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Improved Ronchi test with extended source

Joseph Braat and Augustus J. E. M. Janssen

Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Received April 27, 1998; revised manuscript received August 17, 1998; accepted September 3, 1998

A modified Ronchi test with an extended source is presented. By the use of a matched pair of source grating
and Ronchi grating, a pure shearogram between two shifted wave fronts is obtained, and the extra interference
with other disturbing grating orders is largely suppressed by the use of a specific grating layout. © 1999
Optical Society of America [S0740-3232(99)00501-3]

OCIS codes: 050.1950, 220.4810, 030.1640, 050.1380, 100.2960, 120.3180, 070.2580.
1. INTRODUCTION
The Ronchi test has been the subject of numerous publi-
cations; both the original ray optics approach and the
more complicated physical optics explanation have been
described. An interesting paper has been written by the
inventor himself,1 and extensive reviews are found in
Refs. 2–5.

In Fig. 1 the elementary Ronchi setup is shown. To in-
crease the optical throughput in the case of an incoherent
source, the source point is replaced by an extended source
that is covered by a source grating conjugate in position
and magnification with the Ronchi grating. The ray op-
tics approximation is valid when coarse gratings are used.
The maxima of the projected Ronchi pattern are given by
the conditions

D xt8~X, Y ! 5 mx px8 , Dyt8~X, Y ! 5 mypy8 , (1)

where (X, Y) are the coordinates on the wave front and
(x8, y8) are the coordinates in the plane of the Ronchi
grating. px8

8 and py8
8 are the periods associated with the

Ronchi gratings for analysis in the x8 and y8 directions.
D xt8 and Dyt8 are the lateral aberration components of a
ray on the wave front at the coordinates (X, Y); mx and my
are integers.

As such, the method is not adapted to the measurement
of the small residual aberrations of a system close to the
diffraction limit. To increase the sensitivity of the
method, the pitch of the gratings has to be reduced; how-
ever, the diffraction effects are not negligible in this case,
and they require the more complete physical optics analy-
sis. The pattern on the screen D in the case of a higher-
frequency grating has been depicted in Fig. 2; diffracted
beams up to second order are shown, each shifted over a
D Xm8 equal to ml R8/p8 (m is the order number, and R8 is
the distance from the Ronchi grating GR to the screen D).
The Ronchi grating interferometer with the use of a point
source shows an interference pattern in each overlapping
region of two orders. In the case of a Ronchi test with an
extended grating source, the interference phenomenon is
more intricate; one generally refers to the Zernike–van
Cittert theorem,6 which states that the coherence func-
tion over the entrance pupil of the optics under test is
given by the Fourier transform of the intensity distribu-
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tion function of the extended source. In the case of a
source grating, periodic coherence peaks are present in
the entrance pupil, corresponding to the far-field diffrac-
tion orders of the source grating. Applied to the Ronchi
grating interferometer, the mutual interferences caused
by the Ronchi grating are now limited to orders that have
a shift proportional to the separation of the spatially pe-
riodic coherence peaks in the illuminated entrance pupil.5

One of the consequences is that the orders 11 and 21 do
not interfere if the illumination is done with a 50% duty-
cycle source grating, because the second-order coherence
peaks then have disappeared. In Section 2 we will ana-
lyze in more detail the Ronchi interferogram on the detec-
tion screen D in the presence of an arbitrary source inten-
sity function.

The main problem in evaluating a Ronchigram is that
several interference patterns overlap and the interpreta-
tion of the composite pattern is difficult (see Fig. 2). In
Ref. 7 spatial filtering in a defocused plane is used to se-
lect only two orders. This method requires high-
frequency gratings, and the spatial filtering is cumber-
some in a Ronchi test with an extended source. The
multiple-interference problem can also be tackled by at-
tributing a value <l/NA to the period p8 so that only the
zero and first orders overlap in well-separated regions
(NA is the numerical aperture of the beam leaving the
exit pupil). The disadvantage of this solution is that p8
tends to very small values if a high-aperture optical sys-
tem needs to be tested. Another disadvantage is that the
reconstruction of a wave-front aberration is optimum if
the shear ratio, defined as s 5 D X18/(2r8), is definitely
less than 0.50 (Ref. 8) (2r8 is the diameter of a diffraction
order). For these reasons we need to devise a Ronchi
configuration with a low shear ratio that is capable of
yielding unambiguously reconstructed wave fronts.

In the remainder of this paper, we show how the Ron-
chi test can be adapted to a shear ratio below 50% without
stumbling into the multiple-interference problem
sketched above. In Section 2, after a theoretical intro-
duction, we describe the principle of the improved Ronchi
test. In Section 3 we show how the choice of a specific
grating profile can lead to a drastic reduction of the un-
wanted interferences at low shear ratios.
1999 Optical Society of America
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Fig. 1. Ronchi test. An extended source covered by a grating structure GS is focused by the optics O to be measured onto the corre-
sponding Ronchi grating GR . An auxiliary lens L is inserted to image the exit pupil EP of the optics onto the detection screen D. In
the ray optics approximation, the local fringe deformation is given by the transverse aberration on GR of a ray originating from the
corresponding point in EP.
2. PRINCIPLE OF THE IMPROVED RONCHI
TEST
In this section we first give a more detailed analysis of the
Ronchi test when one is using an extended source. In the
second part of this section, we discuss the necessary modi-
fications that lead to the improved version of the Ronchi
test.

