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The Zak Transform and Sampling Theorems for
Wavelet Subspaces

Augustus J. E. M. Janssen, Senior Member, IEEE

Abstract—The Zak transform is used for generalizing a sam-
pling theorem of G. Walter for wavelet subspaces. Cardinal
series based on signal samples f(a + n), n € Z with a possibly
unequal to 0 (Walter’s case) are considered. The condition
number of the sampling operator and worst-case aliasing er-
rors are expressed in terms of Zak transforms of scaling func-
tion and wavelet. This shows that the stability of the resulting
interpolation formula depends critically on a.

I. INTRODUCTION

N [1] G. Walter presents a version of the classical Shan-

non sampling theorem for wavelet subspaces. The set-
ting is a multiscale analysis ((V,,)c.; @) for LX(R), where
the closed linear subspaces V,, of L,(R), m € Z, and the
real scaling function ¢ satisfy the usual properties, so that
in particular (¢(t — n)),.. is an orthonormal base for V.
Also, as usual, W, is the orthogonal complement of V,, in
Vi + 1, ¥ is the associated wavelet whose integer translates
(¥ (¢t — n)),c.. span Wy, and ¢ and ¢ are related according
to

() =2 2 h, (2t — 1),
Y@ =2 § (=" hy_p @2t —n) (1)

where 2'/? h, are the expansion coefficients of ¢ € V, C
V, with respect to the orthonormal basis (2'/ ¢ (2t —
n)),e» of ¥V;. The question that is raised in [1] is whether
one can find a function s(¢) € ¥, such that any f € ¥, can
be represented as a cardinal series involving the integer
translates of s and the samples of f at integer points, i.e.

f( = 2 f(nyst —n), tekB. 2)

This question is dealt with by Walter under the assump-
tion that ¢ is continuous and that for some ¢ > 0

e =0+ |P7'"9, tel. 3)

Then, he shows that when the discrete Fourier transform

d,(w) = 2

n=—00

) (n) e~21rl'nw (4)
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has no zeros, there is indeed such an s and there is uni-
form convergence in (2) for all f € V;,. The Fourier trans-
form § of s,

S(w) =S e~ 2™ g (1) dt ' (5)

is expressed by Walter in terms of the Fourier transform
® of ¢ and ®, in (4) as

S™) = B(w)/Byw). ©)

Although it was not mentioned in [1], it can be shown
that this s satisfies s(m) = 6,0, just as one would expect
from an interpolating function. Walter then proceeds by
estimating the aliasing error for functions f = f; + f; with
Jo € Vo, fi € Wy in terms of the norm of the ‘‘out-of-space’’
component f; as

les@* = 1f®) = Zfn) s = mf* < CIAIP (1)

where C is a constant independent of fand ¢.

The aim of this paper is to show that the Zak transform
is a very appropriate tool to discuss this matter, especially
when one is interested in sharp frame bounds and sharp
estimates for the aliasing error e We shall work under
the slightly weaker assumption that (3) ¢ is bounded, and
that

2 | (t — n)| converges uniformly in 7 € [0, 1].  (8)

We do not require continuity of ¢ until Section III. As a
consequence of these assumptions we have that ¢ € L,
(R). Under assumption (8) we have also that, [see (1)] Z,
|h,| < o0, and that I, |¢ (¢ — n)| converges uniformly in
te [0, 1].

The Zak transform of an f e L,(R) is defined as

@w= 2 ™ fe+h), rLweR (9

Actually, (9) should be interpreted in an L*(R?)-sense, but
for the functions f = ¢, ¢, s, it turns out that we can also
interpret the right-hand side of (9) pointwise as an abso-
lutely and locally uniformly convergent series. We refer
to [2], [3] for the various properties and names of the
mapping Z. See Section III, in particular the quasi-peri-
odicity relations (43).

We shall, also more generally, consider cardinal series

f =2Zfa+ns,¢—-n, teR (10)

1053-587X/93%03.00 © 1993 IEEE



JANSSEN: ZAK TRANSFORM AND SAMPLING THEOREMS

with @ € [/ and f, s, € V. This extension is significant
since, contrary to the classical Shannon case, the function
s in (2) cannot be expected to be symmetric about the
point 0. Also, it turns out that the condition number of
the sampling operator fe Vy, = (f(n + a)),c. € I* as well
as the aliasing errors depend critically on the choice of a.

The Fourier transform S, (w) of s,(¢) in (10) turns out
to be given by

Sa(w) = 2(w)/(Zp) (@, w) (11

provided that (Z¢) (a, w) # 0, w e R. Now it is an inter-
esting property of Zak transforms that they have zeros in
any unit square provided that they are continuous. (Under
.assumption (8) we have that Zy is continuous under the
‘weak condition that ¢ is continuous.) Hence one should
choose a such that the set {a} X R avoids the zeros of
Zep.

