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Abstract.

We analyze some iterative algorithms for the computation of the canonical

tight window gt and the canonical dual window gd associated with a Gabor

frame (g; a; b). For these algorithms we present lower bounds on A=B, where

A > 0 and B < 1 are the best frame bounds of (g; a; b), such that conver-

gence is guaranteed to the canonical window in question. As to computation

of gt we consider algorithms that do require inversion of intermediate frame

operators as well as algorithms that do not require these inversions. As to

computation of gd we, naturally, consider algorithms where no frame op-

erator inversions are required. Thus we propose for gt an unconditionally

converging algorithm with quadratic convergence using inversions, a condi-

tionally (A=B > 1
2
) converging algorithm with quadratic convergence (with-

out inversions), and a conditionally (A=B > 3=7) converging algorithm with

cubic convergence (without inversions). For gd we propose a conditionally

(A=B > 1
2
(
p
5 � 1)) converging algorithm with quadratic convergence, and

a conditionally (A=B > 0:5138:::) converging algorithm with cubic conver-

gence. All these algorithms are iterative in nature. In the kth iteration step,

the (k + 1)-st window is expressed as a linear combination of two or three

simple terms comprising k, g and (the inverses of) the frame operator S

and Sk corresponding to (g; a; b) and (k; a; b), respectively. For the analysis

of the algorithms with cubic convergence (that require three terms in the

iteration steps), a sharp and possibly new form of Kantorovich's inequality

is required. By considering the case that a = b = 1 (so that Zak transform

techniques can be used), it is shown that this sharp Kantorovich inequality is

best possible in the present context of Gabor frame operators. The analyses

of the algorithms with quadratic convergence for gt and gd can be uni�ed

by considering coupled recursions comprising a parameter � 2 [0; 1]: the
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choice � = 1
2
yields the algorithm for gt and the choice � = 0 or 1 yields

the algorithm for gd. Unfortunately, these coupled recursions do not yield an

algorithm to compute S��g, except in the cases (� = 0; 1
2
; 1) that we already

had. All analyses are based on an appropriate use of the spectral mapping

theorem, relating the spectra of (frame) operators corresponding to k and

k+1, and a fair amount of elementary but sometimes complicated considera-

tions concerning extrema of low-degree polynomials on compact sets. These

considerations also show that the above given convergence guaranteeing lower

bounds on A=B are realistic for general Gabor frames but rather pessimistic

for Gabor frames (g; a; b) with smooth, rapidly decaying window g.

Keywords: Gabor frame, canonical tight window, canonical dual window,

iterative method, quadratic and cubic convergence, Kantorovich's inequality,

coupled recursions, Zak transform.
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1 Introduction and preview of results

We continue the developments in [1], Sec. 4, where we analyzed an algorithm,

independently found by H. Feichtinger and T. Strohmer, for the computation

of the tight window gt canonically associated with a Gabor frame (g; a; b) for

L2(R). We use the common conventions and notations in Gabor frame theory.

Hence we have a > 0, b > 0, ab � 1 and g 2 L2(R). The frame operator S

corresponding to (g; a; b), de�ned by

f 2 L2(R) ! Sf =
X
n;m

(f; gna;mb) gna;mb ; (1)

is supposed to be a bounded, positive de�nite linear operator of L2(R). In

(1) we have for x; y 2 R

gx;y(t) = e2�iyt g(t� x) ; a:e: t 2 R : (2)

We let A = min �(S), B = max �(S), with �(S) the spectrum of S, be the

optimal frame bounds of (g; a; b). Furthermore, we denote by

gt = S�1=2g ; gd = S�1g (3)

the canonically associated tight frame generating window and dual window,

respectively. For further information about Gabor frames and canonical win-

dows we refer to [1], [2], Ch. 4, [3], and [4], Chs. 5{9. Before proceeding we

want to point out that [1] contains a number of rather innocent but disturbing

errors; these, with their corrections, can be found at the webpage

http://www.math.ucdavis.edu/�strohmer/papers/2000/tight.html
The algorithm analyzed in [1], Sec. 4 for the computation of gt is as

follows. Set

0 = g ; k+1 =
1

2

k

kkk +
1

2

S�1
k k

kS�1
k kk

; k = 0; 1; ::: ; (4)

where Sk is the frame operator corresponding to (k; a; b). Denoting

Ak = min �(Sk) ; Bk = max �(Sk) ; Qk =
Ak

Bk

; k = 0; 1; ::: ; (5)

it can be shown that, see [1], (4.18),

1 � Qk+1 � 4Qk

(1 +Qk)2
= 1�

�1�Qk

1 +Qk

�2
; k = 0; 1; ::: : (6)
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Hence Qk ! 1 at least quadratically. A supplementary argument (also see

Sec. 3) then yields

 k

kkk � (ab)�1=2 gt
 � (1�Q

1=4
k )

vuut 2

1 +Q
1=2
k

; k = 0; 1; ::: : (7)

This supplementary argument involves Kantorovich's inequality, see (19) be-

low, and the observation that for all k

(ab)�1=2 gt =
S
�1=2
k k

kS�1=2
k kk

: (8)

In this paper we present some more iterative algorithms, together with

their convergence analysis, for the computation of gt and gd. All these

algorithms have as a common feature that the iterates k have the form

k = �k(S) g with �k a (possibly complicated) function analytic on �(S). As

a consequence, all frame operators Sk corresponding to (k; a; b) commute

with S, and (8) is valid. We do not intend to compare these algorithms with

one another or with other existing algorithms to compute canonical windows

due to space limitations (see [1], Subsec. 4.2 for results of this type for algo-

rithm (4)). The computation of gt according to (4) requires the inversion of

the frame operators Sk. In many cases these inversions are non-prohibitive

from the point of view of computation time. This rests upon the following

considerations. Assume that (; a; b) is a Gabor frame with frame operator

T . When  is suÆciently smooth and rapidly decaying there holds

T�1 =
X
i;j

�� 1
ab
GM

��1�
ij;oo

i=b;j=a ; (9)

where GM is the Gram matrix

((i0=b;j0=a; i=b;j=a))i;j2Z;i0;j02Z (10)

of the Riesz system (i=b;j=a)i;j2Z. This Gram matrix is rapidly decaying

in ji � i0j, jj � j 0j when  is well-behaved, and highly structured when ab

is rational. This implies that the computation of T�1 according to (9)

is feasible in many cases. As a consequence the computation of S�1
k k as

required in (4) is feasible in many cases. There does exist a formula like (9)

for t = S�1=2g, viz.

t =
X
i;j

�� 1
ab
GM(g)

��1=2�
ij;oo

gi=b;j=a ; (11)
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with GM(g) the Gram matrix of the Riesz system (gi=b;j=a)i;j2Z. However, the

computation of the inverse square root at the right-hand side of (11) presents

much more problems than the computation of the inverse at the right-hand

side of (9), even when g is well-behaved and ab is rational.

Although the inversion of frame operators does not present unsurmount-

able problems, one may ask whether the computation of gt can be done with

algorithms of simplicity comparable with that of (4) that do not require in-

version of frame operators. This question can be answered in the positive.

One such algorithm is the following one. Set

0 = g ; k+1 =
3

2

k

kkk �
1

2

Skk

kSkkk ; k = 0; 1; ::: ; (12)

where Sk is the frame operator corresponding to (k; a; b). We shall show for

this algorithm results like (6), (7), provided that A=B > 1
2
(here A, B are

the best frame bounds of the frame (g; a; b)). Hence the advantage of not

having to invert frame operators comes at the price that convergence is not

always guaranteed.

An algorithm of a somewhat similar nature for the computation of the

canonical dual gd was communicated to the author by H. Feichtinger in De-

cember 2001. Here one sets

0 = g ; k+1 = 2
k

kkk
� Skg

kSkgk
; k = 0; 1; ::: ; (13)

where Sk is the frame operator corresponding to (k; a; b). We shall show

that k ! gd=kgdk at least quadratically when A=B > 1
2
(
p
5�1) = 0:6180::: .

Hence, as one might have expected, an even more stringent condition on the

best frame bounds A, B of (g; a; b) is required to guarantee convergence.

The conditions A=B > 1
2
and A=B > 1

2
(
p
5�1), guaranteeing convergence

of (12) and (13), respectively, can be weakened somewhat when one is willing

to consider slightly more complicated recursion steps. Accordingly, we shall

consider the algorithm

0 = g ; k+1 =
15

8

k

kkk
� 5

4

Skk

kSkkk
+

3

8

S2
kk

kS2
kkk

; k = 0; 1; ::: ; (14)

where Sk is the frame operator corresponding to (k; a; b). We shall show

that k ! (ab)�1=2 gt at least cubically when A=B > 3
7
. Hence, not only the

range of allowed values of A=B is enlarged but also the convergence rate gets

improved by including the term involving S2
kk. Similarly, we shall consider

the algorithm

0 = g ; k+1 = 3
k

kkk
� 3

Skg

kSkgk
+

S Sk k

kS Sk kk
; k = 0; 1; ::: ; (15)
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where S and Sk are the frame operators corresponding to (g; a; b) and (k; a; b),

respectively. We shall show that k ! gd=kgdk at least cubically when

A=B > Q0 := 0:5138::: . Here Q0 is a root of a particular algebraic equation.

Hence also in this case the range of allowed values of A=B is enlarged while

the convergence rate is improved.

In the next section we give a more detailed overview of the results pre-

sented in this paper.

2 Paper outline

In this paper we shall analyze the algorithms described by (4), (12), (13), (14)

and (15) with respect to their convergence behaviour and we shall establish

conditions on A=B, the ratio of the best frame bounds of (g; a; b), under

which convergence is guaranteed.

Up to now no motivation has been given for why one would write down

any of the algorithms with a certain expectation regarding the convergence

rate. In Section 3 we shall present a rationale for proposing algorithms of

the type as in Section 1 with a desired convergence rate. This rationale leads

readily to the algorithms (4), (12){(15), and it is straightforward to see how

one can get algorithms with a higher expected convergence rate.

In Section 4 we give the details for the algorithm described by (12) to

compute gt; that is, we shall show that k ! (ab)�1=2 gt at least quadratically

when A=B > 1
2
. By considering the case a = b = 1, so that we can examine

the algorithm in the Zak transform domain, we shall show that the lower

bound 1
2
on A=B is close to being lowest possible when convergence to the

correct tight window for general Gabor frames is required. For Gabor frames

(g; a; b) with a well-behaved window g this lower bound 1
2
seems somewhat

pessimistic. In Section 5 we give the details for the algorithm described by

(13) to compute gd; that is, we show that k ! gd=kgdk at least quadratically
when A=B > 1

2
(
p
5� 1).

The analyses in Sections 4, 5 have several common features, and one

could wonder whether they can be uni�ed. In Section 6 we show that the

algorithms (12), (13) can be considered as special instances of a coupled

recursion. We take � 2 [0; 1], and we consider the recursion

"
0
�0

#
=

"
g

g

#
;

"
k+1

�k+1

#
=

2
66664
(1 + �)

k

kkk
� �

Sk�k

kSk�kk

(2� �)
�k

k�kk
� (1� �)

Tkk

kTkkk

3
77775 (16)

where Sk and Tk are the frame operators corresponding to (k; a; b) and
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(�k; a; b), respectively. For � = 1
2
we have that either component of the vec-

tors in (16) coincide with the algorithm (12). For � = 0 or 1, one component

of the vectors in (16) reduces to the trivial recursion g; g; ::: , while the other

one coincides with algorithm (13). It can be shown that (16) converges at

least quadratically when

(A=B)3 + (A=B)2 � (1 + �� �2)A=B + �� �2 > 0 ; (17)

but it is not so obvious, except in the cases � = 0; 1
2
; 1, what the limiting

windows actually are. It will be shown by an example with a = b = 1 in

the Zak transform domain that these limiting windows are not simply of the

form ��(S) g with �� a g-independent function.

