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We consider the causal channel

. (k+1)e ) k>0
* 0 k <0.

We truncate the channel response so that N, = 0 and N, = 20.
As before, the channel input is an i.i.d. sequence, and the noise is
stationary and white with SNRchan =20 dB. We assume the number
of feedforward taps is fixed at n = 10.

Fig. 3 shows the optimal decision delay (defined as that which
maximizes SNRpre) versus the number of feedback taps. When the
number of feedback taps is small, the optimal feedforward filter is
two-sided; that is, it contains both causal and anticausal taps. As
expected, however, the optimal A converges to 7 — 1 as the number
of feedback taps get large. Note that when A = n—1, the feedforward
filter is anticausal; that is, {wx} = {w—_a, -+, wo}.
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Some Counterexamples in the
Theory of Weyl-Heisenberg Frames

A. J. E. M. Janssen

Abstract— We present an example of a positive function g with
a positive Fourier transform § and reasonable smoothness and decay
properties such that )

(=1)"™ exp (7itm) g(t — n), n,m € Z

does not constitute a frame for L2(R). We also give counterexamples
for the statement that one can tell (in)definiteness of a Weyl-Heisenberg
frame operator from (in)definiteness of its Weyl symbol.

Index Terms—Weyl-Heisenberg frame, Zak transform, Weyl symbol.

I. INTRODUCTION

In her pioneering paper [1, p. 981], Daubechies raises the question
whether a positive function g having a positive Fourier transform
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§ always generates a Weyl-Heisenberg frame gna,ms, n,m € Z,
when a,b > 0, ab < 1. Here

gz,4(t) = exp (—mizy + 2mwiyt) g{t — z), t ER

for real z and y. This is motivated by the fact that this holds true
for Gaussian g, see [2] for an elementary proof for this special case
and for references to earlier proofs.

We shall show in this correspondence that the above statement
does not hold when @ = 1, b = }. That is, we shall display a smooth
function g with decay like 1/t* such that both g and § are positive
everywhere, while the functions exp (witm) g(t —n), n,m € Z, do
not constitute a frame for L*(R).

The two other examples concern the question whether perhaps a
frame operator (corresponding to a ¢ € L*(R)) is positive definite
when, or only when, its Weyl symbol is positive (almost) everywhere.
We refer to [3]-[5] for motivating material concerning the Weyl
symbol and its role in time—frequency analysis. Although it is well
known that the notions of positivity of linear operators of L*(R) and
positivity of their Weyl symbols are quite different, they are not totally
unrelated. For instance, the Weyl symbol of a positive-definite linear
operator becomes everywhere positive upon appropriate Gaussian
smoothing. And since frame operators constitute a very special class
of linear operators of L*(R), it could well be that the notions of
positivity of frame operators and that of their Weyl symbols do agree.

~Our two examples show that they do not.

II. THE EXAMPLES

According to [1, p. 981], the lower and upper frame bounds A and
B of the collection

(=L

are given by

exp (mitm) g(t — n), n,m € Z

A= essint (U )t o) +|T )= 5.9 @D)
B =ess sup|(U- g) @ﬂkHWwW——)F 2.2)

where for a ¢ € L*(R) we have denoted
U:9)(t,8) = ™ g(s—1),5,tER 23)

lez

for the Zak transform of g. When § denotes the Fourier transform

30)= [ ge)dsv € R @4)
we can as well consider
. R 1
(U= §)(s,t)” + (U= §)(s,t + §)I2 25)

for the computation of the frame bounds A4, B. This is so since

(U- g)(t +1,8) = (U= 9)(t,5), (Uz @) (2,5 + 1)
= e*"(U. 9)(t,9) (2.6)
and
(U. §)(t,5) = €7 (U: g)(s, —t)- @7
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We shall find a positive ¢ with a positive § such that

.05 =D (D3 =D
leZ
={sp-1d-ad+ah}

+{a -3 sy +adh) +
e8)

vanishes. (Observe that both g and § are even functions.) Now since
el 3 o101
(U= g)(é’: Z) T '_(Uz 9)(§a Z)

it is concluded that (2.5) vanishes for s = 1, ¢t = 1. And since we

construct § such that U § is continuous, we see that A in (2.1) is

zero, so that (—1)"™ exp (witm) g(t —n) does not generate a frame.
We construct § in the form

2.9

i) so(v}+zam(2k+7/4), vER. (2.10)
Here we have set ax = ¢~ and
o) = (e —e4) x_3 1, ()
P(v) = (1 = v]) x(=1,1 (). (2.11)

Obviously, §
1/4
o(t) =2 f (7 = e™Y*) cos 2wt dv

0

is positive, continuous, and rapidly decaying. Also

1/4
1 —1/4 —

27121,‘2 ((1 e mt)e /" + f (1 —cos2mut)e du)

0
>0 2.12)

for all ¢ € R, and
1 5
Y(t) =2 /(1 — v) cos 2mvt dv = sinc® (wt) > 0 2.13)
0

for all ¢ € R. Hence g is positive and continuous everywhere, and
decays like 1/¢%. Finally

(U- g)(%,%) =0

since ¢3 vanishes outside (—3, ), while each of the functions

Hommm)

is linear on each of the intervals
171709 150
41 4 - ] 41 4 k)

1@(%1_{47/4) “‘B(gki{im)
~¥(eerm) * ¥am)
=¥(mam) - $(me7m)
o) +(5as)
=..=0. (2.14)

so that

Since U. g is continuous by continuity and rapid decay of g, this
completes the construction of the example.