In Fig. 3 a source point Q belonging to an extended
source emits a spherical wave toward the optics under
test, O, here represented by a simple lens. The (aber-
rated) image point is located at Q8 in the plane where the
Ronchi grating is located. The focused wave is split by
the grating into a number of diffraction orders, which
partly overlap. In Fig. 3 the zero order (solid circle) and,
e.g., a first order (dotted–dashed circle) are present on the
screen D. The state of interference in the overlap region
of both circles depends on two factors. First, the aberra-
tion of the focused wave determines the phase in each
point of the overlap region, depending on the lateral shear
induced by the Ronchi grating. Second, the position x8 of
the imaged point Q8 with respect to the lines of the Ron-
chi grating determines an extra overall phase shift fm
5 2pmx8/p8 between the zero order and a diffracted or-

Fig. 2. Far-field pattern projected onto the detection screen D
[coordinates (X8, Y8) in the case of a point source]. The pattern
is the superposition of the diffraction orders generated by the
Ronchi grating GR . The spacing between the centers of the dif-
fraction orders is determined by the wavelength l of the light,
the grating period p8, and the distance R8 between the grating
plane and D.
der with order number m. This overall phase shift fm
limits the possible extent in the x direction of an extended
incoherent source that contributes a large number of in-
dividual interference patterns, all with varying values of
fm . As a rule of thumb, we require that the value of
ufmu not exceed p/2 to avoid a smear-out of the composite
interference pattern, and this limits the incoherent source
size to p8/(2b8), taking into account the magnification b8
of the optics. The source size can be extended by block-
ing the source sections that give rise to destructive inter-
ference patterns, and this leads to the introduction of a
source grating that is conjugate in period with the ana-
lyzing Ronchi grating. The final tolerable extent of the
source is then limited by the isoplanatic region of the op-
tics under test, over which the aberrational change of the
imaging pencils is less than, e.g., l/100.

A. Image Formation of a Ronchigram
To calculate the intensity pattern on the detection screen
D, we start with a single source point in the source plane
S (see Fig. 4); the coordinates of the particular source
point are (x0 , y0), and the complex amplitude of the wave
on the exit pupil sphere EP of the optical system is given
by

A~X, Y; x0 , y0! 5 @I~x0 , y0!#1/2expF 2pi

l R0
~x0X 1 y0Y !G

3 f ~X, Y; x0 , y0!, (2)

where I(x0 , y0) is the intensity distribution in the source
plane.

The function f (X, Y; x0 , y0) is the pupil function of
the optical system to be tested; formally, it also depends
on the position (x0 , y0) of the source point. The linear
exponential factor is required because, in general, the
spherical wave is obliquely incident on the entrance pupil
of the optical system O.

The complex amplitude in the plane of the Ronchi grat-
ing is obtained by Fourier-transforming the expression for
A(X, Y):

B~x8, y8; x0 , y0!

5 @I~x0 , y0!#1/2EE expH 2pi
l FXS x0

R0
2

x8

R D
1 YS y0

R0
2

y8

R D G J f ~X, Y !dXdY, (3)
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where we have dropped the dependency of the pupil func-
tion f on the source coordinates. This implies that the
source extent should be limited to the isoplanatic region
of the optical system O.

The amplitude distribution B(x8, y8) after the Ronchi
grating is obtained by multiplying this function by the
amplitude transmission function t(x82D x8, y8) of the
grating. The shift D x8 in the position of the grating
makes it possible to influence the phase of a diffraction or-
der of the grating.

The propagation of the light through the lens L toward
the detection screen D is accounted for by a second Fou-
rier transform:

A8~X8, Y8; x0 , y0!

5 EE t~x8 2 D x8, y8!B~x8, y8!

3 expF22pi
l R8

~x8X8 1 y8Y8!Gdx8dy8. (4)

Inserting the expression for B(x8, y8) from Eq. (3), we ob-
tain

Fig. 3. Impression of the interference pattern produced by a
single coherent source point Q on the detection screen D. In the
plane of the Ronchi grating, a lens (not shown) takes care of the
imaging of the exit pupil of the optics under test onto D.
A8~X8, Y8; x0 , y0!

5 EEEE @I~x0 , y0!#1/2

3 f ~X, Y !expF 2pi

l R0
~Xx0 1 Yy0!G t~x8 2 D x8, y8!