In Section 7 we present a sharpening of Kantorovich's inequality as a

preparation of the analyses given in Sections 8, 9 of the algorithms (14),

(15). Let T be a positive de�nite linear operator of a Hilbert space H and

let A = min�(T ) > 0, B = max�(T ) <1. Then there holds for any f 2 H

A � kTfk
kfk � kT 2fk

kTfk � B (18)

and
2AB

A2 +B2
� kTfk2
kfk kT 2fk � 1 : (19)

The �rst inequality in (19) is Kantorovich's inequality. For a worst-case

analysis of the algorithms (14), (15), a more precise type of inequalities is

required: what values can be taken by w = kTfk=kfk under the condition
that kT 2fk=kTfk has a particular value u 2 [A;B]. We shall show that

AB

(A2 +B2 � u2)1=2
� w � u (20)

and that the lower bound in (20) is best possible. Moreover, by taking

a = b = 1 so that Zak transform techniques apply, we shall show that for

any u; w 2 [A;B] satisfying (20) there is a Gabor frame(; a; b) with frame

operator S and frame bounds A, B such that kSk=kk = w, kS2k=kSk =
u.

In Sections 8, 9 we present the analyses of the algorithms (14), (15) for

the computation of gt, gd with cubic convergence. We shall show that (14)

converges at least cubically, with limiting window (ab)�1=2 gt, when A=B >

3=7. Furthermore, we shall show that (15) converges at least cubically, with

limiting window gd=kgdk, when A=B > Q0 = 0:5138::: . Here Q0 =
3

2W 3
0

�
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� 9

4W 6
0

� 1
�1=2

with W0 the solution W larger but close to 1 of the equation

9W 2 � 16W 3 + 9W 4 + 6W 5 + 6W 7 + 2W 9 = 24 : (21)

As with all algorithms in this paper, the analyses are based on an applica-

tion of the spectral mapping theorem so that spectra of consecutive (frame)

operators can be related. In the present cases this leads to the study of the

ratio of the extrema of the functions

z
h15
8
v � 5

4

z2

u
+

3

8

�z2
u

�2i
; z

h
3v � 3

z

u
+
�z
u

�2i
; (22)

respectively, where z ranges through a particular interval [E; F ] � (0;1)

and u, v are arbitrary numbers satisfying

E � u � F ;
u�1EFp

E2 + F 2 � u2
� v � 1 : (23)

Despite the simple appearance of the functions in (22) the analysis is quite

involved.

In Section 10 we collect all the examples and illustrations from the pre-

vious sections for the case that a = b = 1. In this case we can consider

the algorithms (4), (12){(15) in a pointwise manner in the Zak transform

domain. This is so since in the Zak transform domain frame operators with

a = b = 1 are just multiplication operators. As a result the convergence be-

haviour of the algorithms is readily understood. Accordingly, it can be seen

that the lower bound 1
2
for A=B in algorithm (12) is close to being lowest

possible, the pitfall of the coupled recursion (16) with � 6= 0; 1
2
; 1 can be es-

tablished explicitly, sharpness of the augmented Kantorovich inequality (20)

in the context of Gabor frame operators can be shown, and some heuristics

as to why the convergence guaranteeing lower bounds on A=B seems too

pessimistic for well-behaved windows can be developed.

3 Rationale for proposing recursions

In this section we explain the mechanism that leads us to write down the re-

cursions (4), (12){(15) for the computation of gt, with or without inversions,

and of gd. For this, and for all other developments in this paper, Lemma 2

in [1] is so basic that we repeat it here in extenso (somewhat modi�ed).

Proposition.
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Assume that (g; a; b) is a Gabor frame with frame operator S and best frame

bounds A = min�(S) > 0, B = max�(S) < 1. Let � be a function ana-

lytic in an open neighourhood of �(S), and assume that �(s) > 0, s 2 �(S).
Then (�(S)g; a; b) is a Gabor frame with frame operator S �2(S), and the

best frame bounds are given by

min
s2�(S)

s �2(s) ; max
s2�(S)

s �2(s) : (24)

Furthermore, (g; a; b) and (�(S)g; a; b) have the same canonically associated

tight frame window, i.e.

gt = S�1=2g = T�1=2h = ht ; (25)

where T = S �2(S) is the frame operator corresponding to (h = �(S)g; a; b).

By a repeated application of this Proposition it is easily seen that in all

algorithms all k have the form �k(S)g with �k a (possibly quite compli-

cated) analytic function. As a consequence the corresponding frame opera-

tors S �2
k(S) commute with S and there holds

S
�1=2
k k = S�1=2g : (26)

Of course, for the last thing to hold, it should be veri�ed that �k is positive

on �(S).

We start by developing a mechanism for proposing recursions for the

computation of gt without operator inversions. We note �rst that convergence

of the sequence k=kkk to gt=kgtk is a consequence of convergence of the

scaled frame operators Sk=kSkk to the identity I. Indeed, on account of (26)

and the Kantorovich inequality (19) (applied to T = S
�1=4
k , f = k and A =

B
�1=4
k , B = A

�1=4
k where Ak = min�(Sk) > 0 and Bk = max�(Sk) <1), we

have

0 �
 k

kkk �
gt

kgtk
2 =  k

kkk �
S
�1=2
k k

kS�1=2
k kk

2 =

= 2� 2
(S

�1=2
k k; k)

kkk kS�1=2
k kk

= 2
�
1� kS�1=4

k kk2
kkk kS�1=2

k kk
�
�

� 2
�
1� 2B

�1=4
k A

�1=4
k

B
�1=2
k + A

�1=2
k

�
= 2

(B
1=4
k � A

1=4
k )2

B
1=2
k + A

1=2
k

=

=
2(1�Q

1=4
k )2

1 +Q
1=2
k

; Qk := Ak=Bk : (27)
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Now assume we start with a Gabor frame (g; a; b) and that we construct k,

k = 0; 1; ::: , according to a recursion

0 = g ; k+1 = �(Sk)k ; k = 0; 1; ::: ; (28)

where Sk is the frame operator corresponding to (k; a; b) and � is a smooth

function. Suppose that for a certain k = 0; 1; ::: and some c > 0 we have that

Sk � cI, and that we want

kSk+1 � cIk = O(kSk � cIkm) (29)

for some m = 2; 3; ::: . By the Proposition, applied to the Gabor frame

(k; a; b) and �, we have that

Sk+1 = Sk �
2(Sk) : (30)

Hence we must choose � such that

S
1=2
k �(Sk) = c1=2I +O(kSk � cIkm) : (31)

Now by Taylor expansion

S
�1=2
k = c�1=2(I � (I � c�1Sk))

�1=2 =

= c�1=2
m�1X
j=0

(�1)j
� �1=2

j

�
(I � c�1Sk)

m�1 +O(kSk � cIkm) =

= c�1=2
m�1X
j=0

amj(c
�1Sk)

j +O(kSk � cIkm) (32)

where the amj can be written down explicitly. It thus follows that

S
1=2
k

m�1X
j=0

amj(c
�1Sk)

j = c1=2I +O(kSk � cIkm) : (33)

This suggests to take

�(s) =
m�1X
j=0

amj c
�j sj : (34)

However, the number c and thus the numbers c�j are not readily available.

Fortunately, since Sk � cI we can estimate the c�j according to

c�j � kkk
kSjkkk

; j = 0; 1; :::; m� 1 : (35)
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A division by kkk then �nally leads to the proposal

k+1 =
m�1X
j=0

amj
S
j
kk

kSjkkk
; (36)

where we note that the S
j
kk=kSjkkk all have unit norm while

Pm�1
j=0 amj = 1.

The cases m = 2; 3 lead directly to the algorithms (12), (14).

We next develop a mechanism for generating recursions for the compu-

tation of the canonical dual gd for a Gabor frame (g; a; b). Assume that we

construct k, k = 0; 1; ::: , according to a recursion

0 = g ; k+1 =  (S; Sk)k ; k = 0; 1; ::: ; (37)

where S and Sk are the frame operators corresponding to (g; a; b) and (k; a; b),

respectively, and  is an analytic function of two variables. There are smooth

functions fk, gk such that

k = fk(S)g ; Sk = gk(S) ; (38)

and where gk(s) = s f 2
k (s). As a consequence we have that

k = S�1=2 S
1=2
k g ; gd = S�1g = (SSk)

�1=2k : (39)

It thus follows as in (27) from

 k

kkk �
gd

kgdk
 =  k

kkk �
(SSk)

�1=2k

k(SSk)�1=2kk
 (40)

that is enough to show that SSk=kSSkk converges to the identity operator I.
Suppose that for a certain k = 0; 1; ::: and some c > 0 we have that SSk � cI

and that we want

kSSk+1 � cIk = O(kSSk � cIkm) (41)

for some m = 2; 3; ::: . We have from (37), (38) that

k+1 =  (S; gk(S)) fk(S) g ; (42)

whence by the Proposition

Sk+1 = S[ (S; gk(S)) fk(S)]
2 = S f 2

k (S) 
2(S; gk(S)) = Sk  

2(S; Sk) : (43)

Hence we must choose  such that

(SSk+1)
1=2 = (SSk)

1=2  (S; Sk) = c1=2I +O(kSSk � cIkm) : (44)
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Now as in (32) we have

(SSk)
�1=2 = c�1=2(I � (I � c�1=2(SSk)

1=2)�1 =

= c�1=2
m�1X
j=0

bmj c
�
1
2
j(SSk)

1
2
j +O(kSSk � cIkm) ; (45)

where the bmj can be written down explicitly. Thus

(SSk)
1=2

m�1X
j=0

bmj c
�
1
2
j(SSk)

1
2
j = c1=2I +O(kSSk � cIkm) : (46)

This suggests to take

 (S; Sk) =
m�1X
j=0

bmj c
�
1
2
j(SSk)

1
2
j : (47)

We replace the numbers c�
1
2
j by their approximations

c�
1
2
j �

�k(SSk)12 j kk
kkk

��1
(48)

and dividing through by kkk we obtain the proposal

k+1 =
m�1X
j=0

bmj
(SSk)

1
2
j k

k(SSk)
1
2
j kk

: (49)

Note that the (SSk)
1
2
j k=k(SSk)

1
2
j kk all have unit norm and that

Pm�1
j=0 bmj =

1. The terms at the right-hand side of (49) for even j are in a convenient

form. As to the terms at the right-hand side of (49) with odd j we note that

by (39) we have

(SSk)
1=2 k = Skg ; (SSk)

3=2 k = SS2
k g; ::: ; (50)

whence these terms are in a convenient form as well. The cases m = 2; 3 in

(49) then directly lead to the recursions (13), (15).

