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We present new and short proofs of two theorems in the theory
of lattice expansions. These proofs are based on a necessary and
sufficient condition, found by Wexler and Raz, for biorthogonal-
ity. The first theorem is the Lyubarskii-Seip-Wallstén theorem for
lattices, according to which the set of Gaussians 2% exp(—7(r —
na)* + 2rimbt),n,m € Z, constitutes a frame when a > 0,b >
0,ab < 1. In addition, we display dual functions for this case.
The second theorem is the result that a set g,,.o(t) = gt —
na)exp(2rimbr),n,m € Z of time-frequency translates of a g €
L*(R) cannot be a frame when a > 0.6 > 0,ab > 1. © 199

Academic Press. Inc.

1. INTRODUCTION AND RESULTS

Consider for g € L*(R) the set of functions

8xy (t) = ezﬂ‘wg (f - x) . = Rs (l ])

where x,y € R. In this paper, we present new and short
proofs of two basic theorems in the theory of lattice expan-
sions.

The first theorem reads as follows. For g € L*(R) and
a > 0,b > 0, we call the set guqmp, 1, m € Z a frame when
there are constants A, B,0 < A = B < oo such that for all
f € L}R)

AP < ST Frgmame) P < BIAIP. (12)

nm

It was conjectured in [1] by Daubechies and Grossmann that
Znams is a frame when g(z) is the Gaussian 2'/* exp(—m?)
and ab < 1; for numerical evidence and further back-
ground, we refer to [2, pp. 980-982; 3, Sect. 3.4.4.B].
The conjecture was proved by Lyubarskii [4] and, indepen-
dently, by Seip and Wallstén [5] using advanced methods
from entire function theory (in fact, both Lyubarskii and
Seip and Wallstén prove the result for more general sets
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of time—frequency translates of g). We shall refer below to
this result as Theorem 1.

The second theorem reads as follows: when ab > | and
g € LXR), then the set guump, n,m € Z cannot constitute
a frame. We shall refer below to this result as Theorem
2. In [2, p. 978], it is noted that one can show that there
isan f # 0,f € LXR) such that (f, gums) = 0 when
ab > 1,g € L*(R) (this implies that the g,oms do not con-
stitute a frame). As said in [2], the latter result was shown
by Howe and Steger by applying results of Rieffel in [6] to
the computation of the coupling constants of the von Neu-
mann algebra spanned by the time—frequency shift opera-
tors corresponding to the parameters na, mb with n,m € 7.
A different proof of Theorem 2, in which the asymptotic
number (as 2 — co, T — o0) of orthogonal functions band-
limited to [—£2, (2] and having at least a fixed fraction y of
their energy in [—7,T] (also see [7, 8]) is determined, was
found by Landau [9] under certain decay and smoothness
conditions on g. This proof, which is signal analytic in na-
ture, depends on a clever analysis of the eigenvalues of
certain time-frequency limiting operators.

The proofs of the two theorems we present here are based
on Proposition A below, which is a version of a result found
by Wexler and Raz [10]. The proof of Proposition A uses
a technique found by Tolimieri and Orr in [11], and is pre-
sented in Section 2. We first need two definitions.

DEFINITION 1. Let h € L*(R). We say that & has a finite
upper frame bound if there is a B < oo such that

S Fotwams) |* < BIFIP, Fe?®.  (1.3)

nm

DEFINITION 2. Let g,y € L*(R). We say that g and y
are dual if both g and y have a finite upper frame bound
and

(f1h) = Z (fv ')’rra,mb) (grm,mbvh) » f,h [ Lz (R) (1.4)

nh.m
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PrOPOSITION A.  Let g,y € L*(R) both have a finite up-
per frame bound. Then g and vy are dual if and only if

(gr/bisary) = abbpdy, k1l € Z, (1.5)

where & denotes Kronecker’s delta.

The condition on g,y of having a finite upper
frame bound represents a mild restriction on decay and
smoothness of g,y (it is satisfied, for instance, when
Yows  huypisa)) < oo for h = g,v; see [11, Sect. 3)).
However, it cannot be deleted: for the case ab = 1/k. k =
1,2,..., one can construct, by using Zak transforms (see [2,
pp. 976 and 981]), an example of a pair g,y € L3(R) such
that (1.5) holds while neither g nor y has a finite upper
frame bound (so that even convergence of the right-hand
series in (1.4) is questionable). We note that any 4 in the
Schwartz space .7 of smooth and rapidly decaying func-
tions has a finite upper frame bound.