3 expH 22pi

l
Fx8S X8

R8
1

X

R D
1 y8S Y8

R8
1

Y

R D G J dx8dy8dXdY. (5)

The function t(x8, y8) is associated with the Ronchi grat-
ing GR (see Fig. 4); we suppose that this function is peri-
odic in x8 with period p8 and that it has an infinite extent.
Its Fourier transform with respect to the x8 coordinate
then yields a series of d functions. In the y8 direction, we
permit a geometry that is more general than that of a
standard rectilinear grating: the grating cross section
may depend on the vertical coordinate y8. In this case
the Fourier transform of t(x8, y8) can be written as a se-
ries of products of equidistant d functions along the X8
axis and Y8-dependent functions whose shape depends on
the order number m of a particular d function:

FT$t~x8 2 D x8, y8!% 5 (
m

expS 2pim
D x8

p8
D

3 d S X8 2
ml R8

p8
D tmS Y8

R8
D , (6)

where the functions tm(Y8) take into account the specific
profile of an mth diffraction order in the Y8 direction.

Using Eq. (6) in the expression for A8(X8, Y8; x0 , y0)
and performing the integration over the d functions, we
obtain, apart from a constant factor, the following:
Fig. 4. Schematic layout of the Ronchi test showing the definition of the coordinates used in the analysis. The Ronchi grating is fol-
lowed by a lens L that images the exit pupil of the optical system onto the detection screen D. The axial distances from the source to the
entrance pupil, from the exit pupil to the Ronchi grating, and from the Ronchi grating to the detection screen are R0 , R, and R8, re-
spectively. To simplify the analysis, we fix the pupil magnification of the optical system to 11.
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A8~X8, Y8; x0 , y0!

5 (
m

@I~x0 , y0!#1/2EE f ~X, Y !

3 expF 2pi

l R0
~Xx0 1 Yy0!Gd S X8

R8
1

X

R
2

ml

p8
D

3 tmS Y8

R8
1

Y

R D expS 2pim
D x8

p8
D dXdY

5 (
m

@I~x0 , y0!#1/2expH 2pim

p8
FD x8 2 S R

R0
D x0G J

3 E f S 2
R

R8
X8 2

ml R

p8
, Y D tmS 2

Y8

R8
2

Y

R D
3 expF2

2pi

l R0
S R

R8
x0X8 2 Yy0D GdY. (7)

The intensity distribution on the detection screen that is
due to a source point at (x0 , y0) is given by the squared
modulus of A8(X8, Y8; x0 , y0). The total intensity that
is due to the extended source is obtained by integrating
over the source intensity while taking into account the
presence of the source grating with intensity transmit-
tance function T(x0 , y0). These operations yield our fi-
nal expression:

Itot~X8, Y8! 5 (
m

(
m8

EE I~x0 , y0!T~x0 , y0!

3 expH 2piS m 2 m8

p8
D FD x8 2 S R

R0
D x0G J

3 EE dY1dY2 f S 2
R

R8
X8 2

ml R

p8
, Y1D

3 f * S 2
R

R8
X8 2

m8l R

p8
, Y2D

3 tmS 2
Y8

R8
2

Y1

R D tm8
* S 2

Y8

R8
2

Y2

R D
3 expF 2pi

l R0
~Y1 2 Y2!y0Gdx0dy0 . (8)

With respect to the incoming illumination, we make the
following assumptions:

I~x0 , y0! 5 1, T~x0 , y0! 5 Tx~x0!; (9)

the second assumption implies that we use a rectilinear
source grating. The function Tx(x0) is periodic in x0 with
period p.

With the change of variables h 5 Y1 , Y1 2 Y2 5 q, we
perform the integration over y0 , which yields the d func-
tion d(q). The integration of Eq. (8) with respect to q
now yields

Itot~X8, Y8!

5 (
m

(
m8

EE Tx~x0!expH 2piS m 2 m8

p8
D FD x8

2 S R

R0
D x0G J f S 2

R

R8
X8 2

ml R

p8
, h D f * S 2

R

R8
X8

2
m8l R

p8
, h D tmS 2

Y8

R8
2

h

R D t m8
* S 2

Y8

R8
2

h

R D dh dx0 .

(10)

The integration over x0 of the periodic function Tx(x0)
with period p yields a nonzero value only if the following
condition is satisfied:

p 5 S n

m 2 m8
D S R0

R D p8, (11)

where n is some integer (m Þ m8).
This condition says that, apart from a trivial magnifi-

cation factor R/R0 , the periods of the source grating and
the Ronchi grating should be matched to each other in
some ratio (m 2 m8)/n. If this matching condition is
satisfied, the value of the integral equals A n , the com-
plex amplitude of the nth diffraction order of the source
grating. Before evaluating Eq. (10), we introduce a pos-
sible shift D x0 in the position of the source grating. A
shift D x0 of GS or a shift D x8 of the Ronchi grating GR
makes it possible to alter the state of interference on the
screen D and thus opens the way to applying multiexpo-
sure phase-stepping interferometry.9

We finally obtain the following for the total intensity
distribution, apart from a multiplicative factor:

Itot~X8, Y8!