The above observation is made more specific as fol-
lows. We shall show that

]

sup/inf 2

|f@ + n)|* = max/min |(Ze) (a, w)|*.
fevollfl=1"" "% w
(12)

As to the aliasing errors, we show the following results.
When f € V;, we define the aliasing error e, () by

er.(0) = ) — Enlf(a +m)ys,(t=n). (13)
Then, we have
2
i . | @Y) (@, w)
sup/inf [l lI> = 1 + max/min |-=2———=|  (14)
few, il =1 g w (Zp) (a, w)
while for any t € R
2
remy %@
"Yﬂ Z )—@M&ﬂ@)a)zd
b ZY)(t, w Zo) @ w ©)(t, w)| dw,
(15)
min |e;, ()] = 0. (16)
fewo, Ifl =1

For (13)-(16) it is assumed that (Zy) (a, w) # 0, w € R.
Note that, even in the case a = 0, the Zak transform arises
naturally in the expression (15) for the worst-case aliasing
erTor.

The explicit expressions for the bounds in (12), (14),
(15), should be used to guide the choice of a. For in-
stance, one could look for that particular a for which

max |Z) @, W) @b @ W

(Zp) (a, w)

or max (17

min |(Ze) (a, w)|* N

is as low as possible so as to obtain the best bound for the
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condition number of the sampling operator or the lowest
value for the worst-case L-aliasing error.
In Section III we shall show that

(Ze) (2, w) (Zg) (2t, 3 W)
= Uy(w ; (18)
@) t, w) (Zo)(2t, 5 (w + 1) ]
where U, (w) is the unitary matrix
hz w) hG w + 1)) ]
U, (w) = { Cn o (19)
—e "™ REG (w + 1)) e ™ h*(3 w) |
and with & (w) defined as, see (1),
h(w) = 20 h, e~ 2", (20)
Since, [see (43)],
(Zp) (21, 3 (w + 1)) = —exp (miw) (Zo)
c@ = 1,5w+ 1) (1)

we thus see that there is a remarkable connection between
Zak transforms of scaling functions and wavelets on one
hand and the well-known baker’s transformation

@2t, 3 ), 2% <

i 0, 11> =
G =l Lm— 11w + 1),

on the other.

Formula (18) shall be used to show that, when Zyg is
continuous, there are points where Zy vanishes while Zy/
does not. This implies that the second quantity in (17) is
unbounded, so that the choice of g really matters.

II. DERIVATIONS

In this section we present the proofs of the results just
announced. We start with the proof of (12). Let fe ¥ and
write

fO = Lot -0, 2l = IfI% @3
Since (¢ (f — k))ie. € I' (2) for all ¢, we can interpret (23)
pointwise, and we have

2| fa + ) = Eaka?‘ [E ola+n—k)

s @g¥atn = l)] (24)

with an absolutely convergent triple series at the right-
hand side. (That this latter series converges absolutely
follows from the fact that (T, |ey| |¢(@ + n — k)|)pex €
IX(Z) as a convolution of an *(Z)-sequence and an ['(Z)-
sequence.) Hence the required sup and inf can be ex-
pressed as the maximum and minimum of the spgctrum of
the infinite Toeplitz matrix

by = L@+ n—k o*@ + n.

n

(br - Dr 15 25)
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It is well known, and easy to prove, that this maximum
and minimum are the ess sup and ess inf over [0, 1] of
the function

% b €™ = |(2Zg) (a, W), (26)
The proof of (12) is now completed by noting that (Z¢) (a,
w) is periodic in w by (43) and continuous in w by (8).

Before starting the proofs of (14)-(16) we collect some
useful facts about the Zak transform and the expansion
coefficients of s, € V.

Lemma 1: Suppose that a € R is such that (Z¢)(a, w)
# 0, w € R. Then we have

Sa (t) = E Op,a @(f - n) (27)

where

1 2winw
G, ;= — dw. (28)
' Ko (Ze) (a, w)
Furthermore, L, |0, ,] < o, the series L, |s,(z + n)|
converges uniformly, and

Zs)(t, w) = (Zo)(t, W)/ (Zp)(a, w), t,weR.

(29)

Proof: We have as in the proof of [1, Section III,
Theorem] that

S.(w) = @(W)/(Ze) (@, w) = B (W) Loy e>™™. (30)

Here we have L, |0, ./ < o by Wiener’s theorem since
(Z¢)(a, w) # 0, w € R, has an absolutely convergent
Fourier series (8). This implies (27) and the uniform con-
vergence of the series T, |s,(z + n)|. Also formula (29)
follows easily.