In a similar fashion we can develop a mechanism for proposing recursions

for the computation of gt using inversions or mixed recursions (involving

positive and negative powers of frame operators). This results, for instance,

for m = 2 into the recursion (4) and for m = 3 to the recursions

0 = g ; k+1 =
3

8

k

kkk +
3

4

S�1
k k

kS�1
k kk

� 1

8

S�2
k k

kS�2
k kk

; k = 0; 1; ::: ; (51)

0 = g ; k+1 =
3

8

S�1
k k

kS�1
k kk

+
3

4

k

kkk �
1

8

Skk

kSkkk ; k = 0; 1; ::: ; (52)

etc., etc.
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4 Algorithm for gt with quadratic convergence

and no inversions

In this section we analyze in detail the algorithm

0 = g ; k+1 =
3

2

k

kkk
� 1

2

Skk

kSkkk
; k = 0; 1; ::: ; (53)

where (g; a; b) is a Gabor frame with frame operator S and best frame bounds

A > 0, B <1, and Sk is the frame operator corresponding to (k; a; b) with

best frame bounds Ak, Bk. In particular we have A0 = A, B0 = B. We shall

show that A=B > 1
2
is a suÆcient condition for all (k; a; b) to be a frame

indeed and for at least quadratic convergence of k=kkk to (ab)�1=2 gt =

S�1=2g=kS�1=2gk.
Let k = 0; 1; ::: and assume that (k; a; b) is a frame. We let

"k := kkk�1 ; Æk := kSkkk�1 ; �(s) = 3
2
"k � 1

2
Æks : (54)

Then k+1 = �(S)k. We want to apply the Proposition in Section 3, and to

that end we must have that �(s) > 0, s 2 �(Sk). Since Bk 2 �(Sk) � [0; Bk]

we thus require that

qk :=
"k

Æk
=
kSkkk
kkk > 1

3
Bk : (55)

Since kSkkk
kkk � Ak ; (56)

the condition in (55) is certainly satis�ed when Ak=Bk > 1=3. We shall thus

assume that Ak=Bk > 1=3. By the Proposition in Section 3 we have that

(k+1; a; b) is a frame with frame operator

Sk+1 = Sk �
2(Sk) = Sk(

3
2
"kI � 1

2
ÆkSk)

2 ; (57)

and

gt = S�1=2g = S
�1=2
k gk = S

�1=2
k+1 gk+1 : (58)

We now de�ne

Zk := S
1=2
k ; Ek := A

1=2
k = min�(Zk) ; Fk := B

1=2
k = max�(Zk) : (59)

By (53) and (57) the Zk satisfy the following recursion:

Z0 = S1=2 ; Zk+1 = Zk(
3
2
"kI � 1

2
ÆkZ

2
k) ; k = 0; 1; ::: : (60)

13



Since �(Zk) � [Ek; Fk] there holds by the spectral mapping theorem that

Ek+1 � min
z2[Ek;Fk]

z(3
2
"k � 1

2
Ækz

2) ; (61)

Fk+1 � max
z2[Ek;Fk]

z(3
2
"k � 1

2
Ækz

2) : (62)

We write

z(3
2
"k � 1

2
Ækz

2) = "
3=2
k Æ

�1=2
k P (z=rk) (63)

where

P (w) = w(3
2
� 1

2
w2) ; rk = q

1=2
k =

�"k
Æk

�1=2
: (64)

In Fig. 1 we have plotted P (w) with particular attention for extreme values

on the interval [E=r; F=r] where E = 2
3
, F = 1 and r 2 [E; F ]. We note

that P is positive on (0;
p
3), negative on (

p
3;1) and that P has a unique

maximum P (1) = 1 at w = 1. Hence, since rk 2 [Ek; Fk] we have that the

right-hand side of (62) equals 1. Therefore

Ek+1

Fk+1

� minfP (Ek=rk); P (Fk=rk)g =: Vk : (65)

We shall determine the minimum value of Ek=Fk such that Vk � Ek=Fk
for any rk 2 [Ek; Fk]. It thus turns out that

Ek

Fk
> (1

2
)1=2 ) Ek+1

Fk+1

>
Ek

Fk
; (66)

and that therefore (Ek=Fk)k=0;1;::: is an increasing sequence when A=B =

E2
0=F

2
0 >

1
2
. We note that the functions

rk ! P (Ek=rk); P (Fk=rk) (67)

are strictly decreasing, increasing in rk 2 [Ek; Fk]. Hence the minimum value

of Vk under the constraint that rk 2 [Ek; Fk] equals

minfP (Ek=Fk); P (Fk=Ek)g : (68)

The latter minimum equals P (Fk=Ek) which easily follows from the explicit

form of P in (64) and the inequality

1

R

�3
2
� 1

2

1

R2

�
� R(3

2
� 1

2
R2) ; 0 < R � 1 : (69)

Hence
Ek+1

Fk+1

� Fk

Ek

�3
2
� 1

2

�Fk
Ek

�2�
; (70)

14



and the right-hand side of (70) exceeds Ek=Fk when Ek=Fk > (1
2
)1=2.

In terms of the frame bounds Ak = E2
k, Bk = F 2

k of Sk, we can write (70)

as

Qk+1 � Q�1
k (3

2
��1

2
Q�1
k )2 ; Qk =

Ak

Bk

: (71)

In Fig. 2 we have plotted the graph of

f1(Q) = Q�1(3
2
� 1

2
Q�1)2 ; 1

3
� Q � 1 : (72)

There holds

f1(Q) = 1� (1�Q)2(Q� 1
4
)

Q3
; f1(1) = 1 ; f 01(1) = 0 ; f 001 (1) = � 3

2
; (73)

and

f1(
1
3
) = 0 ; f1(Q) = Q, Q = 1

2
; 1 : (74)

Hence we see that Qk ! 1 at least quadratically when Q0 = A=B > 1
2
. And

since, see (27),

 k

kkk �
gt

kgtk
 � (1�Q

1=4
k )

vuut 2

1 +Q
1=2
k

; (75)

we see that k=kkk ! gt=kgtk at least quadratically.
We conclude this section with some notes. In (65) there is equality when

�(Zk) = [Ek; Fk]. We have that �(Zk) = [Ek; Fk] if and only if �(S) = [A;B].

When �(S) is a proper subset of [A;B], the inequality in (65) can be strict.

Such an example, for the algorithm in (4) and with �(S) = fA;Bg, was given
in [1], end of Subsec. 4.1.

The maximum value that Vk in (65) can take under the constraint that

rk 2 [Ek; Fk] occurs when rk 2 [Ek; Fk] is such that

P (Ek=rk) = P (Fk=rk) : (76)

This special rk is given by (also see Fig. 1 (c))

r̂k = (1
3
(E2

k + EkFk + F 2
k ))

1=2 ; (77)

and the corresponding value of Vk is given by

V̂k =
3
p
3

2

Q
1=2
k +Qk

(1 +Q
1=2
k +Qk)3=2

; Qk =
Ak

Bk

=
�Ek
Fk

�2
: (78)
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Thus when �(S) = [A;B], we have that

Qk+1 � 27

4

(Q
1=2
k +Qk)

2

(1 +Q
1=2
k +Qk)3

=: f2(Qk) : (79)

We have plotted this f2(Q), 0 � Q � 1 also in Fig. 2.

We �nally note that

� rk
Fk

�2
=

qk

Bk

>
1

2
) Ek+1

Fk+1

>
Ek

Fk
;
Ak+1

Bk+1

>
Ak

Bk

; (80)

no matter how small Ek = A
1=2
k is. The condition

qk =
kSkkk
kkk

> 1
2
max�(Sk) =

1
2
Bk (81)

is clearly weaker than the condition Ak=Bk >
1
2
, but we have not found a

simple criterion in terms of S0 = S, A0 = A, B0 = B that guarantees (81)

to hold for all k. In the cases of smooth, rapidly decaying windows k, it is

quite likely that (81) holds. Hence the algorithm (53) probably converges in

many more cases than those restricted by A=B > 1
2
.

As an example we consider the standard Gaussian g(t) = 21=4 exp(��t2)
and a = b = 1. One can compute

A = 0 ; B = �23(0 ; e
��) = 1:669253683 ; kgk = 1 ; (82)

kSgk2 =
X
nm

(g; gnm) gnm
2 =

= �23(0 ; e
��) [�23(0 ; e

�3�) +
p
2 �4(0 ; e

�3�) �2(0 ; e
�3�)] =

= 1:5005272 ; (83)

where

�3(0 ; q) =
X
n

qn
2

; �4(0 ; q) =
X
n

(�1)n qn2 ; �2(0 ; q) =
X
n

q(n+1=2)2 :

(84)

It thus follows that

q0

B0

=
kSgk
kgk =B = 0:73383698 > 1

2
: (85)

When we apply algorithm (53) to this (g; a; b), we see rapid convergence of

k to the window h of [5], (7) with g = g1;1 in (9) and Fig. 7 in [5], case

 = 1.
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5 Algorithm for gd with quadratic convergence

In this section we analyze in detail the algorithm

0 = g ; k+1 = 2
k

kkk �
Skg

kSkgk ; k = 0; 1; ::: ; (86)

where (g; a; b) is a Gabor frame with frame operators S and best frame

bounds A > 0, B < 1, and Sk is the frame operator corresponding to

(k; a; b) with best frame bounds Ak, Bk. We shall show that A=B >
1
2
(
p
5� 1) is a suÆcient condition for all (k; a; b) to be a frame indeed and

for at least quadratic convergence of k=kkk to gd=kgdk = S�1g=kS�1gk.
Since the developments are reminiscent of those in Section 4, we shall be

brief at some points.

Let k = 0; 1; ::: and assume that (k; a; b) is a frame. We let

"k := kkk�1 ; Æk := kSkgk�1 : (87)

There is a smooth function fk such that (see Section 3)

k = fk(S) g ; Sk = S f 2
k (S) ; (88)

whence fk(S) = S�1=2S
1=2
k and

k+1 = (2"k fk(S)� Æk S f
2
k (S)) g : (89)

It follows that

Sk+1 = S(2"k fk(S)� Æk S f
2
k (S))

2 =

= Sk(2"kI � Æk(SSk)
1=2)2 : (90)

We consider

Zk = (SSk)
1=2 ; Ek = min�(Zk) ; Fk = max�(Zk) : (91)

Under the condition that

qk :=
"k

Æk
> 1

2
Fk ; (92)

we can take a positive square root at the right-hand side of (90), and there

results

Z0 = S ; Zk+1 = Zk(2"kI � ÆkZk) : (93)
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Since by the above

Skg = Sk [S
1=2 S

�1=2
k k] = Zkk (94)

we have that
"k

Æk
=
kSkg
kkk =

kZkkk
kkk 2 [Ek; Fk] ; (95)

whence (92) is certainly satis�ed when Ek=Fk >
1
2
.

As in Section 4 we get that

Ek+1 � min
z2[Ek;Fk]

z(2"k � Ækz) ; (96)

Fk+1 � max
z2[Ek;Fk]

z(2"k � Ækz) : (97)

We write

z(2"k � Ækz) = "2k Æ
�1
k P (z=qk) (98)

with qk as in (92) and

P (w) = w(2� w) : (99)

In Fig. 3 we have plotted P (w) with particular attention for extreme values

on the interval [E=q; F=q] where E = 2
3
, F = 1 and q 2 [E; F ]. We note that

P is positive on (0; 2), negative on (2;1), and that P has a unique maximum

P (1) = 1 at w = 1. Thus

Ek+1

Fk+1

� minfP (Ek=qk); P (Fk=qk)g =: Wk : (100)

The lowest value Wk in (100) can assume under the restriction that qk 2
[Ek; Fk] equals

minfP (Ek=Fk); P (Fk=Ek)g = P (Fk=Ek) ; (101)

where the latter equality follows from the inequalityQ�1(2�Q�1) � Q(2�Q)
which is valid for 0 < Q � 1. It is concluded that

Qk+1 � Q�1
k (2�Q�1

k ) ; Qk := Ek=Fk : (102)

In Fig. 4 we have plotted the graph of

f1(Q) = Q�1(2�Q�1) ; 1
2
� Q � 1 : (103)

There holds

f1(Q) = 1� (1�Q)2

Q2
; f1(1) = 1 ; f 01(1) = 0 ; f 001 (1) = �2 ; (104)
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and

f1(
1
2
) = 0 ; f1(Q) = Q, Q = 1

2
(
p
5� 1); 1 : (105)

Hence we see that Qk ! 1 at least quadratically when Q0 = E0=F0 = A=B >
1
2
(
p
5� 1).