5 (
n52`

`

An expH 2pin

p FD x0 1 S R0

R DD x8G J
3 (

m
E f S 2

R

R8
X8 2

ml R

p8
, h D

3 f * S 2
R

R8
X8 1

nl R0

p
2

ml R

p8
, h D

3 tmS 2
Y8

R8
2

h

R D tm2n@~R0 /R !~p8/p !#
* S 2

Y8

R8
2

h

R D dh.

(12)

If we inspect a single cross product that is due to two in-
terfering terms, we derive the following expression from
Eq. (12):
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Im,m8~X8, Y8!

5 A~m2m8!@~R/R0!~ p/p8!#

3 expF2pi~m 2 m8!

p8
S R

R0
D x0 1 D x8D G

3 E f S 2
R

R8
X8 2

ml R

p8
, h D

3 f * S 2
R

R8
X8 2

m8l R

p8
, h D

3 tmS 2
Y8

R8
2

h

R D tm8
* S 2

Y8

R8
2

h

R D dh, (13)

where we have used for the index of A the value of n that
satisfies the relation of Eq. (11). Note that the real value
of the cross product is obtained by summing Im,m8 and
Im8,m . Such a partial sum might even be negative; it is
only the full expression for Itot that should be positive
definite.

To avoid unwanted interference terms, we prefer a
situation where only one cross term plus its complex con-
jugate contributes to the intensity on the detection
screen. A good impression of the importance of various
cross products is obtained when we evaluate the expres-
sions:

Cm,m8 5 E tm~h!tm8
* ~h!dh. (14)

On reducing Eq. (13) to this simplified version, we ignore
the convolution effect present in Eq. (13), and we suppose
that the value of a cross product is independent of the po-
sition (X8, Y8) on the detection screen. This is justified,
since the functions tm are all very narrow with respect to
the slowly varying pupil function f (X8, Y8), and on using
the simplified expression (14), we just neglect parasitic ef-
fects close to the border of the (displaced) functions
f (X8, Y8).

The evaluation of the cross products according to Eq.
(14) is presented in Subsection 3.B and is treated in more
detail in Appendix B.
B. Implementation of the Improved Ronchi Test
Having analyzed the formation of the Ronchi interfero-
gram, we now describe in this subsection the measures
taken to arrive at a Ronchi test that yields the interfero-
gram of just two sheared pupil functions.

In the Ronchi test with an extended source, the en-
trance pupil is illuminated in a partially coherent way.
The coherence function in the entrance pupil is obtained
by means of a Fourier transform of the intensity function
in the source plane (Zernike–van Cittert theorem6).
Apart from a scaling factor, this coherence function is also
found in the exit pupil of the optics to be tested. In the
case of an extended source covered with a transmission
grating (period pS), the coherence function is periodic
with a spacing Dc in the exit pupil given by

Dc 5
l R

pS8
, (15)

where pS8 is the period of the image of the source grating.
In Fig. 5 we have shown the coherence geometry in the

exit pupil EP and the way in which the Ronchi grating
with period p8 is splitting up the outgoing wave into vari-
ous diffraction orders. In the ideal case, we would like to
have only first-order satellites in the exit pupil. How-
ever, with the use of binary gratings, higher-order satel-
lites are generally present. Also, the Ronchi grating it-
self will generally show higher-order diffracted waves,
and this leads to the ambiguous multiinterference pattern
of the Ronchi test.

We propose to solve the ambiguity problem by the fol-
lowing two steps:

• p8 5 2pS8 . This particular choice causes the Ron-
chi grating to diffract the waves coming from the coherent
points Qi over an angle corresponding to half of the dis-
tance Dc in the exit pupil. From Fig. 5 we see that, e.g.,
waves from the coherent points Q0 and Q11 overlap in a
point P8, which, backprojected onto the exit pupil, is situ-
ated in P0, exactly midway between Q0 and Q11. In the
Ronchi pattern, we thus observe the interference between
the points Q0 and Q11 in a position midway, and, applied
Fig. 5. View along the vertical direction of the periodic coherence distribution in the exit pupil EP of the optics (horizontal cross section
with Y 5 y8 5 Y8 5 0). The interference in a general point P8 is determined by, e.g., the odd orders from the Ronchi grating GR of the
points Q0 and its coherent satellites Qi . Further contributions in P8 originate from the even orders of the point P0 and its coherent
satellites Pi . The period p8 of the Ronchi grating is twice the period pS8 of the projected source grating. Only the diffracted waves
toward the point P8, conjugate with the point P0 on the wavefront, have been shown. The auxiliary lens L has been omitted.



136 J. Opt. Soc. Am. A/Vol. 16, No. 1 /January 1999 J. Braat and A. J. E. M. Janssen
to all points Q0, this is equivalent with the interference
between two mutually shifted pupil functions.