Consequences:

1) For any f € ¥, the cardinal series at the right-hand
side of (10) is uniformly convergent.

2) By taking f(¢) = ¢(t — m) in (10) one obtains

S,la+m) =56, mel. 3D

We now show (14)-(16). When f € W, we have in a

similar fashion as in (12) that

g: |fn + @) = ||f]* max |(ZY) (a, W)|* < . (32)

Hence e ,(7) is pointwise well-defined as an absolutely
convergent series. For the proof of (14) we restrict our-
selves first to

fO = 2B @ — k) (33)

where 8, # O for only finitely many k, so that E, |f(a +
n)| < oo. Since fand s(¢ — n) are orthogonal for all n €
Z we have

lesall® = 117 + gﬂn +a)f*m + a) 1y (34)

| (Bk)ke
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where
(=]
Fom = S st —n)st —m)dt = % Ok —n.a af_m,a.
—00

(35)

In (35) the orthonormality of the ¢ (¢ — n)’s and (27) have
been used. It readily follows from Parseval’s formula for
Fourier series and (27) and (28) that

2

legal? = 117 + 2| Z 0y o fn + 0

i 2
= IfI? + SO ’(Zf)(a, Wl

(36)
(Ze) (a, w)
with pointwise defined Zf. Also, from (33)
@) (@, w) = @) (a, w) 2 e (37)
The set of all functions.
2
%: Bk e—Zrik‘w (38)

with L, lBk|2 = 1, B, # 0 for only finitely many k, is
dense in the set of all nonnegative L'-functions with unit
L'-norm. It then follows from continuity of (Zy¥)(a, w),
(Zy) (a, w) as a function of w that

2
Z
2
) @) (., w)‘ )
= Il (1 o i ‘(Zw)(a, W) £

for all f of the considered type. It is now elementary Hil-
bert space theory to conclude that (39) holds for all f e
Wy. This completes the proof of (14).

We finally prove (15) and (16). We have for f = L,
Y (- — k) € W,y where 8 € I? by the Cauchy-Schwarz in-
equality

’e_ﬁa(r)[z = l% Bk[l,b(t — k) — %: v(n+a—k)

2

4 Sa([ - n)]

< ||f112§‘¢<r—k)— §¢(n+a_k)

2
(40)

) Sa(t - n)

with equality when
and

(7k2= V@ — k) — Zyn +a— ks, - n))

ke«

(41)
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are linearly dependent. We next calculate

1
2 Il = Sﬂ @4) & w) = @) (@, W) Zs) @, W) dw
1 2
_ _ @@ w
- |, }(zw)(z, ) = Gy @O0 W v

(42)

where we have used (29). This proves (15). Finally (16)
follows by taking (8)ie.. perpendicular to (). in (41).
Note: When ¢ = a we have e, () = 0 for all fe W,.

III. ZAK TRANSFORMS OF SCALING FUNCTIONS AND
: WAVELETS

- We shall consider now the Zak transforms of ¢ and ¥
under the additional assumption that ¢ is continuous. Then
Y is also continuous, and so are Ze and Zy. It follows
from the quasi-periodicity relations:

@A + 1, w) = &™ (Zf) (z, w);
e, w+ 1) = (ZfH@, w (43)

satisfied for any f for which the series in (9) converge,
that Zy and Zy have zeros in any unit square, [2, Section
V]. In fact, since ¢ is real it follows from

@A, 3) = L (=1)" @ + ) € R;

Ze)(1, 9 = ~(Ze) O, 3) (44)
that Zy has at least one zero in the set {(z, 1/2)|0 = ¢ <

1}.

We shall now show (18) and draw some conclusions
relevant to the worst case aliasing errors. Explicitly we
have to show that

(Ze) (2, w) = k(3 w)(Zo) (21, 5 W)

+hG W+ 1) (Ze) 2t 5 (w + 1)) (45)

and
(ZY) (1, w) = e™™ [h* (G W) (Ze) (21, 5 (w + 1))

— h*G w + 1)) (Ze) (21, s W)].  (46)

To show (45), we insert the series expansion (1) for ¢ into
formula (9) for Zp, change the order of summation, and
split the resulting series over n into one over even n and
one over odd n. Each of the two double series so obtained
can be written as a product of one factor involving the
sum/difference of A(1/2 w) and A(1/2 (w + 1)) and an-
other factor involving the sum/difference of (Zy) (2¢, 1/2
w) and (Zg) (21, 1 /2 (w + 1)). The proof of (45) is then
completed by combining the resulting eight terms appro-
priately. The proof of (46) is similar.

