by

$$S_x^{(w)}(t,f) = \left| \int_{-\infty}^{\infty} X(g) W(f-g) e^{2\pi i t g} dg \right|^2$$
 (1.2)

with X(f) and W(f) being the Fourier transforms of x(t) and w(t), respectively. We use here the definition

$$Y(f) = \int_{-\infty}^{\infty} y(\tau) e^{-2\pi i f \tau} d\tau \qquad (1.3)$$

for the Fourier transform Y(f) of $y(\tau)$. In case x(t) is a signal whose energy is well concentrated around a point (t_x, f_x) in the time-frequency plane, one would like $S_x^{(w)}(t, f)$ to be well-concentrated around (t_x, f_x) as well. As a measure for this, one could take

$$\Sigma_{x,w}^{2}(t_{x},f_{x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[(t-t_{x})^{2} + (f-f_{x})^{2} \right] S_{x}^{(w)}(t,f) dt df$$
(1.4)

which is a quadratic time-frequency moment around (t_x, f_x) . In this correspondence we shall show the following. Assume that

$$\int_{-\infty}^{\infty} \left| x(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| X(f) \right|^2 df = 1$$
 (1.5)

and let

$$t_x = \int_{-\infty}^{\infty} t \left| x(t) \right|^2 dt, \quad f_x = \int_{-\infty}^{\infty} f \left| X(f) \right|^2 df \quad (1.6)$$

so that (t_x, f_x) is the center of gravity of x(t). Then $\sum_{x,w}^2 (t_x, f_x)$ is, among all w(t) with

$$\int_{-\infty}^{\infty} \left| w(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| W(f) \right|^2 df = 1$$
 (1.7)

uniquely minimized by the Gaussian

$$w(t) = 2^{1/4}c \exp(-\pi t^2)$$
 (1.8)

with c a complex constant with |c| = 1.

This result is somewhat remarkable since the optimal w(t) is completely independent of x(t). We prove our result by relating $\Sigma_{x,w}^2(t_x,f_x)$ to a different measure of concentration in the time-frequency plane, viz., to

$$\sigma_{y}^{2}(\tau, g) = \int_{-\infty}^{\infty} (t - \tau)^{2} |y(t)|^{2} dt + \int_{-\infty}^{\infty} (f - g)^{2} |Y(f)|^{2} df$$
 (1.9)

where y is any signal and (τ, g) is any point in the time-frequency plane. We shall show that

$$\Sigma_{x,w}^{2}(t_{x},f_{x}) = \sigma_{x}^{2}(t_{x},f_{x}) + \sigma_{w}^{2}(0,0)$$
 (1.10)

so that minimization of $\Sigma_{x,w}^2(t_x, f_x)$ reduces to minimization of $\sigma_w^2(0,0)$, and that $\sigma_w^2(0,0)$ is uniquely minimal for the Gaussian w(t) of (1.8).

II. DERIVATIONS

We shall prove formula (1.10) under the assumptions (1.5) and (1.7). We have from (1.4)

$$\Sigma_{x,w}^{2}(t_{x},f_{x}) = \Sigma_{x,w}^{2}(t_{x}) + \Sigma_{x,w}^{2}(f_{x})$$
 (2.1)

where

$$\Sigma_{x,w}^{2}(t_{x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (t - t_{x})^{2} S_{x}^{(w)}(t, f) dt df \qquad (2.2)$$

$$\Sigma_{x,w}^{2}(f_{x}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (f - f_{x})^{2} S_{x}^{(w)}(t, f) dt df \qquad (2.3)$$

Consider $\Sigma_{x,w}^2(t_x)$. We have for any t^1

$$\int_{-\infty}^{\infty} S_x^{(w)}(t, f) df = \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} x(\tau) w(t - \tau) e^{-2\pi i f \tau} d\tau \right|^2 df$$
$$= \int_{-\infty}^{\infty} \left| x(\tau) w(\tau - t) \right|^2 dt. \tag{2.4}$$

Here we have used Parseval's formula [1, p. 65]

$$\int_{-\infty}^{\infty} |Y(f)|^2 df = \int_{-\infty}^{\infty} |y(\tau)|^2 d\tau$$
 (2.5)

with $y(\tau) = x(\tau)w(\tau - t)$. Similarly, by using (1.2), we have for any f^{\perp}

$$\int_{-\infty}^{\infty} S_x^{(w)}(t,f) dt = \int_{-\infty}^{\infty} |X(g)W(f-g)|^2 dg. \quad (2.6)$$

Inserting (2.4) and (2.6) into (2.2) and (2.3), we get after a simple manipulation

$$\Sigma_{x,w}^{2}(t_{x}) = \int_{-\infty}^{\infty} (t - t_{x})^{2} |x(t)|^{2} dt + \int_{-\infty}^{\infty} t^{2} |w(t)|^{2} dt$$

$$\Sigma_{x,w}^{2}(f_{x}) = \int_{-\infty}^{\infty} (f - f_{x})^{2} |X(f)|^{2} df + \int_{-\infty}^{\infty} f^{2} |W(f)|^{2} df.$$
(2.8)

Here we have used (1.5) and (1.7), and the fact that

$$\int_{-\infty}^{\infty} (t - t_x) |x(t)|^2 dt = \int_{-\infty}^{\infty} (f - f_x) |X(f)|^2 df = 0. \quad (2.9)$$

Adding (2.7) and (2.8) we readily obtain (1.10).

We next show that w(t) of (1.8) uniquely minimizes $\sigma_w^2(0, 0)$. We have for any w(t)

$$\sigma_{w}^{2}(0,0) = \int_{-\infty}^{\infty} t^{2} |w(t)|^{2} dt + \int_{-\infty}^{\infty} f^{2} |W(f)|^{2} df$$

$$\geq 2 \left(\int_{-\infty}^{\infty} t^{2} |w(t)|^{2} dt \right)^{1/2} \left(\int_{-\infty}^{\infty} f^{2} |W(f)|^{2} df \right)^{1/2}$$

$$\geq \frac{1}{2\pi}.$$
(2.10)

¹Formulas (2.4) and (2.6) were presented in [2, eq. (4.8) and (4.9)], without proof.

In the first inequality in (2.10) (which is the elementary inequality $a^2 + b^2 \ge 2ab$, a > 0, b > 0) we have equality if and only if

$$\int_{-\infty}^{\infty} t^2 |w(t)|^2 dt = \int_{-\infty}^{\infty} f^2 |W(f)|^2 df.$$
 (2.11)

In the second inequality in (2.10) (which is the classical Heisenberg inequality, see [1, p. 273]) we have equality if and only if w(t) is of the form $c(2\alpha)^{1/4} \exp(-\pi\alpha t^2)$ for some $\alpha > 0$ and some complex c with |c| = 1. Inserting this special form into (2.11), we readily obtain $\alpha = 1$, and the proof is complete.

ACKNOWLEDGMENT

The author is indebted to both referees who contributed considerably to a better presentation and who suggested important improvements and shortcuts in the author's original proof.

REFFERENCES

 A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977.
 T. A. C. M. Claasen and W. F. G. Mecklenbräuker, "The Wigner distribution—a tool for time-frequency signal analysis," Philips J. Res., vol. 35, pp. 372-389, 1980.