• Introduction of a cosine-type binary grating. The
suppression of unwanted interference cross products is
essential for obtaining a linear Ronchigram. In general,
the intensity in a point P8 is also influenced by, e.g., the
interference between the zero order of P0 itself and the
minus second order of, e.g., the point P21, both generated
by the Ronchi grating GR . Further unwanted interfer-
ences in P8 are due to, e.g., the third order of Q12, the fifth
order of Q13, the minus fourth order of P22, etc. All
these unwanted coherent additions should be suppressed,
leading to a clean, unambiguous Ronchigram.

We may conclude that a pure Ronchigram based on the
interference of only two shifted wave fronts is possible
both when the set of coherent satellites Qm is strongly re-
duced and when the Ronchi grating itself preferably de-
livers only zero and first orders. This condition can be
fulfilled with amplitude gratings having an analog cosine
transmission function, but such gratings are not a realis-
tic option in many applications. With the more standard
binary gratings, higher orders are inevitable; the even or-
ders can be more or less suppressed by choosing a duty
cycle of 50%. In Section 3 we will show how an effective
cosine grating can be simulated by using a binary struc-
ture and how extra measures can be taken to reduce fur-
ther the residual amplitude of certain orders.

3. BINARY GRATING STRUCTURE WITH
COSINE-TYPE BEHAVIOR
The parameter that is commonly used to reduce the mag-
nitude of higher orders of a standard rectilinear binary
grating is its duty cycle. By tuning the grating to a 50%
duty cycle, one can suppress all even diffraction orders.
However, for high-frequency gratings with a period ap-
proaching the wavelength of the light, it is generally not
possible to suppress the even orders for both s and p po-
larization because the apparent duty cycle strongly de-
pends on the state of polarization. Even if the even or-
ders can be adequately suppressed, the amplitude of the
odd orders will remain at an appreciable level. In Fig. 6
we have shown how two incoherent source points Q1 and
Q2 contribute to the final interference pattern on the
screen D. By the introduction of a cosine-type grating for
GR , the duty cycle of the Ronchi grating becomes y8 de-
pendent. A varying duty cycle implies varying amplitude
and phase of the diffraction orders, which are all contrib-
uting to the total interference pattern at D. Taking into
account the proper weighting with the amplitude and the
phase of the diffraction orders, we may expect that the
summed interferences between certain orders is nulled as
a result of a mutual phase reversal when the source
points have covered the full vertical cross section of the
cosine-type grating.

To simulate the behavior of a cosine-type grating with a
binary transmission structure, we have chosen the layout
of Fig. 7; this type of grating we call a quasi-cosine grat-
ing. In Subsection 3.A we calculate the diffraction pat-
tern of such a quasi-cosine binary grating. For the rel-
evance of such a grating in the Ronchi test, it is important
to show that the cross products of higher-order diffraction
patterns with the lower orders (zero and first orders) are
effectively zero. Only in this case can we claim to pro-
duce a Ronchi interferogram that is due to the interfer-
ence of only two shifted pupil functions. The calculation
of the cross products of diffraction orders will be the sub-
ject of Subsection 3.B.

A. Far-Field Diffraction Pattern of the Quasi-Cosine
Grating
In the following analysis, we apply a Fourier transform to
the transmission function of the quasi-cosine grating; op-
tically, this transform is obtained as the complex ampli-
tude distribution in the focal plane of the lens L (see Fig.
4). With use of the grating plane coordinates (x8, y8)
and the far-field coordinates (X8, Y8), the amplitude of

Fig. 6. Ronchi test carried out with a cosine-type grating. The
state of interference on the detection screen depends on the vary-
ing duty cycle that is encountered by the incoherent source
points Q when they are imaged onto the cosine grating (points
Q8).

Fig. 7. Binary grating with quasi-cosine transmissive behavior.
A section of a grating with five periods has been shown. Inte-
grated along vertical lines, the transmission varies in a cosine
manner. The period of the grating in the x8 direction is p8, and
the extent in the y8 direction is q8. The digitized appearance of
the grating profile is an artifact that is due to the limited number
of pixels used to represent the smooth profile. In a practical ap-
plication, the ratio p8/q8 will be much smaller than the value of
1/5 presented in the figure.
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the far-field diffraction pattern of the function t(x8, y8) in
the focal plane of L is proportional to

At~X8, Y8! 5
1

~2K 1 1 !p8q8
E

2Kp8

Kp8 E
2q8/2

q8/2
t~x8, y8!

3 expF 2pi
l R8

~X8x8 1 Y8y8!Gdx8dy8, (16)

where the grating comprises 2K 1 1 grating periods
(length p8) in the x8 direction and has a height q8 in the
y8 direction. The distance from the grating plane to the
far-field observation region is again denoted by R8.