We now turn to the two examples concerning Weyl symbols of
frame operators. The Weyl symbol of a projection operator f €
L*(R) — (f,g) g, where g € L*(R), equals the Wigner distribution
W, of g, given by

W,(t,v) = / e~ gt + % s) g (t— % s)ds, t,v € R. (2.15)

When @ > 0,b > 0 and g € L%(R) we have

Woams (8, 7) = Wy(t — na,v — mb), n,m € Z. (2.16)
Hence, the Weyl symbol S W of the frame operator S
fFEL*R) > Sf=) (fignayms)gnams  (217)
is given, at least formally, by
S%(tv) =) Wy(t - na,v —mb). (2.18)

n,m
Now let a > 0,5 > 0, ab > 1, and take g(t) = exp(—7t®). As
is well known (gna,mb)n,mez is not 2 frame for L*(R), since there
are well-behaved 0 # f € L?(R) such that Sf = 0. Nevertheless,
5% > 0 everywhere since

W,(t,v) = 2exp (=2xt* — 2mv°), t,v €R. (2.19)

Hence (strict) positivity of the Weyl symbol S* does not imply that

the frame operator S is positive-definite.

‘We use this opportunity to point out an error in [6]. There it is stated
on p. 586 that for the operator “ A, the Szegd theorem holds.” In
the present case we have A, = S when we choose

= Z 9y Gk b,1/a) 0176(2) b1 ja(—y)- (2.20)

dp(z,y) =
This is so since by [7, Proposition 2.8] we have the following
representation for S:

Sf= al_b ;(gagk/a,r/a)fk/b,r/m feL*R), | (2.21)
where f, , (t) = e~ ™ FVHETE £(3 _ 2) ag above. Without going into
all the details of the argument, the statement “the Szegd theorem
holds for A, would imply that O is not in the spectrum of A, = §
since S is bounded away from 0. Qur example shows that this
statement is incorrect.

For our final example we consider a > 0, 4 > 0, ab < 1 and

g(t) = e " xpo,000(t), t ER (2.22)

where a > 0. It has been shown in [8, sec. 4], that (gna,mb)n,mez
is a frame for L?(R). An elementary calculation shows that

=20t sin4nvt

Wy(t,v) = X[0,00)(),5, 7 € R. (2.23)
By using the formula (for y > 0)
i sindr(v —mb)y _ 1 sin(2x(|295] + 1) v/b)
== L (2.24)
o Wl mb) b sin (v /b)
with |z| = largest integer < x, we obtain
S%(t,v) = Z W,(t—na,v—mb)
1 —tatiney S0 (27((12(t=n0) 8] +) /1)
b n't-—zna)O sin (v /b)

(2.25)
for the Weyl symbol of S.
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Now consider the case that a = b = 1, so that

S¥ (t,v) = Z —2a(t=n) S 2r(l2(t—n)] + %)V)' 2.26)

sinwy
n<t

Whenm € Z, 1 <6< 1,and t=m+35, we see that for large c,
only the term with n = m needs to be considered in the right-hand
side of (2.26), so that g

25 SiN 3TV

SVt vy~ e
&) sin T

227

which becoms negative when » varies. Hence the Weyl symbol of S
takes negative values, and it does so on a large subset of R®.
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Irregular Sampling for Spline Wavelet Subspaces

Youming Liu

Abstract— Spline wavelets 1, (t) are important in time-frequency
localization due to

i) %m can be arbitrarily close to the optimal case as m is sufficiently
large,
ii) %¥m has compact support and simple analytic expression, which
lead to effective computation.
Although the spline wavelet subspaces are so simple, Walter’s well-
known sampling theorem does not hold if the order of spline m is even.
Moreover, when irregular sampling is considered in these spaces, it is
hard to determine the sampling density, which is a serious problem
in applications. In this correspondence, a general sampling theorem is
obtained for m > 3 in the sense of iterative construction and the sampling
density 6., is estimated.

Index Terms—Sampling, spline wavelets, algorithm.

I. INTRODUCTION AND PRELIMINARIES

A. Introduction

The classical Shannon sampling theorem plays an important role in
signal analysis. Unfortunatly this theorem is not appropriate for some
signals. Walter [1] established a more general sampling theorem in
wavelet subspaces, which does not contain spline wavelet subspaces
with even order. Janssen [2] obtained one sampling theorem for
quadratic spline wavelet subspace by using samples {(n+3)} instead
of the integer set {n}. Although Walter’s main theorem in [1] was
extended to the irregular case [3], this involved a hard to determine
& (with this §, t,’s can be used as samples to recover a signal if
|tn = n| < &) even in the spline case. The more serious problem
in applications is the complexity of error estimation . Recently,
Feichtinger and Grochenig [4] designed a new iterative algorithm
to recover a band-limited signal, which uses only the function values
on a sequence and thus can be thought of as a sampling theorem.
By this sampling theorem, a band-limited signal f can be recoved
by any samples {f(t.)} if the density of {¢.}, which is defined as
sup,, (tn+1 —tn), is less than 1 and the more important thing is that
the truncation error ||f. — f]| is easily estimated.

B. The Algorithm of Feichtinger and Grochenig
We review the Feichtinger—Grochenig algorithm in this section.
- Given
f € B~ = {f € L*(R), supp f C [-m,7]}
define
fo(t)= Af = P(Z f(zn)xn)
n€Z

and

frar = fe + A(f = fx)
for k > 0, where P is the projection from L*(R) onto B,
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