We conclude now from gd = Z�1
k k, see (39){(40), and the Kantorovich

inequality (19) (compare (27)) that

 k

kkk
� gd

kgdk
 =  k

kkk
� Z�1

k k

kZ�1
k kk

 � (1�Q
1=2
k )

s
2

1 +Qk

: (106)

Hence k=kkk ! gd=kgdk at least quadratically.
We end this section by a best-case analysis. To this end we assume that

�(S) = [A;B] so that �(Zk) = [Ek; Fk] for all k. Then there is equality

in (100). The maximum value of Wk in (100) under the restriction that

qk 2 [Ek; Fk] occurs for q̂k =
1
2
(Ek + Fk) and equals

Ŵk =
4Qk

(1 +Qk)2
=: f2(Qk) ; Qk = Ek=Fk : (107)

Hence we have Qk+1 � f2(Qk) when �(S) = [A;B]. We have plotted this

f2(Q), 0 � Q � 1 also in Fig. 4.

As a �nal comment we note that

qk

Fk
> 1

2
(
p
5� 1)) Ek+1

Fk+1

>
Ek

Fk
(108)

so that (as in Section 4) the algorithm (86) probably converges in many more

cases than those restricted by A=B > 1
2
(
p
5� 1). Note that for the example

at the end of Section 4 we have

q0

F0

=
kZgk
kgk =B =

kSgk
kgk =B = 0:73383698 > 1

2
(
p
5� 1) : (109)

Using algorithm (86) with this (g; a; b) we see rapid pointwise convergence of

the k outside the set of half-integers to the well-known singular function of

Bastiaans.

6 Coupled recursions

We shall now indicate how the algorithms (53) and (86) can be analyzed in

a uni�ed manner. Since

gt = S�1=2g ; gd = S�1g (110)
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it is natural to ask, more generally, for a recursive algorithm for the compu-

tation of S��g with � 2 [0; 1]. The algorithms (53) and (86) suggest that

one should consider a recursion

0 = g ; k+1 = (1 + �)
k

kkk � �
Sk�k

kSk�kk ; k = 0; 1; ::: ; (111)

with Sk the frame operator corresponding to (k; a; b) and �k such that

1

k1k =
S1�1

kS1�1k ; (112)

where 1, S1, �1 denotes the limit of k, Sk, �k as k !1. Since k=kkk
is supposed to converge to S��g=kS��gk, we should have that

S1 =
k1k2
kS��gk2 S

1�2� : (113)

This yields
�1

k�1k =
S�(1��)g

kS�(1��)gk : (114)

It thus seems quite natural to couple the recursion (111) with the correspond-

ing recursion for the computation of S�(1��)g. Now since 1� (1��) = �, it

turns out that k can be used in the latter recursion in a similar way as �k
is used in recursion (111). Hence we couple (111) with

�0 = g ; �k+1 = (2� �)
�k

k�kk
� (1� �)

Tkk

kTkkk
; k = 0; 1; ::: ; (115)

where Tk is the frame operator corresponding to (�k; a; b).

Note that in case � = 1
2
the two recursions in (111) and (115) are identical

and coincide with the recursion (53). Also, in the case that � = 0 or 1, one of

the two recursions in (111) and (115) is trivial (yielding g; g; g; :::) while the

other one coincides with the recursion (86). We can show that the coupled

recursions (111), (115) are at least quadratically convergent when the largest

root Q(�) of

Q3 +Q2 � (1 + �� �2)Q+ �� �2 = 0 (116)

in (0; 1) is less than A=B. We have Q(1
2
) = 1

2
and Q(0) = Q(1) = 1

2
(
p
5 �

1), in accordance with the results found in Secs. 4, 5. Now the surprising

fact is that the limiting windows 1, �1 are in general NOT a multiple of

S��g, S�(1��)g. We shall produce an example in Section 10 for the case

that a = b = 1 so that we can consider the recursions in the Zak transform
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domain. Because of this pitfall, we shall not give an extensive analysis of the

convergence behaviour of the coupled recursions (111), (115) but just briey

indicate the crucial steps. We let

Zk = (SkTk)
1=2 ; Ek = min�(Zk) ; Fk = max�(Zk) : (117)

Noting that

�k = S�1=2 T
1=2
k g ; k = S�1=2 Sk g ; (118)

we have

Sk�k = Zkk ; Tkk = Zk�k : (119)

Hence the recursions (111), (115) can be written as

0 = g ; k+1 = (1 + �)
k

kkk
� �

Zkk

kZkkk
; k = 0; 1; ::: ; (120)

�0 = g ; �k+1 = (2��) �k

k�kk � (1��) Zk�k

kZk�kk ; k = 0; 1; ::: : (121)

By an appropriate use of the Proposition in Section 3 it can be shown that

the Zk satisfy the recursion

Z0 = S ; Zk+1 = Zk((1 + �) "kI � � Æk Zk)((2� �) �kI � (1� �) �k Zk) ;

k = 0; 1; ::: ; (122)

where we have set

"k = kkk�1 ; Æk = kZkkk�1 ; �k = k�kk�1 ; �k = kZk�kk�1 : (123)

Hence we must make the assumption Ek=Fk � maxf(1��)=(2��); �=(1+�)g
so that

((1 + �) "k � � Æk z)((2� �) �k � (1� �) �k z) > 0 ; z 2 [Ek; Fk] : (124)

Next we can apply the spectral mapping theorem to relate Ek+1, Fk+1 and

Ek, Fk via (122). For this a careful analysis of the extreme values of the

polynomials

P (z ; q; r) = z(1 + �)� �z=q)((2� �)� �z=q)((2� �)� (1� �) z=r) ;

z 2 [E; F ] (125)

with q; r 2 [E; F ] where E, F satisfy

0 < E � F � Emin
n2� �

1� �
;
1 + �

�

o
: (126)
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The �nal result is that Ek=Fk ! 1 at least quadratically when Q = A=B >

Q(�) with Q(�) the above de�ned root of (116). It then follows easily from

(120), (121) that k, �k converge at least quadratically to limits 1, �1 of

unit norm.

A further comment is that algorithm (4), which requires inversions of

frame operators, can be considered in a coupled recursions setting as well.

For � 2 [0; 1] we set

"
0

�0

#
=

"
g

g

#
;

"
k+1

�k+1

#
=

2
666664
(1� �)

k

kkk + �
T�1
k �k

kT�1
k �kk

�
�k

k�kk
+ (1� �)

S�1
k k

kS�1
k kk

3
777775 ; k = 0; 1; ::: ;

(127)

with Sk, Tk the frame operator corresponding to (k; a; b), (�k; a; b), respec-

tively. This coupled recursion always converges, but only in the cases � =

0; 1
2
; 1 the limiting windows 1, �1 are equal to S��g=kS��gk, S�(1��)g=

kS�(1��)gk, respectively. In Section 10 we shall consider examples.

7 A sharp Kantorovich inequality

The analysis of the algorithms (14), (15) requires insight into the set of points

in R
2 of the form �kSfk

kfk ;
kS2fk
kSfk

�
(128)

with f an element of a Hilbert space H and S a positive de�nite linear

operator. As to (15) we note, see (50), that Skg = (SSk)
1=2k. With A =

min�(S) > 0, B = max�(S) <1 there is the inequality

A � kSfk
kfk � kS2fk

kSfk � B ; (129)

and
2AB

A2 +B2
� kSfk2
kfk kS2f j � 1 : (130)

While the inequalities in (129) are simple consequences of the Cauchy-Schwarz

inequality and the fact that �(S) � [A;B], the �rst inequality in (130)

is somewhat more subtle. The latter inequality, which is known as Kan-

torovich's inequality, is equivalent with

kSfk
kfk � 2AB

A2 +B2

kS2fk
kSfk : (131)
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Obviously, (131) is not sharp when kSfk=kfk is close to A or B or when

kS2fk=kSfk is close to A or B: in these cases we have kSfk=kfk � kS2fk=
kSfk.

We shall prove the following sharpening of (131).

Proposition.

Let f 2 H and S as above.

(i) When kS2fk=kSfk = u 2 [A;B], we have

kSfk
kfk � AB

(A2 +B2 � u2)1=2
; (132)

and this inequality is best possible.

(ii) When kSfk=kfk = t 2 [A;B], we have

kS2fk
kSfk � (t2A2 + t2B2 � A2B2)1=2 ; (133)

and this inequality is best possible.

Proof. It suÆces to prove (ii) only since (i) and (ii) are equivalent. We

consider the case that H has a �nite dimension N + 1; the general case can

be handled by using appropriate orthogonal projection operators of �nite

rank. We thus assume that we have an orthonormal base f0; :::; fN 2 C
N+1

of eigenvectors of S with eigenvalues �0; :::; �N satisfying

0 < A = �0 � �1 � ::: � �N�1 � �N = B : (134)

Take any f 2 C
N+1 where we assume that kfk = 1. Hence there are

a0; :::; aN 2 C such that

f =
NX
n=0

anfn ;
NX
n=0

janj2 = 1 ; (135)

and

kSfk2 =
NX
n=0

janj2 �2n ; kS2fk2 =
NX
n=0

janj2 �4n : (136)

We shall �nd the maximum of

NX
n=0

janj2 �4n (137)
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under the condition that

NX
n=0

janj2 = 1 ;
NX
n=0

janj2 �2n = t2 (138)

where t 2 [A;B]. Letting E = A2, F = B2, b = t2 2 [E; F ] and

xn := janj2 ; bn := �2n 2 [E; F ] ; n = 0; :::; N ; (139)

we should �nd the maximum of

NX
n=0

b2n xn (140)

under the condition that

xn � 0 ;
NX
n=0

xn = 1 ;
NX
n=0

bnxn = b : (141)

Assume that there is an m = 1; :::; N � 1 such that

xm 6= 0 ; E < bm < F : (142)

We shall show that (140) is not maximal. We write

xm = ym + zm ; bmxm = Eym + Fzm (143)

with positive numbers

ym =
F � bm

F � E
xm ; zm =

bm � E

F � E
xm : (144)

Then de�ne

x00 = x0 + ym ; x0m = 0 ; x0N = xN + zm (145)

and x0n = xn for n 6= 0; m;N . We have (143) that

NX
n=0

x0n = 1 ;
NX
n=0

bnx
0

n = b : (146)

Also from (144)

NX
n=0

b2nx
0

n �
NX
n=0

b2nxn = E2ym + F 2zm � b2mxm =

= xm
n
E2 F � bm

F � E
+ F 2 bm � E

F � E
� b2m

o
= xm(F � bm)(bm � E) > 0 :

(147)
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This proves the claim about non-maximality. We conclude that the maximum

value of
PN
n=0 b

2
nxn can be found as the maximum of

E2x0 + F 2xN (148)

under the condition that

x0 � 0 ; xN � 0 ; x0 + xN = 1 ; Ex0 + FxN = b : (149)

Clearly, this maximum value equals b(E + F )� EF , and now (133) follows

on reinstalling the original variables A = E1=2, B = F 1=2, t = b1=2. We also

note that there is equality for the particular f constructed in accordance with

(149). In the general in�nite-dimensional case, it may happen that equality

does not occur in (133). Nevertheless, the right-hand side of (133) cannot be

replaced by any smaller number. This completes the proof.

In Fig. 5 we have plotted the bounds (131), (132) for kSfk=kfk as a

function of u = kS2fk=kSfk 2 [A;B], where we have taken A = 1
2
, B = 1.

We observe that the two bounds (131), (132) agree at u = (1
2
(A2+B2))1=2,

and that the bound (132) equals A when u = A and equals B when u = B.

Also,
2ABu

A2 +B2
� AB

(A2 +B2 � u2)1=2
� u ; u 2 [A;B] ; (150)

since this is equivalent with

(A2 +B2 � 2u2)2 � 0 ; (u2 �A2)(B2 � u2) � 0 ; u 2 [A;B] : (151)

In Sec. 10 we shall consider the case a = b = 1. Given four numbers A,

B, u, t with

0 < A � AB

(A2 +B2 � u2)1=2
� t � u � B <1 (152)

we shall display a Gabor frame (g; a; b) with frame operator S having best

frame bounds A, B such that

kSgk
kgk = t ;

kS2gk
kSgk = u : (153)

25



Example.