The binary transmission function t0(x8, y8) of an el-
ementary (centered) period is given by
The far-field amplitude consists of a number of diffraction
orders and shows the well-known

sinc@~2K1 1 !X8p8/l R8#/sinc~X8p8/l R8!

pattern in the X8 direction with peaks at the positions
X8 5 ml R8/p8. The amplitude of an order with order
number m is given by the product of the first two factors
of Eq. (19) after the summation sign. A standard recti-
linear grating would have a sinc(Y8q8/l R8) profile in the
Y8 direction. Because of the y8-dependent modulation of
the quasi-cosine grating, the far-field pattern is more
complicated and generally extends over a larger distance.
The Y8-dependent profile is given by the first two terms
from Eq. (19). For the amplitude at Y8 5 0, we find the
t0~x8, y8! 5 5
1, 2

q8

4 F1 1 cosS 2p
x8

p8
D G < y8

,
q8

4 F1 1 cosS 2p
x8

p8
D G , 2

p8

2
< x <

p8

2

0, elsewhere

. (17)
Equation (16) can be rewritten as

At~X8, Y8! 5
1

~2K 1 1 !p8q8
(

k52K

1K

expS 2pik
Xp

l R8
D

3 E
2p8/2

p8/2 E
2q8/2

q8/2
t0~x8, y8!

3 expF 2pi

l R8
~X8x8 1 Y8y8!Gdx8dy8;

(18)

then, when we use the expression for t0(x8, y8), the final
amplitude turns out to be (see Appendix A)

At~X8, Y8! 5
1

2 (
m F JmS pY8q8

2l R8
D

pY8q8

2l R8

G
3 sinFp

2 S Y8q8

l R8
1 m D G

3 sincFpS m 1
X8p8

l R8
D G

3

sincFp~2K 1 1 !S X8p8

l R8
D G

sincFpS X8p8

l R8
D G . (19)
following for the various diffraction orders:

At~0, 0 ! 5 1/2,

At~6l R8/p8, 0! 5 1/4,

At~6ml R8/p8, 0! 5 0, umu > 2. (20)

The amplitude pattern around a diffraction peak at
(ml R8/p8, 0) is studied in more detail in Subsection 3.B.

B. Far-Field Cross Products of Diffracted Orders
When a quasi-cosine grating is used in a Ronchi setup, ei-
ther as a source grating or as the proper analyzing Ronchi
grating, the diffracted orders are superposed in the detec-
tion plane D. The amplitude pattern of diffracted orders
is identical with respect to the X8 coordinate but varies in
the orthogonal Y8 direction as a function of the order
number m. The amplitude on the line Y8 5 0 is given by
Eqs. (20), but for a full cancellation of the unwanted in-
terferences with higher orders we have to prove that the
integral along Y8 of the product of the amplitudes of two
diffraction orders yields zero except for the cross product
of the zero and first orders.

Replacing the quotient Y8q8/l R8 by v, we evaluate the
following expression for a cross product Cm,n between two
diffraction orders:

Bm~v ! 5
1

2 FJm~pv/2!

pv/2 Gsin@~p/2!~v 1 m !#,

Cm,n 5 E
2`

1`

Bm~v !Bn~v !dv, (21)

where it can be easily deduced that C2m,n 5 Cm,2n
5 Cm,n .

In Appendix B we shall show that all Cm,n can be
evaluated:
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Cm,n 5 5
0 m 1 n odd, m, n 5 1, 2,...,

22

p 2 F 1

~n 1 m!2 2 1GF 1

~n 2 m!2 2 1G
m 1 n even, m, n 5 1, 2,...,

(22)

(23)

C0,1 5 C1,0 5
1

8
,

C0,n 5 Cn,0 5 0, n 5 3, 5,..., (24)

C0,0 5
1

2
2

2

p 2 ,

C0,n 5 Cn,0 5
22

p 2 S 1

n2 2 1 D 2

, n 5 2, 4,... .

(25)

For the contrast cm,n of an interfering term, we define

cm,n 5 2
An8Cm,n

A0C0,0
, n8 5 ~m 2 n !

R

R0

p

p8
, (26)

and the relative contrast rm,n is given by

rm,n 5
Cm,n

C1,21
, (27)

the ratio of the strengths of an unwanted interference
term and the desired signal term C1,21 .