We shall now outline how Proposition A is used for prov-
ing the two theorems. For Theorem 1, we argue as fol-
lows. Assume that g,» € L*(R) are dual. Then it fol-
lows from the Cauchy-Schwarz inequality used in (1.4)
with f = h € L3(R) that

{ “fH ;; | 5 '}’namh }
I 2
% { Vil ; | (f 8nams) | } . (1.6)

Hence we see that (1.2) holds with frame bounds A =
B;',B = B, where B,, B, are upper frame bounds for g,y
Therefore, by Proposition A, it follows that the g,,m» con-
stitute a frame if we can find a y € L*(R) with a finite upper
frame bound such that the biorthogonality condition (1.5)
holds. Now when g(1) = 2'/*exp(—nt?),ab < 1, it is well
known to those familiar with the Bargmann transform, see
[1], that such a y indeed exists. For selfcontainedness of
the present paper we show, more explicitly, the following
result in Section 3, for which we follow the methods in [12,
Sect. 2].

PROPOSITION B.  For any € > 0,& < 1 — ab, the function
ve defined by

o0

l/4bK -1 rrl Z (_])f'ief'rra{k+l/2)1/b

ol -] o

ve () =
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with
K= Z (*l)k 2k +1)e nalk+1/2)*/b
k=—00
i 2 m s
erfc(r) = _\/_7? e Vds (1.8)
t

provides a vy satisfying (1.5). Moreover, v, € %

Interestingly, and consistently with the theory in [12, 2.7
and 2.14], this v,(r) tends to

yo(t) =274k tem S (1)
k+1/2=¢
X exp(—wa (k + %)“/b) (1.9)

as ¢ | 0. For the special case that ab = 1, this yg has
become known as Bastiaans® singular function; see [13].
As to the Theorem 2, we proceed as follows. Suppose
that ab > 1 and g € L*(R) is such that the g,,.» constitute
a frame. In [2, Chap. II], a dual function y is constructed

as follows. Define the operator § : L>(R) — L*(R) by
Sf = Z (fs gna,mb) Ena,mbs f = Lz (R) (1.10)
Then
YW =5"¢ (L.11)

is a dual function, so that it satisfies (1.4) for all f,h €
L*(R). This " is special among all dual functions in
the following sense: for any f € L?*(R) the minimum of
> nm |anm|? over all @ € [%(Z?) (not necessarily of the form

( (f’ 7rw.mb) )H,m) SatiSfying

J = z UnmEna,mb (1.12)
nm
is uniquely assumed by
= (£, 7 ,m €7 (1.13)
Qpm 3 2 Ynamb ) » M . 2

The latter result was mentioned in [1, p. 155], and a proof
of it (for general frames) can be found in [3, p. 61].

The proof of Theorem 2 can then be completed as fol-
lows. Take f = g in (1.12). Since we have for this f the
trivial representation

=8= Z OnOm8namb (1.14)

nm
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it follows that

[ (&70) [2 = Z ’ (g’ '}’Sa,mb) |2 = Z Ié"ﬁ’”lz = 1. (LI5)

ngn nm
However, from (1.5) with k = | = 0, we see that

(g.9°) =ab > 1. (1.16)

Contradiction.
2. PROOF OF PROPOSITION A

In this section, we present the proof of our version of the
Wexler—Raz result (Proposition A). Wexler and Raz prove
their result in [10, Appendix A] by formally using the Pois-
son summation formula twice without stating further re-
strictions on g and <. For the proof of Theorem 1 (in which
case g and +y are in .%’), this formal approach can be eas-
ily justified. Moreover, for the proof of Theorem 2 we do
not need the full Proposition A: it is sufficient to show that
(1.5) holds for £ = [ = 0 only. This would simplify the
work to be done, but we consider Proposition A as stated
as interesting result in its own right. We found it somewhat
cumbersome to make the Wexler—Raz argument rigourous
so as to yield the precise statement of Proposition A. In-
stead, we use a different approach, based on some results of
windowed Fourier tranforms; see [14, Sect. 1.4]. The tech-
nique used in the proof presented here is due to Tolimieri
and Orr [11].

It is well known that for u, v € L*(R) the function

(2

(2.1)

is bounded, continuous, and in L*(R). Moreover, there is the
resolution-of-identity formula, valid for u,v,w,z € LA(R),

// STF,, (x,y) (STF,. (x,y))" dxdy = (u,w)(z,v).
(2.2)

We use (2.2) with u = f_g4,v =V g w = h,z = g where
a, € R, and there results

ff (f’ ,),I‘y) (ngyg h) e27riax+21r£ﬂ_vdxdy

= (f-parh) (87-pa) . (23)

Now let g,y € L*(R) have a finite upper frame bound,

A.J. E. M. JANSSEN

and consider the function A defined by the pointwise abso-
lutely convergent series

H (x’ )’) = E (f“ Xy 'Ymr.mb) (grm,mhah x,av) 7

n,m

nyeR (2.4)

Since for u,v € L*(R) we have

(“**.\‘.7_5'» Vr,s) e plmily+a)x (Ll, VH-X..\'-H') , LytselR,
(2.5)

we have

H (x,y) = Z (fa ')’na+.r,mb&_\') (gnﬁx,mbﬂ-a h) .

nm

(2.6)

It thus follows that H is periodic in x and y with periods
a and b, respectively. Moreover, by using that [|f . , —
f—-r.-—.s‘” - 0,||h -y — h”f‘*.\‘{l - 0 as (x,y) — (1,5) to-
gether with the finite upper frame bound condition and (2.4),
it is seen that A is continuous.