The unitarity of the matrix U, (w) in (19) follows from

h@)|* + | + D = 1. 47)
It follows from (45) with w = 0 that
(Zp) (2, 0) = (Zp)(2t,0), teR (48)
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where it has been used that 2(0) = 1, 2(1/2) = 0. Con-
sequently, by continuity of (Ze) (¢, 0) at t = 0, we have
that (Zg) (¢, 0) is constant. This constant must be equal to
one since 1 = &(0) = {J (Z) (¢, 0) dr. Hence,

Ze)t, 00 =1, teR. (49)
In a similar fashion it follows that
ZY) @2, 0) = (Zp) (21, 5) (50)

so that (Zy) (¢, 0) = 0 for at least two ¢ € [0, 1], (40),
(41).

We next show from (18) that there is an (a, w) such
that Ze vanishes at (¢, w) while Zy does not. To that end
we suppose that Zy vanishes everywhere where Ze does,
and derive a contradiction. When (a, w) is such that
(Z¢)(a, w) = (ZY)(a, w) = 0, then

Ze)2a, 3 W) = (Zp)2a, 5w + 1)) =0 (51)

by unitarity of U,(w) in (19). Repeating this argument,
we can find sequences (a,, w,) € R* such that (Ze) (a,,
w,) = 0 while w, = 0, n = oo. This, however, contra-
dicts (49) and the uniform continuity of Ze.

IV. EXAMPLES
A. Example 1

Consider [1, Section IV, Example 3] with n = 2. Hence
the Fourier transform @ of the scaling function ¢ is given
by

(32)

where O, is the Fourier transform of the second order basic
spline »,, and the orthogonalizing function I, is given by

[=-]

(W) = k_E 102w + R)|%. (53)
We have explicitly,
1 _ e~2wiw 3
= (W) -
0, t<0ort=z=3
a5 382 0=<t=<1 -
1) =
: P-@-3, 1=tr=< )
;3 -0 2<t<3
and, using the method explained in [4, Section 5.4],
‘ © 1 6
= (i 6
Ly(w) = (sin 7w) k}_;m (w(w p k))
11 13 1
=20 + 30 cos 27w + 50 cos 4mw.  (55)
By periodicity of £; we have
Ze)(a, w) = (Z8,)(a, w) /T3> (w) (56)
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max |zak phi| ~2/ min |zak phi| ~2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. The quantity max,, |(Zp) (a, w)|*/min,, {Z¢) (a, w)|* as a function
of a € [0, 1] for ¢ (#) = ,¢(3 — 1) (Daubechies scaling function).

so that, see (11),

S = 200 0xw)
¢ (Zo) (@, w)  (Z9y)(a, w)'

Furthermore, by (54), we have for a € [0, 1]
@Z9)@, w) =3a* + G — (a — DY) e ™

(57)

+5(1 — a) e, (58)
Hence when a = 0 we see that
Z9)(0,3) = (2990, P/T3*@ = 0. (59)
We shall show that
Z¥) (0, 3) # 0. (60)

Indeed, when (Zy) (0, 1/2) = 0, we would find, see (51),
that (Z¢) (0, 1/4) = 0 as well. However, from (58) we
have

Z9)0, 5 =—-1-1i=xo0. - (61)

(In fact it can be shown that (Zy) (0, 1/2) = —+15/8.)-

When a = 1/2, we obtain
Z9) G, w) = e 7™ E + Loos 27w)  (62)

which vanishes for no real value of w. Hence, we can base
a stable interpolation formula on the sample values f(1/2
+ n) of signals f € ¥, using the interpolating function
§1/2(t) whose Fourier transform §; /,(w) is given by (57).
Such a thing is not possible when a = 0: the interpolating
function so(f) has a singular Fourier transform Sy(w), and
the quantities in (17) are infinite.

B. Example 2

Consider [1, Section IV, Example 5] with v =
+1/43. In Figs. 1 and 2 we have plotted the quantities
(17) for the condition number of the sampling operator
and the worst-case L*-aliasing error as a function of @ €
[0, 1]. Clearly, the first quantity cannot be less than unity
and the second one cannot be less than zero; fora = 0.37
we see that both quantities come very close to their lower
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max {|zak psi| ~2 / |zak phi] ~2}

0 01 0z 03 04 05 06 07 08 09 1
a —>

Fig. 2. The quantity max,, |(Zy) (a, w)|*/|(Z¢) (a, w)|* as a function of a
€ [0, 1] for (1) = ,¢(3 — 1) = ;¢ (3 — 1) (Daubechies scaling function
and wavelet).

bounds. Hence, a = 0.37 would give very good inter-
polation results. On the other hand, a = 0.8 gives very
large values for these quantities, and thus bad interpola-
tion results.
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