Let g(t) = 21=4 exp(��t2), and let S be the frame operator of (g; a =

2�1=2; b = 2�1=2). One can compute, either analytically or numerically, that

A = 1:669253683 ; B = 2:360681197 ; (154)

kSgk
kgk = 2:022409392 ;

kS2gk
kSgk = 2:051916634 ; (155)

AB

(A2 +B2 � u2)1=2
= 1:934617914 ;

2ABu

A2 +B2
= 1:934565555 ; (156)

where u = kS2gk=kSgk. It thus seems that for (very) well-behaved windows

the new inequality is hardly sharper than the old one.

8 Algorithm for g
t with cubic convergence

and no inversions

In this section we analyze in detail the algorithm

0 = g ; k+1 =
15

8

k

kkk �
5

4

Skk

kSkkk +
3

8

S2
kk

kS2
kkk

; k = 0; 1; ::: ; (157)

where (g; a; b) is a Gabor frame with best frame bounds A > 0, B <1, and

Sk is the frame operator corresponding to (k; a; b) with best frame bounds

Ak, Bk. We shall show that the condition A=B > 3
7
is suÆcient for all

(k; a; b) to be a frame indeed and that then k=kkk converges to (ab)�1=2 gt

at least cubically.

We let

"ki = kSikkk�1 ; i = 0; 1; 2 ; k = 0; 1; ::: ; (158)

so that we can write k+1 = �k(Sk) k with

�k(s) =
15
8
"k0 � 5

4
"k1 s+

3
8
"k2 s

2 : (159)

By the Proposition in Section 3 we thus have that

Sk+1 = Sk(
15
8
"k0 � 5

4
"k1 Sk +

3
8
"k2 S

2
k)

2 =

= w2
k Sk

�15
8
vk � 5

4

Sk

uk
+

3

8

S2
k

u2k

�2
; (160)

where wk = "2k1="k2 and

uk =
"k1

"k2
=
kS2

kkk
kSkkk

; vk =
"k0"k2

"2k1
=

kSkkk2
kkk kSkkk

: (161)
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We want to take a positive square root in (160), and to that end we must

require that

15
8
vk � 5

4
x + 3

8
x2 = 3

8
((x� 5

3
)2 + 5vk � 25

9
) > 0 ; x > 0 : (162)

Hence we require that vk >
5
9
. Given the form of vk in (161) we see that

Kantorovich's inequality (19) applies here. Therefore, vk >
5
9
surely when

Ak

Bk

> 1
5
(9�

p
56) = 0:303337045 : (163)

Requiring (163) we now let

Zk := S
1=2
k ; Ek = A

1=2
k = min�(Zk) ; Fk = B

1=2
k = max �(Zk) : (164)

Then

Zk+1 = wk Zk
�15
8
vkI � 5

4

Z2
k

uk
+

3

8

Z4
k

u2k

�
: (165)

We de�ne for arbitrary positive numbers u, v, v � 1

P (z ; u; v) = z
�15
8
v � 5

4

z2

u
+

3

8

z4

u2

�
: (166)

Then by the spectral mapping theorem

Ek+1

Fk+1

� min
z2[Ek;Fk]

P (z ; uk; vk)= max
z2[Ek;Fk]

P (z ; uk; vk) ; (167)

and we are interested in �nding out the lowest value the right-hand side in

(167) can take. The numbers uk, vk in (167) are restricted by, see Sec. 7,

Ak � uk � Bk ;
u�1
k AkBk

(A2
k +B2

k � u2k)
1=2

� vk � 1 : (168)

Thus we set ourselves the following problem: given numbers A > 0, B <1
such that A=B > 1

5
(9 � p56), then with E = A1=2, F = B1=2, what is the

lowest value of

min
z2[E;F ]

P (z ; u; v)= max
z2[E;F ]

P (z ; u; v) (169)

under the constraint that

A � u � B ; v0(u) :=
u�1AB

(A2 +B2 � u2)1=2
� v � 1 ? (170)
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In particular we are interested to �nd out when the quantity in (169) exceeds

E=F .

Our approach is as follows. For �xed u 2 [A;B] we shall show that the

functional in (169) is a unimodal function of v, and this allows us to restrict

attention to the extreme values of v in (170). Next, when v = 1 we have

that P (z ; u; v = 1) increases in z 2 [E; F ] and when v = v0(u) we have that

P (z ; u; v = v0(u)) decreases in z 2 [E; F ]. Hence the worst case value of the

functional in (156) equals for u 2 [A;B]

min
nP (E ; u; 1)

P (F ; u; 1)
;
P (F ; u; v0(u))

P (E ; u; v0(u))

o
: (171)

Finally we shall show that

min
A�u�B

P (E ; u; 1)

P (F ; u; 1)
>
E

F
, A

B
>

3

7
; (172)

min
A�u�B

P (F ; u; v0(u))

P (E ; u; v0(u))
>
E

F
, A

B
> Q2 ; (173)

where Q2 = 0:401069994 (< 3
7
= 0:428571429) is a root of a particular

algebraic equation.

We shall now detail this approach.

Unimodality of (169) as a function of v

We �x u 2 [A;B] and we set

x =
zp
u
2
h�A
u

�1=2
;
�B
u

�1=2i � [C;D] � f1g ; (174)

together with

S(x ; v) = 15
8
xv � 5

4
x3 + 3

8
x5 ; x 2 [C;D] : (175)

In Figs. 6, 7, 8 we have plotted S(x ; v) as a function of x with particular

attention to extreme values on the interval [(A=u)1=2; (B=u)1=2] when A =

0:36, B = 1 and u and v as in (170). We show that

U(v) := min
x2[C;D]

S(x ; v)= max
x2[C;D]

S(x ; v) (176)

is a unimodal function of v 2 [C2D2=(C4 + D4 � 1)1=2; 1] when C2=D2 =

A=B > 3
7
. Under the latter assumption we have that

S(C ; 1)

S(D ; 1)
>
C

D
=
E

F
(177)
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no matter what value u 2 [A;B] has. This follows easily from the fact that

S(x ; 1) is strictly increasing in x > 0 while the left-hand side of (177) is for

given A, B minimal when u = A with minimum value (A=B)1=2(15
8
� 5

4
B=A+

3
8
(B=A)2)�1 and this exceeds (A=B)1=2 when A=B > 3

7
. See (205){(210) for

a more detailed argumentation. We may restrict attention to this range of

C=D since we are interested only in the cases where (169) exceeds E=F .

We start by noting that

dS

dx
(x ; v) =

15

8
((1� x2)2 � (1� v)) : (178)

Hence dS
dx
< 0 for x > 0 if and only if

(1� (1� v)1=2)1=2 =:  (v) � x � �(v) := (1 + (1� v)1=2)1=2 : (179)

The reader is invited to sketch the graph of S(x ; v) as a function of x for

various values of v, also see Figs. 6, 7, 8. It thus appears that the maximum

value of S(x ; v), x 2 [C;D], is given by

(i) S(D ; v) or (ii) S( (v) ; v) or (iii) S(c ; v) ; (180)

while the minimum value of S(x; v), x 2 [C;D] is given by

(iv) S(C ; v) or (v) S(�(v) ; v) or (vi) S(D ; v) : (181)

The cases in (180), (181) are ordered according to decreasing value of v.

We note that the pairs (i),(vi) and (iii),(iv) cannot occur. We thus should

consider

(i),(iv) :
S(C ; v)

S(D ; v)
; (182)

(i),(v) :
S(�(v) ; v)

S(D ; v)
; (183)

(ii),(iv) :
S(C ; v)

S( (v) ; v)
; (184)

(ii),(v) :
S(�(v) ; v)

S( (v) ; v)
; (185)

(ii),(vi) :
S(D ; v)

S( (v) ; v)
; (186)
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(iii),(v) :
S(�(v) ; v)

S(C ; v)
; (187)

(iii),(vi) :
S(D ; v)

S(C ; v)
: (188)

Case (182)

We have, see (175),

U(v) =
S(C ; v)

S(D ; v)
=

S(C ; 1)� C
D
S(D ; 1)

S(D ; 1)� 15
8
D(1� v)

+
C

D
(189)

and this decreases in v on account of (177).

Case (183)

We have

U(v) =
S(�(v) ; v)

S(D ; v)
: (190)

A computation shows that

d

dv
S(�(v) ; v) =

15

8
�(v) : (191)

Hence the numerator N(v) of U 0(v) equals

N(v) = 15
8
�(v)(15

8
Dv � 5

4
D3 + 3

8
D5) +

� 15
8
D(15

8
v�(v)� 5

4
�3(v) + 3

8
�5(v)) =

= 15
64
D�(v)(D2 � �2(v))(3D2 + 3�2(v)� 10) : (192)

We have �(1) = 1, whence

N3(1) =
15
64
D(D2 � 1)(3D2 � 7) � 0 (193)

since D2 = B=u 2 [1; 7
3
] by assumption. Since �(v) decreases in v, there is

at most one change of sign of N3(v) (as long as �(v) � D which we may

evidently assume). This change of sign does occur when D2 > 5
3
. Thus for

values of v such that 1 � �(v) � D we have that U(v) decreases in v (D2 � 5
3
)

or is unimodal (D2 > 5
3
) with maximum assumed when �2(v) = �D2 + 10

3
.
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Case (184)

We have

U(v) =
S(C ; v)

S( (v) ; v)
: (194)

We have now d
dv
S( (v) ; v) = 15

8
 (v), and we compute the numerator N(v)

of U 0(v) as in (192) as

N(v) = � 15
64
C  (v)(C2 �  2(v))(3C2 + 3 2(v)� 10) : (195)

Since C2 �  2(v) � 1 we see that N(v) � 0, whence U(v) decreases in v.

Case (185)

We have

U(v) =
S(�(v) ; v)

S( (v) ; v)
: (196)

We compute the numerator N(v) of U 0(v) now as

N(v) = 15
64
�(v) (v)( 2(v)� �2(v))(3 2(v) + 3�2(v)� 10) =

= 15
8
�(v) (v)(1� v)1=2 > 0 : (197)

Therefore U(v) is increasing in v.

Case (186)

We have

U(v) =
S(D ; v)

S( (v) ; v)
: (198)

The numerator N(v) of U 0(v) can be computed as

N(v) = � 15
64
D (v)(D2 �  2(v))(3D2 + 3 2(v)� 10) : (199)

Since  2(v) � 1 � D2 � 7
3
we see that N(v) � 0, whence U(v) increases in

v.

Case (187)

We have

U(v) =
S(�(v) ; v)

S(C ; v)
: (200)

We compute the numerator N(v) of U 0(v) now as

N(v) = 15
64
C �(v)(C2 � �2(v))(3C2 + 3�2(v)� 10) : (201)

Since C2 � �2(v) � D2 � 7
3
we see that N(v) � 0, whence U(v) increases in

v.
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Case (188)

We have

U(v) =
S(D ; v)

S(C ; v)
: (202)

The numerator N(v) of U 0(v) can now be computed as

N(v) = 15
8
DS(C ; v)� 15

8
C S(D ; v) : (203)

Since C � D, S(D ; v) � S(C ; v) we see that N(v) � 0, whence U(v)

increases in v.

Having established monotonicity of U(v) in all cases that can occur, ex-

cept where U(v) is possibly unimodal with maximum value assumed at an

interior point, the unimodality of U when v ranges between v0(u) and 1 fol-

lows on an inspection of the order in which the cases (182){(188) occur. In

the graph below we have indicated by arrows which one of the stages (182){

(188) can be reached from a particular one when v is decreased. Also the

type of monotonicity of U as a function of (increasing) v at each of these

stages is indicated by d (decreasing), i (increasing) or u (unimodal).