We compute the Fourier coefficients ¢ in

1 7 o
H (x, y) - EI; Z (.Heﬁlmk.r/afhr!,\/b (2.7
kel

as follows. We have

a b
= f H {x,y) e iia+dnily/b dety
o Jo

(
a b
= E f (fa ')"mH-.r,mhi-y) (gna Fxmb+ys h)
nm <0 S0

X elvrikx/ﬂ+2ﬁily/hdxdy
= f f (£ 750) (gupo h) Eklar2801t 43y, (2.8)

where we have used Lebesgue’s bounded convergence the-
orem and the fact that exp(2rikx/a + 2nily/b) is (a, b)-
periodic in (x, y). Hence, by (2.3), we obtain

et = (F-yypisash) (8 V-1/bk/a) - 2.9

Now assume that (1.5) holds. Then we have from (2.7),
(2.9) and continuity of H that

x,y €ER. (2.10)

H (x,y) = (f.h),
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In particular,

Z (fs 71?&.7”1‘1) (gna,mb’h) = H(O, 0) = (f, h) . (2] l)

n.m

Conversely, assume that g, y satisfy (1.4). Then
H(x,y) = (f vy s, _v) =(f.h), xyeR, (212
so that by (2.9),

(f-trbisarh) (& ¥-1/bh/a) = absi8; (f, ), k1€ L.
(2.13)

By taking f,h € L*(R) such that (fry,h) never vanishes

(e.g., f(t) = h(r) = 2'/%exp(—nr?)), we conclude that g, y
satisfy (1.5), and the proof is complete.

3. PROOF OF PROPOSITION B

In this section, we prove Proposition B, for which we
follow the approach of [12, Sect. 2]. With

p(t) =2y () =g(M)y* (), 1€R,  (3.1)
it is seen that the condition (1.5) is equivalent to
(F*p)(/a+ik/b) = abbib;, k1€ 17. (3.2)
Here #* denotes the inverse Fourier transform
(F*0) () = fez”":’g;(t)dr, zeC (3.3)
Now consider the theta function
G(z) = i (= 1)k = malk+1/27/b p2k+ Dwiaz - = (s (3.4)
k=

see [15, Chap. 21]. This G has simple zeros at all lattice
points I/a + ik/b,k,l € Z, as follows from the elementary
properties of theta functions. This suggests taking ¢ such
that

ab G(z) _,.»
PR

_ . zeC,
G0 z -

(3.5)

(F*) (2)

with & > 0 such that the resulting v, see (3.1), is in &
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With " = dp/dt, we can write (3.5) as

(F"¢') @ = ~2miz (F70) () = DG D) e ™,
—2miab
G0

(3.6)

Equation (3.6) can be solved for ¢’ by taking the Fourier
transform at both sides. We find from (3.4) that

o0
=D (1)
k=—0
e e*ﬂ'(i’(ki’[/z}g/b""‘iﬂ."l(.'—(k'i'1/2)0)2

= x(). (3.7)

With

c= ! (3.8)

T ab+e’

the function y in (3.7) can be written as

o0

x (1) = Dg~ /2 et Z (-1)

k=—00

—Ta | .
X exp (;b? (k +35- bcr) ) , (39

showing that

x (1) =0 (exp (—mct®)), t€R. (3.10)
Moreover, since (see (3.6))
-[Hx(.s')d.s'=DG(0):0, (3.11)

we have that
90(1‘)=—/ x(s)ds=0(e"m2), teR  (3.12)
!

It then follows from smoothness of ¢ and (3.1) that y" is
a smooth function satisfying

Y () =24 (1) = 0 (e’“("””’z) . 1eR. (3.13)

Hence, v € & whenever ¢ > 1, 1.e., & < 1 —ab, as required.

Finally, we get explicitly from (3.7), (3.12), (3.13) that

0
'}’* (t) — _D8*1/22—[/4elﬂ'2 Z (L])L

k=—00

o0
5 g~k 1/27/b f e e o kr1/2al 4o (3 14)
t
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Recalling the definitions of K, erfc, G,D in (1.8), (3.4),

3.

6), we can put y in the form of (1.7), and the proof of

Proposition B is complete.

1
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