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Abstract. We give the proof of principle of a new experimental method
to determine the aberrations of an optical system in the field. The mea-
surement is based on the observation of the intensity point-spread func-
tion of the lens. To analyze and interpret the measurement, use is made
of an analytical method, the so-called extended Nijboer-Zernike ap-
proach. The new method is applicable to lithographic projection lenses,
but also to EUV mirror systems or microscopes such as the objective
lens of an optical mask inspection tool. Phase retrieval is demonstrated
both analytically and experimentally. The extension of the method to the
case of a medium-to-large hole sized test object is presented. Theory
and experimental results are given. In addition we present the extension
to the case of aberrations comprising both phase and amplitude errors.
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1 Introduction recorded in resist or captured by a detector. Exposing the
mask through focus results in the measurement of the 3-D
intensity of the point-spread function. It is noted that the

point-spread function fully characterizes the lens and is in-
dependent of the illumination source. Also, the point-spread
function contains the information of both the low- and

high-order aberrations. From an experimental point of view
the procedure is straightforward. The problematic part is
therefore not the experiment, it is the interpretation of the

The increased interest in qualification methods for litho-
graphic projection lenses may be explained from a number
of factors; projection lens aberrations are known to have an
important contribution to linewidth variation and image
misplacement:? Their impact gets more pronounced with
each new technology node due to the small dimensions
compared to the exposure wavelength, i.e., kgwmaging
requires tighter aberration specifications. To minimize the measurement.

impact of aberrations, modern lithographic lenses have a To analyze and interpret the measurement, use is made
number of manipulators to tune specific aberration terms. ¢ o hew analytical method. The through-focﬁls image in-
Focal plane deviation, astigmatism, coma, and spherical ab-yensity of the point-spread function, including the effects of
erration are all adjustable quantities. Although the lens gpherrations, is described by a recently found Bessel series
manufacturer delivers a well-optimized lens, the advanced rgpresentation. This description, called the extended
user needs to balance lens aberrations for optimal perfor-Njjhoer-zernike approach? is tailor-made for the inverse
mance on specific patterns. In addition, aberrations may proplem we have to solve: retrieving the phase deféatts
vary in time due to lens aging and machine drift. errations of the lens from the intensity measurements in
Although several user tests are available such aman the focal region. Following the new approach, the through-
situ interferometet or various resist-based methdt$,we focus point-spread function is expressed as a combination
have chosen for a different approach. Our approach to de-of basic functions. The coefficients of these basic functions
termine the lens aberrations, both phase and amplitude, isare identical to the Zernike coefficients that represent the
based on the observation of the intensity point-spread func-pupil function and are estimated by optimizing the match
tion of the lens, a method that has a number of advantagesbetween the theoretical intensity and the measured intensity
The test pattern is the most simple and elementary patternpatterns at several values of the defocus parameter.
that exists: an isolated transparent hole in a dark field bi- Phase retrieval by the extended Nijboer-Zernike ap-
nary mask. For a sufficiently small hole diameter, small proach is applicable to lithographic projection lenses, but
compared to the system resolution, the image will approxi- also to EUV mirror systems or microscopes such as the
mate the point-spread function of the lens, which is either objective lens of an optical mask inspection tool. This pa-
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per gives a detailed description of the phase retrieval Table 1 Fringe Zernike convention.
method and shows the first experimental results, demon-
strating the feasibility of our approach. The last section (7.m) Name Ry (p)cos(mé) Term

discusses the extension to general aberration retrieval.