(185) (188)

(187)

(182)

(183)

(184) (186)

i

i

i

i

d

d

d  or  u

It is concluded that

min
v0(u)�v�1

U(v) = min fU(v0(u)); U(1)g : (204)

We �rst analyze U(1) = U(u ; 1) as a function of u 2 [A;B]. By mono-

tonicity of S(x ; 1) we have

U(1) =
S(C ; 1)

S(D ; 1)
=
�A
B

�1=2 u2 � 2
3
Au+ 1

5
A2

u2 � 2
3
Bu+ 1

5
B2

=: U(u ; 1) : (205)
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Next

d

du
U(u ; 1) = � 2

3

�A
B

�1=2
(B � A)

u2 � 3
5
(A+B) u+ 1

5
AB

(u2 � 2
3
Bu+ 1

5
B2)2

(206)

from which one easily sees that the minimum of U(u ; 1) when u 2 [A;B]

equals U(A ; 1) or U(B ; 1). We compute

U(A ; 1) =
8

15

(A=B)5=2

(A=B)2 � 2
3
A=B + 1

5

: (207)

This U(A ; 1) exceeds (A=B)1=2 = E=F when 3
7
< A=B. In Fig. 9 we have

plotted

H1(Q) =
� 8

15

Q5=2

Q2 � 2
3
Q+ 1

5

�2
; Q =

A

B
2 [0; 1] : (208)

We furthermore compute

U(B ; 1) =
15

8

�A
B

�1=2
(1� 2

3
A=B + 1

5
(A=B)2) : (209)

This U(B ; 1) exceeds (A=B)1=2 = E=F when 0 < A=B < 1. In Fig. 9 we

have also plotted

H2(Q) = Q(15
8
(1� 2

3
Q+ 1

5
Q2))2 ; Q =

A

B
2 [0; 1] : (210)

Thus the minimum of U(u ; 1) when u 2 [A;B] equals U(A ; 1) as given in

(207) and exceeds E=F = (A=B)1=2 when A=B > 3
7
.

We next consider U(v0(u)). We shall assume1 that u is suÆciently far

away from A, B so that �(v0(u)) � D,  (v0(u)) � C, see (179). Then

S(x ; v0(u)) is decreasing on [C;D] and we compute, see (174){(175), (170),

U(v0(u)) =
S(D ; v0(u))

S(C ; v0(u))
=

15
8
D v0(u)� 5

4
D3 + 3

8
D5

15
8
C v0(u)� 5

4
C3 + 3

8
C5

=

= Q�1=2 15f(t; Q)� 10t+ 3

15f(t; Q)� 10tQ+ 3Q2
� F (t; Q) (211)

where we have set

Q =
A

B
; t =

u

B
2 [Q; 1] ; (212)

1See Appendix at the end of this section.

33



and

f(t; Q) =
tQp

1 +Q2 � t2
: (213)

We consider the function

F̂ (Q) = min
t2[Q;1]

F (t; Q) ; (214)

and we are particularly interested in the points Q1, Q2 where

F̂ (Q1) = 0 ; F̂ (Q2) = Q
1=2
2 : (215)

In Fig. 9 we have also included the graph of

Ĥ(Q) = (F̂ (Q))2 ; Q 2 [Q1; 1] : (216)

The analysis of F̂ (Q) is facilitated by the fact that

F̂ (Q) = F (t̂(Q); Q) ; (217)

where t̂(Q) is the solution t near 1
2
(1 +Q) of

3(1 +Q)(1 +Q2)� 10t3 = 2(1 +Q2 � t2)3=2 : (218)

Furthermore, the points Q1 and Q2 can be found as follows. The point Q1

and t̂(Q1) follow from setting

15f(t; Q)� 10t+ 3 =
@

@t
[15f(t; Q)� 10t+ 3] = 0 ; (219)

this is so since F (t; Q) should have a double zero at t = t̂(Q1). A fairly

technical but elementary analysis then gives that

Q1 =
1
5
S3=2 = 0:294447771 ; (220)

where S is the unique solution of

5S3 + 27S2 + 27S = 91 (221)

in (0;1). The point Q2 is found in a similar fashion as

Q2 =
5V 3=2 � 1

2
�
��5V 3=2 � 1

2

�2 � 1
�1=2

= 0:401069994 (222)

where V is the unique solution of

91V 3 � 27V 2 � 27V = 13 (223)

34



in [(3
5
)2=3;1). Note that Q2 <

3
7
.

We have now established (172), (173). Hence when A=B > 3
7
we have

that Ek=Fk increases to 1, and then convergence of k=kkk to (ab)�1=2gt is

easily established as before by using that

 k

kkk �
gt

kgtk
2 =  k

kkk �
S
�1=2
k k

kS�1=2
k kk

2 (224)

and Kantorovich's inequality. As to the order of convergence it can be shows

that it is at least cubic. Indeed, one has (neglecting higher orders)

1� U(A ; 1) = 5
2
(1� R)3 ; 1� U(B ; 1) = 5

2
(1� R)3 (225)

and

1� F (� + (1� �)Q;Q) = 5
2
(9�� 9�2 � 1)(1� R)3 (226)

when � 2 [1
3
; 2
3
]. Here we have set R = Q1=2 = (A=B)1=2 = E=F .

Appendix

We shall show that for the lowest value of U(v0(u)) in the case that argmaxS(x ;

v0(u)) � argminS(x ; v0(u)) we may restrict attention to situations where

case (188) is in e�ect. We start by noting that (generalization of the analysis

for case (182))

S(x ; v)

S(y ; v)
� S(C ; 1)

S(D ; 1)
; v � 1 ; C � x � y � D ; (227)

and, evidently, equality occurs for v = 1, x = C, y = D. The right-hand

side equals U(1), see (205). Therefore, the cases where we need to consider

U(v0(u)) are described by (185){(188) in which we have argmaxS(x ; v0(u)) �
1 � argminS(x ; v0(u)).

We �rst show that there are indeed allowed u, v such that case (188)

occurs. For this it is suÆcient to show that

 (v0(u)) � C =
�A
u

�1=2
; �(v0(u)) � D =

�B
u

�1=2
(228)

where  , � are given in (179) and v0(u) is given in (170). The function v0(u)

has maximum value 2AB(A2 + B2)�1 for u = u0 = (1
2
(A2 + B2))1=2, and it

is easy to verify (228) for u = u0. In (228) there is equality at u = u = As 
and u = u� = Bt�, where s = s and t = t� are the unique solutions s > 1

and t < 1 of the equations

R

(1 +R2 � s2)1=2
= 2� 1

s
;

Q

(1 +Q2 � t2)1=2
= 2� 1

t
; (229)
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respectively. Here Q = R�1 = A=B is assumed to be less than 1. Since there

is inequality in either inequality in (228) for u = u0 and v0(u) > v0(u0),

u 6= u0 one easily sees that u� < u0 < u .

Now assume that we increase u from u0 onwards to the point u , a bound-

ary case where case (188) holds. From the analysis for case (186) and the

fact that D = (B=u)1=2 decreases in u it is easily seen that

S(D ; v0(u))=S( (v0(u)) ; v0(u)) (230)

increases when we increase u beyond u . In a similar fashion it can be seen

that

S(�(v0(u)) ; v0(u))=S(C ; v0(u)) (231)

increases when we decrease u below u�, the other boundary case for (188).

It is then concluded that it is suÆcient to only consider the case (188) for

U(v0(u)).

9 Algorithm for g
d with cubic convergence

In this section we give the details for the analysis of the algorithm

0 = g ; k+1 = 3
k

kkk
� 3

Skg

kSkgk
+

S Sk k

kS Sk kk
; k = 0; 1; ::: ; (232)

where (g; a; b) is a Gabor frame with best frame bounds A > 0, B <1 and

Sk is the frame operator corresponding to (k; a; b) with best frame bounds

Ak, Bk. There holds, compare (39)

Skg = Zkk ; gd = Z�1
k k (233)

where we have set

Zk = (SSk)
1=2 : (234)

Hence we can write (232) as

0 = g ; k+1 = 3
k

kkk
� 3

Zkk

kZkkk
+

Z2
kk

kZ2
kkk

; k = 0; 1; ::: ; (235)

and by Kantorovich's inequality,

 k

kkk �
gd

kgdk
2 =  k

kkk �
Z�1
k k

kZ�1
k kk

2 � 2(1�Q
1=2
k )2

1 +Qk

; (236)
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where we have set

Ek = min�(Zk) ; Fk = max�(Zk) ; Qk = Ek=Fk : (237)

Hence for (rapid) convergence of k=kkk to gd=kgdk we should show that

Qk ! 1 (rapidly).

Let

"ki = kZi
kkk�1 ; i = 0; 1; 2 ; k = 0; 1; ::: : (238)

Then we have Z0 = S and, as before,

Zk+1 = Zk(3"k0I � 3"k1Zk + "k2Z
2
k) = wk P (Zk ; uk; vk) ; (239)

where wk = "2k1="k2 and

uk =
"k2

"k1
=
kZ2

kkk
kZkkk ; vk =

"k0"k2

"2k1
=

kZkkk2
kkk kZ2

kkk
; (240)

and where

P (z ; u; v) = z
�
3v � 3

z

u
+
�z
u

�2�
: (241)

We thus �nd ourselves in a situation that is quite similar to the one in

Section 8. Accordingly, the analysis follows very much the same plan and we

shall be somewhat brief about the details.

We require that P (z ; u; v) > 0 for z > 0, and to that end we note that

3v � 3x + x2 = (x� 3
2
)2 + 3(v � 3

4
) > 0 (242)

for all x > 0 when v > 3
4
. By the Kantorovich inequality (19) and the

de�nition of vk in (240) we have that vk > 0 when

Ek

Fk
> 1

3
(4�

p
7) = 0:451141623 : (243)

By the spectral mapping theorem we have that

Ek+1

Fk+1

� min
z2[Ek;Fk]

P (z ; uk; vk)= max
z2[Ek;Fk]

P (z ; uk; vk) : (244)

We thus consider the following problem. Let 0 < E � F <1 with E=F >
1
4
(4�p7). What is the lowest value of

min
z2[E;F ]

P (z ; u; v)= max
z2[E;F ]

P (z ; u; v) (245)
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under the constraints that

E � u � F ; v0(u) :=
u�1EFp

E2 + F 2 � u2
� v � 1 ? (246)

We �x u 2 [E; F ], and we shall show unimodality of the functional in

(245) as a function of v. We let

x =
z

u
2
hE
u
;
F

u

i
� [C;D] � f1g (247)

and set

R(x ; v) = x(3v � 3x+ x2) = 1 + 3(v � 1) x� (1� x)3 : (248)

In Figs. 10, 11, 12 we have plotted R(x ; v) as a function of x with particular

attention for extreme values on the interval [E=u; F=u] for certain choices of

E and F and where u and v are as in (246). We need to show that

W (v) := min
x2[C;D]

R(x ; v)= max
x2[C;D]

R(x ; v) (249)

is a unimodal function of v 2 [CD(C2 +D2 � 1)�1=2; 1]. By (248) we have

that dR
dx
< 0 (when x > 0) when

	(v) := 1� (1� v)1=2 � x � 1 + (1� v)1=2 =: �(v) : (250)

We restrict C, D such that

R(C ; 1)

R(D ; 1)
>
C

D
=
E

F
: (251)

The left-hand side of (251 equals the functional in (245) for the case that

u = E, v = 1 so that the minimum over z is assumed at E while the

maximum over z is assumed at F . Since we are particularly interested in the

case that the functional in (245) exceeds E=F , the requirement in (251) is a

logical one. We have that (251) holds for all allowed u, v if and only if

Q := E=F = C=D > 1
2
: (252)

See (258){(261) for a more detailed argumentation.