From the expression for Cm,n , we conclude that one set
of perturbing terms, the interferences of the zero order
and the higher odd orders, is effectively suppressed by us-
ing a quasi-cosine grating. However, the terms C0,n ,
with n even, are not fully suppressed, especially the C0,2
term, which has a relative value with respect to C0,0 of ap-
proximately 1/13. To eliminate this term, we have to ap-
ply an extra modification of the grating structure. We
propose a grating sequence where the sections with their
center points located at negative x8 values are displaced
over a distance 2p8/8, whereas the sections on the posi-
tive side of the y8 axis are shifted over a distance 1p8/8.
It can easily be shown that with this geometrical modifi-
cation the grating orders are multiplied by a factor
cos@(p/4)m(X8p8/l R8)#, which eliminates the orders with
order number 62,66,...; the next unwanted cross product
(C0,4) is left unchanged by this operation but is at a level
of less than 0.003 with respect to C0,0 . We have to accept
a change in the amplitude of the leading first orders by a
factor of (1/2)A2 by this modification of the grating, and
this reduces the modulation depth of the Ronchigram by a
factor of 2. When phase-stepping procedures are used for
the evaluation of the wave-front function, the final modu-
lation depth of the interference pattern is of less concern
than the inherent nonlinearity caused by the presence of
higher-order interferences.
4. CONCLUSION
We have proposed an interferometric Ronchi test with an
extended incoherent source that produces a pure shearo-
gram of two shifted pupil functions. Because of the ab-
sence of interference between other than the first two or-
ders, the shear ratio can be given an arbitrary small
value. This avoids the complicated manufacture of high-
frequency gratings when interferometry has to be applied
to highly resolving systems with either a large numerical
aperture or a small wavelength.

The linearity of the Ronchigram is obtained by giving
the analyzing Ronchi grating a period that is twice the pe-
riod of the source grating. In this way, only orders with
an order difference of 2 are able to interfere. Harmful in-
terferences are suppressed by using a specially designed
binary grating with a cosine profile instead of a rectilin-
ear profile. Such a profile is effective in suppressing the
odd higher orders. When the grating is divided into two
sections separated by a shift (offset) of a quarter-period,
the second order is also suppressed, and a virtually per-
fect cosine grating is obtained. Our preferred implemen-
tation of the new Ronchi test is to use a standard rectilin-
ear grating as the source grating and a quasi-cosine
grating with a p/4 offset as the Ronchi grating. The bi-
nary Ronchi grating is achromatic with regard to the rela-
tive strengths of its diffracted orders. When the analyz-
ing Ronchi grating is modified into a phase grating, its
optimum performance becomes wavelength dependent; at
a phase depth of p, the diffraction efficiency is greatly im-
proved with respect to the binary amplitude grating.

APPENDIX A: DERIVATION OF THE
FAR-FIELD AMPLITUDE PATTERN OF A
QUASI-COSINE GRATING
Starting with the expression for the far-field amplitude of
Eq. (18),

At~X8, Y8! 5
1

~2K 1 1 !p8q8
(

k52K

1K

3 expS 2pik
X8p8

l R8
D E

2p8/2

p8/2 E
2q8/2

q8/2
t0~x8, y8!

3 expF 2pi

l R8
~X8x8 1 Y8y8!Gdx8dy8, (A1)

we first perform the integration over y8 by using the
x8-dependent integration limits from Eq. (17):

At~X8, Y8! 5
1

~2K 1 1 !p8q8 (
k52K

1K

expS 2pik
X8p8

l R8 D
3 E

2p8/2

p8/2
expS 2pi

X8x8

l R8 Ddx8
l R8

2piY8

3 XexpH piY8q8

2l R8 F1 1 cosS 2p
x8

p8D G J
2 expH 2piY8q8

2l R8 F1 1 cosS 2p
x8

p8D G J C.
(A2)
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With the Jacobi–Anger10 expression

exp~ia cos u! 5 (
m52`

1`

imJm~a !exp~imu!, (A3)

and performing the integration over x8, we obtain the ex-
pression

At~X8, Y8! 5
1

2~2K 1 1 !
(

k52K

1K

expS 2pik
X8p8

l R8
D

3 (
m

JmS pY8q8

2l R8
D

pY8q8

2l R8

sinFp

2 S Y8q8

l R8
1 m D G

3 sincFpS m 1
X8p8

l R8
D G . (A4)

The summation over k from 2K to 1K, the number of
grating sections, is done by using the expression for the
sum of a geometric series, and this yields the final result
of Eq. (19).

APPENDIX B: CALCULATION OF THE
CROSS PRODUCTS OF THE GRATING
ORDERS
We shall evaluate

Cm,n 5
1
4 Im,n , m, n 5 0, 1,..., (B1)

where

Im,n 5 2E
2`

1`

Jm~x !Jn~x !
sin~

1
2 pm 1 x !sin~

1
2 pn 1 x !

x2 dx

5 E
2`

1`

Jm~x !Jn~x !

3
cos@

1
2 p~m 2 n !# 2 cos@

1
2 p~m 1 n ! 1 2x#

x2 dx.

(B2)
We distinguish between the cases m 1 n odd and m
1 n even, according to which

Im,n 5 5
~21 ! pE

2`

1`

Jm~x !Jn~x !
sin 2x

x2 dx

m 1 n 5 2p 1 1

~21 ! pE
2`

1`

Jm~x !Jn~x !
~21 !n 2 cos 2x

x2 dx

m 1 n 5 2p

(B3)

for p 5 0, 1,... . (B4)

Our first observation is that the functions Jm(x), m
5 0, 1,..., and Jn(x)/x, n 5 1, 2,..., have Fourier trans-
forms that vanish outside uvu , 1. Explicitly, see Ref. 11
(Eqs. 11.4.24 and 11.4.25 on p. 486):

cm~v!ªE
2`

1`

exp~2iv x !Jm~x !dx

5
2~2i !mTm~v!