Here we consider the retrieval of general aberrations Piston ! 4
A-exp(®) with a possible non-constant pupil transmission @1 Tilt pcos(6) 2
amplitudeA. Retrieval of amplitude errors is a unique fea- (2.0) Defocus 2p*-1 Z,
ture of our method and is worked out in more detail in (2,2) Astigmatism p?cos(26) Zs
Ref. 9. (4,0 Spherical 6p*—6p2+1 Zy
(3.1) X-Coma (3p3—2p)cos(h) Z;
2 Basic Formulas for the Computation of the (3.3) X-Three point pieos(36) Z10
Complex Amplitude of a Point-Spread
Function
The point-spread function or impulse respdfise an op- 3,(0) I4(0)
ticalsystem is the image of an infinitely small object. In ; o 2l T 5
practice an object having a diameter of the order of Spherical U(x.y)~2 v ' a0 @
~ N2NA is a fair approximation. The complex amplitude
of a point-spread function is denoted E@$éx,y). The rela- > Ji(v) J4(v)
tionship between normalized image coordinates/) and Coma U(x,y)~ P cosp
the defocus parametérand the real space image coordi-
nates K,Y,Z) in the lateral and axial direction is given by: J1(v) J3(v)
Astigmatism U(Xx,y)~2 ” =i az, 5 C0S2¢p
NA NA
X=X~ y=Y - @ with  v=2mr. According to the extended
Nijboer-Zerniketheory;® the complex amplitude of the
. point-spread functionU is in first-order approximation
r=\x2+y? , (xy)=(rcosp,rsing) given by:
T ~ ; im
=20 2(1- ToNAD), u 2VOO+2|an anm i™ VamCOSMa, (5)

where a,,, are the Zernike coefficients of the single aber-
rationsR}(p)cosmé. For integersn,m=0 with n—m=0
and even, the Bessel series representatiovfgyreads

with (r, ¢) polar coordinates in the image plane. For anum-
ber of special cases the point-spread function is well
known. The in-focus{=0), aberration-free amplitude dis-
tribution of the point-spread function is the Airy pattern:

. - cenl—1 d Im+1+2j(v)
Vam(r,f)=exp(if) > (=2if)' 1> v ———,
=1 j=0 lv
J1(v)
U(x,y)=2 , v=2mT. (2
v v=2mr, (6)
A central spot is surrounded by a dark ring corresponding with v)j given by
to the first minimum of),(v). The aberrations of the opti-
cal system are described by an aberration functigvith- (m+jHI=1) j+1-1
out loss of generality, the usual symmetry and normaliza- vi;=(—1)P(m+1+2j) B _
. ) -1 -1
tionassumptions may be made. For small phase defects, the
aberration function® is expanded as a series of Zernike -1 g+I+j
terms involving the polar pupil coordinates(6): X - T (7)
wherel=1,2,...; j=0,...p. In Eqg.(7) we have set
D=, an R™(p)cogme), with real appy, : P a.(7)
n _n—-m _n+m g

0<6<2m, O0<p=<1. (3

The special case of=0 corresponds to Eq4). For the
We use the Fringe Zernike convention to represent the lensnumberL of terms to be included in the infinite series over

aberrations, as shown in Table 1 below. | the following rulé is used: ifL is three times the defocus
The in-focus §=0) amplitude distribution in the pres- parameter, the absolute truncation error is of the order
enceof small aberrations was already given by Nijbbes: 1078,
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Real(U Imaginary(U Intensi 4 6 2 4 6
; eal(U) . maginary(U) . ntensity o b . b e b_+ b_+ b (12)
- ;:g 2304 46080’ 8 384 10240
05 os|* | || L= f=2n o _ _ _
\ 03 A similar correction can be carried out in the case where
’ \\ e \ . . . S D e
o N omend ol e ] | the conventional approximation exfy{"), describing defo-
S N .- cusing in the diffraction integral, is no longer adequate due
6 5 1 118 0 5 0 15 0 5 10 15 to high numerical aperturesee Ref. 9 for further detajls
Fig. 1 The through-focus aberration-free amplitude and intensity Accordlngly, the appllcatlon range of the metth IS ex-
distribution of the point-spread function. The horizontal axis repre- tended fromNA of around 0.65 tdNA up to 0.85. Figure 2
sents the radial axis in normalized units [see Eq. (1)]. shows a comparison of the extended Nijboer-Zernike

theory and a commercial lithographic simulator
. ] ] (SOLID-C!). As an example we chose an aberration-free
Flgure 1 gives a result of the through-focus aberration- |enS, two settings of the numerical aperth'A = 0.6 and
free qmplitude and intgnsity distribution of the point-spread NA = 0.80 and two diameters of 0/4m and 0.3um. The
function, calculated with Eq(5). intensity deviations between the analytical computation and
High-order aberrations, i.e., large valuesnaindmand  the Solid-C full vectorial, unpolarized calculation has a
large defocus values up to=*47, provide no problem  standard deviation typical of the order 6f1%. A detailed

for the convergence of the series in Ef). The extended  assessment and additional examples can be found
Nijboer-Zernike approach is thereforetailor-made for our g|sewherd:'?

phase retrieval problem.