From the above de�nitions it appears that the maximum value of R(x ; v),

x 2 [C;D] is given by

(i) R(D ; v) or (ii) R(	(v) ; v) or (iii) R(C ; v) (253)
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while the minimum values of R(x ; v), x 2 [C;D] is given by

(iv) R(C ; v) or (v) R(�(v) ; v) or (vi) R(D ; v) : (254)

The cases in (253), (254) are ordered according to decreasing value of v. We

note that (i),(vi) and (iii),(iv) do not occur. Just as in Section 8 we then

have to consider the seven cases

(i),(iv) ; (i),(v) ; (ii),(iv) ; (ii),(v) ; (ii),(vi) ; (iii),(v) ; (iii),(vi) : (255)

The �rst case in (255) is settled by the assumption in (252): decreeasing in

v. The last case is easily settled and yields: increasing in v. To settle the

other cases one can use the fact that

d

dv
[R(�(v) ; v)] = 3�(v) ;

d

dv
[R(	(v) ; v)] = 3	(v) : (256)

Therefore, we get, for instance, that the numerator N(v) of (R(�(v) ; v)=

R(D ; v))0 is given by

3D�(v)(D � �(v))(�(v) +D � 3) : (257)

Hence N(v) is negative as long as �(v) < 3 � D and changes sign at most

once. Etc., etc. It is concluded that W (v) in (249) is unimodal as a function

of v, whence W (v) is minimal for v = 1 or v = v0(u).

We consider �rst the case that v = 1. Then

W (1) =
R(C ; 1)

R(D ; 1)
=
E

F

3u2 � 3Eu+ E2

3u2 � 3Fu+ F 2
=:W (u ; 1) ; (258)

and
dW (u ; 1)

du
= �3 E

F

3u2 � 2(F + E) u+ EF

(3u2 � 3Fu+ F 2)2
: (259)

It easily follows that the minimum value of W (u ; 1) occurs at u = E or

u = F . We compute

W (E ; 1) =
Q3

3Q2 � 3Q+ 1
= 1� (1�Q)3

3Q2 � 3Q+ 1
= G1(Q) (260)

where Q = E=F = C=D. Note that W (E ; 1) � 0 for Q 2 [0; 1], and it is

easily shown that W (E ; 1) � Q if and only if 1
2
� Q � 1. We furthermore

compute

W (F ; 1) = Q(3� 3Q +Q2) = 1� (1�Q)3 = G2(Q) ; (261)
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and we note that W (F ; 1) � Q for Q 2 [0; 1]. In Fig. 13 we have plotted

the right-hand sides of (260), (261).

We next consider W (v0(u)), and we shall assume that u is suÆciently far

away from C, D so that �(v0(u)) � D, 	(v0(u)) � C, see (250). It can be

argued as in the Appendix in Section 8 that we can restrict attention to these

values of u. Now R(x ; v0(u)) is decreasing in x 2 [C;D], and we compute

W (v0(u)) =
R(D ; v0(u))

R(C ; v0(u))
=

3Dv0(u)� 3D2 +D3

3C v0(u)� 3C2 + C3
=

=
1

Q

3f(t; Q)� 3t+ 1

3f(t; Q)� 3tQ +Q2
� G(t; Q) : (262)

Here we have set Q = E=F , t = u=F 2 [Q; 1] and f is as in (213) given by

tQ(1 +Q2 � t2)�1=2. We consider the function

Ĝ(Q) = min
t2[Q;1]

G(t; Q) ; (263)

and we are particularly interested in the points Q1, Q2 for which

Ĝ(Q1) = 0 ; Ĝ(Q2) = Q2 : (264)

In Fig. 13 we have also included the graph of Ĝ(Q), Q 2 [Q1; 1]. The analysis

of Ĝ(Q) is facilitated by the fact that Ĝ(Q) = G(t̂(Q); Q), where t̂(Q) is the

solution t near 1
2
(1 +Q) of the equation

(1 +Q)(1 +Q2)� 3t2 = (1 +Q2 � t2)3=2 : (265)

The points Q1, Q2 can be found in a similar fashion as the points Q1, Q2 in

Section 8, see (219). They are given as

Q1 =
1
3
R3=2 = 0:442471025 ; Q2 =

3

2W 3
�
�� 3

2W 3

�2�1�1=2 = 0:513829766 ;

(266)

where R, W are the unique solutions in (0;1) and (0; (3
2
)1=2) of

3R2 + 3R = 8 ; 9W 2� 16W 3 + 9W 4 + 6W 5 + 6W 7 + 2W 9 = 24 ; (267)

respectively. We observe that Q2 >
1
2
. In Fig. 11 we have plotted R(x ; v) as

a function of x on the interval [E=u; F=u] with E = Q2, F = 1, u = t̂(Q2),

v = v0(u), so that R(D ; v)=R(C ; v) = C=D = E=F .

We have shown now that the quantity in (245) exceeds E=F when Q =

E=F > Q2 with Q2 given in (266). Hence when E0=F0 = A=B > Q2 we have

40



that Ek=Fk increases to 1 and that, see (236), k=kkk converges to gd=kgdk.
As to the order of convergence, it can be shown that it is at least cubic.

Indeed one has (neglecting higher orders)

1�W (E ; 1) = (1�Q)3 ; 1�W (F ; 1) = (1�Q)3 (268)

and

1�G(� + (1� �)Q;Q) = (9�� 9�2 � 1)(1�Q)3 (269)

when � 2 [1
3
; 2
3
].

10 Consideration of the algorithms for a =

b = 1 in the Zak transform domain

In this section we consider the case that a = b = 1. As is well known, Gabor

analysis can be done in this case conveniently in the Zak transform domain,

see [2], Sec. 4.1, [6] and [7], Sec. 1.5. For f 2 L2(R) we de�ne Zf by

(Zf)(t; �) =
1X

l=�1

f(t� l) e2�il� ; a:e: t; � 2 R : (270)

By quasi-periodicity it is suÆcient to consider Zf on [0; 1)2. Doing so, the

mapping f ! Zf maps L2(R) onto L2([0; 1)2) unitarily. Furthermore, when

g 2 L2(R) then (g; a = 1; b = 1) is a Gabor frame if and only if

ess inf jZgj2 > 0 ; ess sup jZgj2 <1 (271)

while the two numbers in (271) are the best frame bounds. Finally, when

(g; 1; 1) is a Gabor frame with frame operator S and best frame bounds A,

B and � is a continuous function on [A;B], then

Z(�(S)f)(t; �) = �(j(Zg)(t; �)j2)(Zf)(t; �) ; a:e: t; � : (272)

In particular, by taking �(s) = s we see that Z(Sf) = jZgj2Zf . Accord-

ingly, �(S) is the spectrum of the multiplication operator F 2 L2([0; 1)2)!
jZgj2 F 2 L2([0; 1)2).

In the example in [1], end of Subsec. 4.1, we have a g such that �(S) =

fA;Bg. As a consequence, we get k with �(Sk) = fAk; Bkg as well. Ac-

cordingly, the expression for the lower frame bound A1 in [1], (4.12) is too

low in general. This is exempli�ed by [1], (4.42) where the choice t = 1
2
leads

to A1=B1 = 1 while A=B < 1. Similar examples can be constructed for the

examples in the present paper. A slight modi�cation of the example in [1],
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end of Subsec. 4.1 yields an example of an S such that �(S) = [A;B]. To this

end we only need to take care that jZgj2 is a continuous function on [0; 1)2

that assumes the two values A, B on two sets N , M whose union di�ers from

[0; 1)2 by a set of arbitrarily small measure.

The algorithm in [1] and those of the present paper can be considered

conveniently in the Zak transform domain. For instance, denoting G = Zg

and �k = Zk, the algorithm in (4) takes the form

�0 = G ; �k+1 =
1

2

�k

k�kk
+

1

2

�k=j�kj2
k�k=j�kj2k

=
1

2

�k

k�kk +
1

2

1=��k
k1=��kk

; k = 0; ::: : (273)

Here (272) has been used with �(s) = s�1.

We shall show in this section that the lower bounds on A=B that ensure

convergence of the various algorithms are realistic in the sense that for gen-

eral windows they cannot be lowered by much. For this we shall treat the

algorithm of Section 4 in detail. We shall also demonstrate the pitfall of the

coupled recursions of Section 6 when � 6= 0; 1
2
; 1; this we do in detail for

the algorithm in (4) whose Zak transform representation is given in (273).

Furthermore, we shall present an example of a Gabor frame (; a = 1; b = 1)

with frame operator S such that the quantities kSk=kk, kS2k=kSk as-
sume any value as allowed by the sharp Kantorovich inequality given in

Section 7. Finally, we present some heuristics as to why one should expect

the algorithms to converge under considerably less stringent conditions on

A=B when the initial window g is well-behaved.

10.1 Sharpness of lower bounds

The algorithm of Section 4 for the computation of the canonical tight window

gt for the Gabor frame (g; a = 1; b = 1) with quadratic convergence without

inversions assumes in the Zak transform domain the following form:

�0 = G ; �k+1 =
3

2

�k

k�kk �
1

2

j�kj2 �k
k�3

kk
; k = 0; 1; ::: : (274)

Here G = Zg and �k = Zk. We show that the condition A=B > 1
2
, that has

been shown to be suÆcient for all (k; a = 1; b = 1) to be a Gabor frame with

quadratic convergence of k=kkk to (ab)�1=2 gt, is not much more restrictive

than necessary. To that end we take g such that jZgj2 = A on a set N with

measure nearly equal to 1 and jZgj2 = B on the complementary set M in
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[0; 1)2. Then the k have j�kj2 = Ck on N and j�kj2 = Dk on M for certain

constants Ck, Dk. Also, one has

kGk = k�0k � A1=2 ; kG3k = k�3
0k � A3=2 : (275)

Let us also assume that G is real and positive on [0; 1)2. Then one computes

the Zak transform Gt of gt as

Gt = Zgt = Z(S�1=2g) =
Zg

jZgj � 1 : (276)

The values of �1 on N and M are given approximately as

3

2

A1=2

A1=2
� 1

2

A3=2

A3=2
= 1 ; (277)

3

2

B1=2

A1=2
� 1

2

B3=2

A3=2
=

1

2

�B
A

�1=2�
3� B

A

�
: (278)

Note that (278) is negative when A=B < 1
3
and that one must expect chaotic

behaviour of the sequence of values of �k onM . In particular, it may happen

that �k does not converge at all, or that it converges to a � that takes the

value �1 onM . Furthermore, when A=B > 1
3
, the ratio of the squares of the

quantities in (278) and (277) is larger than A=B if and only if A=B 2 (1
2
; 1).

Hence, when 1
2
< A=B < 1

3
, the frame bound ratio A1=B1 of (1; a = 1; b = 1)

is, under the approximations in (277) and (278), less than A0=B0 = A=B.

However, as one easily sees, the subsequent frames (k; a = 1; b = 1), k =

1; 2; ::: have frame bound ratios Ak=Bk that rapidly increase to 1 (when 1
2
<

A=B < 1
3
).