~1 2 v2!1/2 B~v!, (B5)

fn~v!ªE
2`

1`

exp~2iv x !
Jn~x !

x
dx

5
2i

n
~2i !n~1 2 v2!1/2Un21~v!B~v!, (B6)

where m 5 0, 1,... in Eq. (B5) and n 5 1, 2,... in Eq. (B6).
In Eqs. (B5) and (B6), the Tm (Un) are the Chebyshev
polynomials (see Ref. 11, Chap. 22) of the first (second)
kind and of degree m(n), and B(v) is given by

B~v! 5 H 1, uvu , 1

0, uvu > 1
. (B7)

Accordingly, when m > 1, n > 1, the functions
Jm(x)Jn(x)/x2 have Fourier transforms (1/2p)fm * fn by
the convolution theorem, and fm * fn is continuous and
vanishes for uvu > 2. It follows for p 5 1, 2,... that

Im,n 5 5
0 m 1 n 5 2p 1 1, m, n 5 1, 2,... ,

~21 !~m2n !/2E
2`

1`

Jm~x !Jn~x !/x2 dx,

5
28

p
F 1

~n 1 m !2 2 1GF 1

~n 2 m !2 2 1G ,

m 1 n 5 2p, m, n 5 1, 2,... .

(B8)

(B9)

For the last identity in Eq. (B9), we have used Ref. 12 [Eq.
(551, 2b) on p. 202].

There remain the cases with at least one of m and n
equal to zero. By symmetry of Im,n , we may assume that
m 5 0.

For n 5 2p 1 1 odd we use in Eq. (B3) the representa-
tion

sin 2x

2x
5

1

4
E

22

2

exp~2iv x !dv. (B10)

We then obtain the following from Eqs. (B5) and (B6) by
the convolution theorem:
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I0,n 5 E
2`

1`

J0~x !Jn~x !
sin 2x

x2 dx

5
1

2
E

22

12F E
2`

1`

J0~x !
Jn~x !

x
exp~2ivx !dxGdv

5
1

4p
E

22

12F E
2`

1`

c0~v1!fn~v 2 v1!dv1Gdv

5
1

4p
E

2`

1`

c0~v1!dv1E
2`

1`

fn~v!dv, (B11)

where in the last step we have used the fact that c0 and
fn vanish outside uvu , 1, so that *22

12 can be replaced by
*2`

1` . The last expression in Eq. (B11) can be evaluated
by using the inverse Fourier transforms

Jm~x ! 5
1

2p
E

2`

1`

exp~ivx !cm~v!dv,

1
x

Jn~x ! 5
1

2p E
2`

1`

exp~ivx !fn~v!dv,

(B12)

and the result is (where dp is Kronecker’s delta)

I0,2p11 5
1
2 pdp , p 5 0, 1,.... . (B13)

We next consider I0,n with even n > 2. Then Jn(x)/x2

has a Fourier transform that vanishes outside uvu , 1.
Explicitly, one can show from Eq. (B6) and the elemen-
tary properties of the Chebyshev polynomials that for n
5 2, 3,...,

E
2`

1`

exp~2ivx !
Jn~x !

x2 dx

5
in

n
@1 2 v2#1/2F 1

n 1 1
Un~v! 2

1

n 2 1
Un22~v!G

3 B~v! (B14)
As above, it follows that for even n > 2,

I0,n 5 ~21 !n/2E
2`

1`

J0~x !Jn~x !/x2dx 5
28

p
S 1

n2 2 1 D 2

(B15)
[see again Ref. 12 [Eq. 551, 2b) on p. 202].

We finally evaluate I0,0 . Using the representation

S sin x

x D 2

5
1

4
E

22

2

~2 2 uvu!exp~2ivx !dv (B16)

and [see Eq. (B5)]

E exp~2ivx !J0
2~x !dx

5
1

2p
E

2`

1`

c0~v1!c0~v 2 v1!dv1

5
2

p
E

2`

1` B~v1!B~v 2 v1!dv1

~1 2 v1
2!1/2@1 2 ~v 2 v1!2#1/2 , (B17)
we obtain

I0,0 5 2E
2`

`

J0
2~x !S sin x

x D 2

dx

5
1

p
E

22

2

~2 2 uvu!

3H E
2`

` B~v1!B~v 2 v1!dv1

~1 2 v1
2!1/2@1 2 ~v 2 v1!2#1/2J dv.

(B18)

The integral on the far right-hand side of Eq. (B18) can be
evaluated by elementary means, and we obtain

I0,0 5 2p 2 8/p. (B19)

This settles our last case.
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