2.1 Extension to Finite Hole Size 2.2 Determination of the Zernike Coefficient: Phase
Up to now we have assumed that the diameter of the hole in Retrieval

the binary mask is so small that it can be regarded as a truethere is a considerable amount of literature on the problem
delta function. From a practical point of view, however, it of phase retrieval from intensity measurements with or
would be favorable to use holes with a non-negligible di- jthout focusvariatiot* The method we describe below
cantly reduce the required exposure dose, making the eX-method is analytical in nature and uses some parts of linear
perimental procedure much more practical. We assume thatg|gebra. The resulting linear systems for the aberration co-
the d|ameter IS Sma” Compared to the Coherence ra.d|US Ofefﬁcients are generica”y We”_conditioned due to near-
the illumination source, a condition that is almost always orthogonality of the relevant basic functions. This near-
fulfilled. The effect of a non-negligible diameter is a drop orthogonality is brought about by consideration of a whole
in amplitude at the rim of the pupil. In normalized coordi- range of defocus values.

nates, this means that the pupil function must be multiplied  The ohserved quantity is thienage intensity (x,y, f)

by the Fourier transform of a disk: =|U(x,y,f)|2. Usually the image intensity is measured us-
ing rectangular coordinates. The first step is to transform
9 the observed image intensity to polar coordind{gse, f).

Ji(2map)
map ' Using Eq.(5), the intensity is in a first-order approxima-

with a the normalized diameter of the hole. Here oneshould tio

think of a as being as large as7/so that an amplitude

drop of some 40% at the rip=1 of the pupil results from 1 ~4|Vod?+8>, anm Re{i™ VAV amicome. (13
multiplication by the function in Eq(9). In fact, in the nm

experiments described in Sec. 3.2 we have used holes with ] ] o

a diameter of 0.6um, which corresponds to a normalized It is our task to estimate the Zernike coefficientgy

diametera of NA/27\* diam~0.31. froml. o
The extended Nijboer-Zernike theory is sufficiently flex- A Fourier analysis with respect to the angular depen-
ible to account for this effecf Here one approximates dence of theobserved image intensity is made:
M~exp(c—d 2) (10) wM(r,f)= iFWI(r ¢,f)cosme d . (14)
ﬂ'ap P ) ’ 27T o 1 ¢y

with optimal c,d, and theV,(r,f) of Eq. (6) should be An inner product is defined in the (f) space:
replaced throughout by

R (F
expC)Vm(r,f+id). (11 (\If,)()=J0 JiFr-\P(r,f)-X(r,f)* drdf. (15

As one sees from Ed6), nothing prevents us from using

the Bessel series representation with complex defocus pa-YVe denote:

rameterf +id. The optimalc,d in Eq. (10) are accurately .

given as a function ob=2ma by Wo(r,f)=ym Re[i™ ViVam, (16)
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NA = 0.6, Diameter = 0.1 pm NA = 0.8, Diameter = 0.3 um
2 2
1.5 1.5
1 1
= 05 £ 05
=Y =
g 0 g 0
3 3
=05 *-05
1 —1
-1.5 -15
-2 -2
-5 0 5
Radial axis [um] Radial axis [um]
NA = 0.8, Diameter = 0.1 um NA = 0.8, Diameter = 0.3 pm
1.5 15
1 - 1
05 05
E €
= =
g 0 g 0
8 3
[ [
-0.5 -0.5
-1 = -1
-1.5 -15
-10 -5 0 5 10 -10 -5 0 5 10
Radial axis [um] Radial axis [um]