10.2 Pitfall of coupled recursions for � 6= 0; 1
2
; 1

We consider now the coupled recursions as we had them in Section 6 in the

Zak transform domain (a = b = 1), and for demonstration of the pitfall for

� 6= 0; 1
2
; 1 we focus on the case (127). We then have �0 = �0 = G and for

k = 0; 1; :::

�k+1 = (1� �)
�k

k�kk + �
1=��k
k1=��kk

; (279)

�k+1 = �
�k

k�kk + (1� �)
1=��k
k1=��kk

: (280)

Here we have G = Zg, �k = Zk, �k = Z�k as before. Note that it follows

from gt = tk = �tk that

G

jGj =
�k

j�kj
=

�k

j�kj
; k = 0; 1; ::: : (281)
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We consider the question whether or not k, �k converge to S
��g=kS��gk,

S�(1��)g=kS�(1��)gk. In the Zak transform domain this means that we ask

whether

�k ! jGj�2�G=kG�2�+1k ; �k ! jGj�2(1��)G=kG2��1k : (282)

As an example we take � = 1
2
; 1
4
and G of the form

G = c�M + d�N ; (283)

where c > 0, d > 0 andM , N are pairwise disjoint sets in [0; 1)2 with positive

measures m, n such that m + n = 1. We then get for k = 0; 1; :::

�k = ck�M + dk�N ; �k = ek�M + fk�N (284)

with the ck, dk, ek, fk given recursively by

c0 = e0 = c ; d0 = f0 = d ; (285)

and 2
666664

ck+1

dk+1

ek+1

fk+1

3
777775 =

2
666664

ck e�1
k 0 0

dk f�1
k 0 0

0 0 ek c�1
k

0 0 fk d�1
k

3
777775

2
666664

(1� �)=k�kk
�=k��1

k k
�=k�kk

(1� �)=k��1
k k

3
777775 : (286)

Denote2
666664

ĉ

d̂

ê

f̂

3
777775 =

2
666664

c1�2�=kG�2�+1k
d1�2�=kG�2�+1k
c2��1=kG2��1k
d2��1=kG2��1k

3
777775 ;

2
666664

c1

d1

e1

f1

3
777775 = lim

k!1

2
666664

ck

dk

ek

fk

3
777775 : (287)

Then, with accuracy at least 0:5�10�4 there are the following tables of results.

Table I: � = 1
2

c d n c1 � ĉ d1 � d̂ e1 � ê f1 � f̂

1 2 1
2

0:0000 0:0000 0:0000 0:0000

1 103 1
2

0:0000 0:0000 0:0000 0:0000

1 2 10�3 0:0000 0:0000 0:0000 0:0000

1 103 10�3 0:0000 0:0000 0:0000 0:0000
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Table II: � = 1
4

c d n c1
ĉ
� ĉ d1 � d̂

d̂

e1 � ê
ê

f1
f̂

� f̂

1 2 1
2

0:0055 �0:0039 �0:0039 0:0055

0:8165 1:1547 1:1547 0:8165

1 103 1
2

0:4036 �0:0722 �0:0722 0:4036

0:0447 1:4135 1:4135 0:0447

1 2 10�3 0:0980 �0:0001 �0:1718 0:0002

0:7073 1:0003 1:4135 0:9995

1 103 10�3 3:4207 �0:0060 �22:0781 0:2932

0:0316 1:0050 22:3663 0:7073

Note that the limiting windows 1 = limk!1 k and �1 = limk!1 �k are

signi�cantly o� in the case that � = 1
4
. Also, it is de�nitely not so that

1 = 	(S) g=k	(S) gk ; �1 = �(S)=k�(S)k (288)

with 	 and � functions independent of g. Indeed, in that case the ratios

c1=d1 and e1=f1 should be independent of n, and they are not.

10.3 Realization of the sharp Kantorovich inequality

We shall show now that the sharp Kantorovich inequality involving kSfk=kfk
and kS2fk=kSfk, see Proposition in Section 7, can be realized with f =  2
L2(R) and S the frame operator corresponding to (; a = 1; b = 1). We let

0 < E � F <1 and we choose numbers u; z 2 [E; F ] such that

EF

(E2 + F 2 � u2)1=2
� z � u : (289)

We want to �nd  such that the frame operator S corresponding to (; 1; 1)

has best frame bounds E, F while

kSk
kk = z ;

kS2k
kSk = u : (290)

To that end we consider � = Z of the form

� = E1=2�M + F 1=2�N +G1=2�P ; (291)

whereM , N , P are pairwise disjoint sets � [0; 1)2 with measures m = �(M),

n = �(N), p = �(P ) such that m + n + p = 1. By taking G 2 [E; F ] we

assure that (; 1; 1) has best frame bounds E, F . Furthermore, we have

Z(Sj) = jZj2jZ = Ej+1=2�M + F j+1=2�N +Gj+1=2�P ; (292)
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so that

kSjk2 = mE2j+1 + nF 2j+1 + pG2j+1 : (293)

Since the cases z = u and z = F are fairly easy to deal with we shall assume

that z < u. We must choose G 2 [E; F ] and m;n; p � 0 with m+ n+ p = 1

such that (290) holds. We choose any G 2 [E; F ] such that

G2 2
hF 2 � u2

F 2 � z2
z2;

u2 � E2

z2 � E2
z2
i
; (294)

it follows from (289) and u; z 2 [E; F ] that the interval in (294) contains z2

and is contained in [E2; F 2]. This choice implies that

z2F 2+z2G2�F 2G2�u2z2 � 0 ; z2G2+z2E2�E2G2�u2z2 � 0 : (295)

In addition we have from the �rst inequality in (289) that

z2E2 + z2F 2 � E2F 2 � u2z2 � 0 : (296)

We then take

m =
�E

�E + �F + �G
; n =

�F

�E + �F + �G
; p =

�G

�E + �F + �G
; (297)

where

�E = FG(G2 � F 2)(z2F 2 + z2G2 � F 2G2 � u2z2) � 0 ; (298)

�F = GE(E2 �G2)(z2G2 + z2E2 � E2G2 � u2z2) � 0 ; (299)

�G = EF (F 2 � E2)(z2E2 + z2F 2 � E2F 2 � u2z2) � 0 : (300)

When there is equality in (296) the interval in (294) equals [E2; F 2] and thus

allows us to take G in the interior of that interval so that we have inequality

signs in (295). That is, we can take care that at least one of the �'s is

positive.

It can be shown that this choice of m, n, p, G is such that (290). In fact,

these choices are found by requiring the three conditions on m, n, p

m+ n + p = 1 ; kSk2 = z2 kk2 ; kS2k2 = u2 kSk2 (301)

while using (293), where the m, n, p are constrained by m � 0, n � 0, p � 0.
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10.4 Performance for well-behaved windows

We make some heuristic comments on the performance of the algorithms

for well-behaved (i.e. smooth and rapidly decaying) initial windows g. These

windows have a smooth Zak transform with at least one zero in [0; 1)2, whence

the windows  considered in 10.3 are certainly not well-behaved.

In the algorithms of Sections 4, 5, 8, 9 we have generically in the kth step

a positive de�nite operator Zk with Ek = min�(Zk), Fk = max�(Zk) and

quantities qk or uk, vk given as

qk =
kZkkk
kkk

; uk =
kZ2

kkk
kZkkk

; vk =
kZkkk2

kkk kZ2
kkk

: (302)

We have spent a considerable e�ort in �nding a lower bound L such that

Ek=Fk > L implies that Ek+1=Fk+1 > Ek=Fk. In the algorithms of Sections 4,

5 we have seen, see (81) and (108), that Ek+1=Fk+1 > Ek=Fk is already

implied by the condition that qk=Fk > L. Hence relatively large values of

qk yield good convergence behaviour of these algorithms even when we start

with low values of Ek=Fk. In the algorithms of Sections 8, 9 a consideration

of the relevant polynomials P (z ; uk; vk) shows that the ratio Ek+1=Fk+1 is

close to being largest when uk is about halfway between Ek and Fk and vk
is of the order 1

10
(1� Ek=Fk)

2. Such uk, vk give rise to a P (z ; uk; vk) with

values at z = Ek; Fk;
1
2
(Ek + Fk) that are about equal while the extrema

occur around 1
2
(Ek + Fk)� 1

4
(Fk � Ek).

When we consider the Gaussian 21=4 exp(��t2) and we let S be the frame

operator corresponding to (g; a; b), we see that q0 = kSgk=kgk is indeed

relatively large for a = b = 1. Also, we see from the Example at the end

of Section 7 that u0 = kS2gk=kSgk is indeed somewhere halfway between

E0 = A, F0 = B, and that v0 = kSgk2=kgk kS2gk is indeed of the order 1
10
(1�

E0=F0)
2. Hence the Gaussian window is a very good initial window for all

algorithms considered here, and we expect this to hold for more general well-

behaved windows. All this is of course very speculative; extensive numerical

experiments with the algorithms should give a better insight into the actual

state of a�airs. Some insight for the case a = b = 1 may also be obtained

from the fact that the quantities kSgk=kgk, kS2gk=kSgk can be expressed in

terms of the Zak transform G = Zg as

�
Z Z

jG(t; �)j6 dtd�Z Z
jG(t; �)j2 dtd�

�1=2
;

�
Z Z

jG(t; �)j10 dtd�Z Z
jG(t; �)j6 dtd�

�1=2
; (303)

respectively (integrations over a unit square).
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Figure captions

Fig. 1. Plot of P (w) = w(3
2
� 1

2
w2) on the interval [E=r; F=r] where E = 2

3
,

F = 1, and (a) r = 1, (b) r = 2
3
, (c) r = (19=27)1=2 so that

P (C = E=r) = P (D = F=r).

Fig. 2. Plot of f1(Q) = Q�1(3
2
� 1

2
Q�1)2 for 1

3
� Q � 1 and of f2(Q) =

27
4
(Q1=2 +Q)2=(1 +Q1=2 +Q)3 for 0 � Q � 1.

Fig. 3. Plot of P (w) = w(2� w) on the interval [E=q; F=q] where E = 2
3
,

F = 1, and (a) q = 1, (b) q = 2
3
, (c) q = 5

6
so that P (C = E=q) =

P (D = E=q).

Fig. 4. Plot of f1(Q) = (2Q � 1)Q�2 for 1
2
� Q � 1 and of f2(Q) =

4Q(1 +Q)�2 for 0 � Q � 1.

Fig. 5. Illustration of the inequalities (150) with A = 1
2
, B = 1.

Fig. 6. Plot of S(x ; v = 1) = 15
8
x � 5

4
x3 + 3

8
x5 on the interval [(A=u)1=2;

(B=u)1=2] where A = 0:36, B = 1 and (a) u = 1, (b) u = 0:36.

Fig. 7. Plot of S(x ; v = 0:65) = 15
8
xv� 5

4
x3+ 3

8
x5 on the interval [C;D] =

[(A=u)1=2; (B=u)1=2] where A = 0:36, B = 1 and u = 0:70.

Fig. 8. Plot of S(x ; v = 0:9159) = 15
8
xv � 5

4
x3 + 3

8
x5 on the interval

[C;D] = [(A=u)1=2; (B=u)1=2] where A = 0:36, B = 1 and u = 0:64.

Fig. 9. Plot of H1(Q) and H2(Q) of (208) and (210), respectively, for Q =

A=B 2 [0; 1], and of Ĥ(Q) of (216) and Q 2 [Q1; 1] with Q1 given

in (220).

Fig. 10. Plot of R(x ; v = 1) = 3x � 3x2 + x3 on the interval [E=u; F=u]

where E = 1
2
, F = 1 and (a) u = 1, (b) u = 1

2
.

Fig. 11. Plot of R(x ; v) = 3xv�3x2+x3 on the interval [C;D] = [E=u; F=u]

where E = 0:513829766, F = 1, u = 0:768286186, v = 0:814787712.

Fig. 12. Plot of R(x ; v) = 3xv�3x2+x3 on the interval [C;D] = [E=u; F=u]

where E = 1
2
, F = 1, u = 3

4
, v = 26

27
.

Fig. 13. Plot of G1(Q) and G2(Q) of (260) and (261), respectively, for Q =

E=F 2 [0; 1], and of Ĝ(Q) with Ĝ given in (263) and Q 2 [Q1; 1]

with Q1 given in (266).
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