Fig. 2 The intensity point-spread function of an aberration-free lens for various values of the numerical aperture and hole size. The extended
Nijboer-Zernike theory (dashed lines) is compared with a commercial lithographic simulator (solid lines). The deviations are typically 1%.

with y,=4, m=1,2, - -, yo=8. Then by multiplying Eq. = 2.3 \Validating the Phase Retrieval Capabilities

(13) by cosm¢ and integrating ovet, themth harmonic |n this subsection we discuss the retrieving capabilities of
of the observed intensity is expressed as a linear sum of thethe extended Nijboer-Zernike theory. As an example we
W(r,f) functions with coefficientsy,,: calculate the complex amplitude in the presence of low-

order comaas,=0.05 using Eq(5); it is assumed that the

first-order approximation of the complex amplitude is valid.
z ¥ (r, F)=~¥M(r 1), (17 Then we show that phase retrieval is exact. The problem we
n have to solve is how to retrieve the phase defect, a:g;,

from the 3-D image intensity

which is a near identity between measured quantities on the  Following the phase retrieval recipe discussed above,

right and theoretical quantities on the left. By taking the the first step is to form the linear system. In our_example
inner product, defined above, of E(L7) with T the we use the first three coma terms-1,3,5 to describe the

n’ H H _ H .
Zernike coefficients can be estimated on solving a linear aberrations of the point-spread function:

system of equations:
ar(V], W)+ as (V5 VD) +as(VE, ¥]) = (PP

(19

an (UM Ty =(Pm T 18

; oF W)= ) (49 ar (V1 W3 +ag (W3, W3 +as(VE, V5 = (VW)

By restricting the number of the’ at the right-hand side  @11(W1, W8 +az (W3, VE) +as(Vs, Vi) = (V1 ¥5)

and the summation at the left-hand side of ELj) to M

terms, the linear combination of thg', obtained by solv-  with W the measured first harmonic andl;- - - ¥¢ the
ing the MXM linear system, gives the least square ap- calculated inner product. Next we explicitly calculate the
proximation of¥ ™ as a linear combination of th&['. The inner products, properly discretizing E(L5), and we ob-
solution is the best linear combination that one can obtain tain the linear system:

from the experimentally observed intensity profile usiig

terms in Eq.(17). +1411a, 1—236a3,—4las,;=—11.8 (20
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Table 2 Simulated phase retrieval. therefore cancel on forming the linear systems for the co-
efficientsa,, in EQ. (18). In a similar fashion the quadratic

Name Term — n m Zemike coefficients term in expanding the complex aberration amplitude does
Input aberrations Retrieved not _show up in the linear system. With_re_spect to the sen-
Tilt 2, 1 1 0.0175 0.0175 sitivity to measurement noise, a preliminary simulation
Def 5 0 0.0187 0.0187 showed a satisfactory result; this is to be expected from the
elocus Za > - well-conditionedness of the linear systems and the large
Astigmatism Zs 2 2 0.0726 0.0726 data sizes. These points and a further mathematical under-
Coma z 3 1 —00588  —0.0588 pinning of the method are presented elsewfére.
Spherical Zs 4 0 0.2183 0.2183
Three-point Z1o 3 3 -00136  —0.0136 3 Experimental Results
Astigmatism — Z, 4 2 0.0114 0.0114 3.1 Microlithography Simulation Microscope Results
Coma Z14 5 1 0.1067 0.1067 . . . . . 15
_ The microlithography simulation microscogéSM 100
Spherical Z1s 6 0 0.0059 0.0059 . ;
emulates the optics of a scanner and is used for the evalu-
ation of mask defects and optimization of lithographic pro-
cesses. The MSM 100 microscope is set to emulate a
— 2360y 1+320as ;— 79 as ;= + 16 = 1_93 nm, NA=0.75 scanner. The acquired through-focus
' ' ' aerial images of the isolated hole are transferred to an off-
—41a; -~ 793+ 103as,= —3.9 line computer for evaluation using homemade software.

We retrieved the Zernike coefficients as described in the
m-Previous section. As a check, we calculated the image in-
tensity using the retrieved Zernike coefficients and com-
pared it with the experimental image intensity as shown in
=0 s =005 ac=0 21) Fig. 3. The dominant aberration is 5th-order X-coma,
L= T8l P OsIT which is clearly visible in the extreme defocus positions.

The magnitude of the inner products depend on the sa
pling scheme in ther( f) space. The solution of EQRO0) is:

exactlymatching the input. ) ) o
In the next example we used a set of 40 random aberra-3-2  Lithographic Projection Lens
tion coefficientsa,,, for input, as shown in Table 2. Getting an electronic version of the point-spread function
Using Eq.(5) we calculated the complex amplitude and of a scanner is somewhat more complicated. Image sensors
the image intensity. The phase retrieval procedure is ap-are usually line detectors with relative broad lines having
plied and aperfect reconstructiomesults. only two orientations. Even if multiple orientations would
Why does phase retrieval using the extended Nijboer- have been available, the procedure to reconstruct a point-
Zernike approach work so well? The basic functions spread function out of the image sensor signal, which es-
VioVam are nearly orthogonal and the matrix to solve sentially integrates perpendicular to the line direction, is a

Zernike coefficients, similar to Eq(20), is well condi- nontrivial procedure. Therefore we have chosen a resist-
tioned. The perfect reconstruction results, provided suffi- based experiment. o ) )
cient (n,m) terms are taken into account. Equati¢8sand The reticle, shown in Fig. 4, is a simple chrome on

(13) suggest that we have neglected the quadratic intensityduartz reticle with a 40.15=0.6 um transparent hole. An
term in determining the Zernike coefficients. This is not the ASML PAS5500/950 system with & =193 nm, NA
case. One can show that the quadratic terms are orthogonat=0.63 projection lens is used to image the reticle onto
to the linear terms with respect to their dependencéand resist on aSiONantireflective coating. Usin§iONinstead

focus = -0.75 pm focus =0 um focus = 0.75 um
10 10 10,
8 8 8
6 6 6

-6 -6 -8
-8 -8 -8
-19 -1Q -10
-10 -5 0 5 10 ~10 -5 0 5 10 —10 -5 0 5 10

Fig. 3 Cross sections of the MSM 100 point-spread function at various focus levels. Solid lines represent the experimental data and the dashed
lines are calculated using the retrieved Zernike coefficients. High-order X-coma is the dominant aberration. The (X, Y) axes are in normalized
radial units [see Eq. (1)].
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Y-axis [um]
o

0.5

-1 -05 0 0.5 1
X-axis [um]

Fig. 4 SEM image of a chrome on quartz reticle with an isolated
hole, with a 0.6 um-diameter, used in our phase retrieval experi-
ments.

The procedure is repeated for a number of focus and
exposure dose settings, i.e., the reticle is exposed in a focus
exposure matrixXFEM). A SEM, under job control, collects
all images. The data reduction is done off-line. All contours
are combined into a through-focus aerial image from which
the projection lens aberrations are determined as described
above. Figure 6 shows the calculated image intensity using
the retrieved Zernike coefficients compared to the experi-
mental image intensity. The dominant terms are low-order
astigmatism and low order three-point.

3.3 Outlook: Extension to General Aberration
Retrieval

A further extension concerns the retrieval of a general ab-
errationA- exp(i®) with a possible non-constant transmis-
sion amplitudeA. Now one expands

A-expi®)=2>, BamR™(p)cosmé,

0=60<2m, Osp=1, (22

where we now aim at estimation of thecoefficients. In a
case wheréd=1 and® has been expanded as in Eg),

of an organic antireflective coating has the advantage that it yne \would gefunder the assumption thd is so small that
provides a good contrast in the SEM. First two small ref- exp(®) may be linearizeH

erence marks are exposed, using the same reticle. The co-
ordinate system, superimposed onto the image, is shown.
The relative large central image in Fig. 5 represents a single'Bnm
contour of the point-spread function at a certain exposure
dose and defocus value. Inside this contour, the image in-where § is Kronecker’s delta. In general, we may assume
tensity is above the resist threshold value and the resistthat By is positive and large compared to the otlggr,'s.
completely develops away, leaving tB&ON layer. Outside Now instead of Eq(13) we get

the contour, the SEM image shows the undeveloped resist.

= 6.8 +ianm (23)

-2

-

|
o
2

Y-axis [um]
o

0.5

-2 -15 -1 -0.5 0 0.5 1 15 2
X-axis [um]

Fig. 5 SEM image of an exposure onto resist. First two reference
marks are exposed defining the coordinate system. The central im-
age represents a single contour of the point-spread function.
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|~ 4,33,o| Voo 2+ Boo >
(n,m)

IM(Bam) Ph'cosme  (24)
Z(0,0)

+Bog > ReBamxicosme.

n,m) #(0,0)

Here we have, in addition to th&' in Eq. (16), introduced
the basic functions

Xn' (1, 1) = YmReli ™VEoV nm- (29

Note that we now have to solve for both IBy,) and
Re(Bnm)- It turns out that the two corresponding linear
systems decouple. These systems are obtained by integra-
tion over ¢ as in Eq.(14) and taking inner products with
v andyp,, and it now happens that,, andy,, have
opposite parity with respect to their dependencéd sm that
their inner product vanishes. When in the presence of both
amplitude and phase errors, two sets of linear equations
must be solved instead of one. The solution is the set of
Bnm coefficients that must be converted to the amplitude
and phase errors using E(2). Retrieval of phase and
transmission is feasible and a further analysis of this exten-
sion is discussed elsewhéfeNote that the pure-phase
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focus = 0.45 um

focus = -0.45 um focus =0 pm
10 10
8 8

-4 -4 -4
-6, -6, -6,
-8 -8 -8
-9 -5 0 5 10 -9 -5 0 5 10 -9 -5 0 5 10

Fig. 6 The point-spread function of a scanner reconstructed from resist images. Solid lines represent the experimental data and the dashed
lines are calculated using the retrieved Zernike coefficients. Low-order astigmatism and low-order three-point are the dominant aberrations. The

(X,Y) axes are in normalized radial units [see Eq. (1)].

retrieval method and the general aberration retrieval 3.

method use the same set of data.

Observe that the method as presented in Sec. 2.2 is con-

siderably simpler and works directly in terms of optical
relevant parametersy,,, i.e., the Zernike coefficients.

However, its applicability is restricted to the cases that we ¢

may assume negligible amplitude errors.

4 Discussion

N. R. Farrar, A. L. Smith, D. Busath, and D. Taitano, “In-situ mea-
surement of lens aberrationsProc. SPIE400Q 18—-29(2000.

4. J. P. Kirk and T. A. Brunner, “Measurement of microlithography

aerial image quality,'Proc. SPIE2726 410—-416(1996.
. P. Dirksen, C. Juffermans, R. Pellens, and P. De Bisschop, “Novel
aberration monitor for optical lithographyProc. SPIE3679 77—-86
(1999.
F. Zach, C. Y. Lin, and J. P. Kirk, “Aberration analysis using recon-
structed aerial images of isolated contacts on attenuated phase-shift
masks,”Proc. SPIE4346 1362-13682001).
. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the
computation of optical point-spread functions,”Opt. Soc. Am. A9,
849 (2002.

In this paper we have given the proof of principle of a new g, j. 3. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an

experimental method to determine the aberrations of an op-
tical system in the field. The measurement is based on the

observation of the intensity point-spread function of the

lens and uses an analytical method, the so-called extendedo.

Nijboer-Zernike approach, for analysis and interpretation of

extended Nijboer-Zernike approach for the computation of optical
point-spread functions,J. Opt. Soc. Am. A9, 858(2002.

9. M. Born and E. Wolf, Sec. 9.2 iRrinciples of Optics 4th rev. ed.,

Pergamon Press, New Yorkl970.
M. Born and E. Wolf, Sec. 8.8 iRrinciples of Optics4th rev. ed.,
Pergamon Press, New Yorkl970.

the measurement. The new method is applicable to litho- 11- B- R. A. Nijboer, Thesis, University of Groning&h942.

aberrations comprising both phase and amplitude errors

was presented. These features make our method suitable fox
the characterization of future-generation high numerical ap-

erture tools.
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