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Abstract. We give the proof of principle of a new experimental method
to determine the aberrations of an optical system in the field. The mea-
surement is based on the observation of the intensity point-spread func-
tion of the lens. To analyze and interpret the measurement, use is made
of an analytical method, the so-called extended Nijboer-Zernike ap-
proach. The new method is applicable to lithographic projection lenses,
but also to EUV mirror systems or microscopes such as the objective
lens of an optical mask inspection tool. Phase retrieval is demonstrated
both analytically and experimentally. The extension of the method to the
case of a medium-to-large hole sized test object is presented. Theory
and experimental results are given. In addition we present the extension
to the case of aberrations comprising both phase and amplitude errors.
© 2003 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.11171/1.1531191]
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1 Introduction

The increased interest in qualification methods for lith
graphic projection lenses may be explained from a num
of factors; projection lens aberrations are known to have
important contribution to linewidth variation and imag
misplacement.1,2 Their impact gets more pronounced wi
each new technology node due to the small dimensi
compared to the exposure wavelength, i.e., lowk1 imaging
requires tighter aberration specifications. To minimize
impact of aberrations, modern lithographic lenses hav
number of manipulators to tune specific aberration ter
Focal plane deviation, astigmatism, coma, and spherica
erration are all adjustable quantities. Although the le
manufacturer delivers a well-optimized lens, the advan
user needs to balance lens aberrations for optimal pe
mance on specific patterns. In addition, aberrations m
vary in time due to lens aging and machine drift.

Although several user tests are available such as ain
situ interferometer3 or various resist-based methods,4–6 we
have chosen for a different approach. Our approach to
termine the lens aberrations, both phase and amplitud
based on the observation of the intensity point-spread fu
tion of the lens, a method that has a number of advanta
The test pattern is the most simple and elementary pat
that exists: an isolated transparent hole in a dark field
nary mask. For a sufficiently small hole diameter, sm
compared to the system resolution, the image will appro
mate the point-spread function of the lens, which is eit
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recorded in resist or captured by a detector. Exposing
mask through focus results in the measurement of the
intensity of the point-spread function. It is noted that t
point-spread function fully characterizes the lens and is
dependent of the illumination source. Also, the point-spre
function contains the information of both the low- an
high-order aberrations. From an experimental point of vi
the procedure is straightforward. The problematic part
therefore not the experiment, it is the interpretation of t
measurement.

To analyze and interpret the measurement, use is m
of a new analytical method. The through-focus image
tensity of the point-spread function, including the effects
aberrations, is described by a recently found Bessel se
representation. This description, called the extend
Nijboer-Zernike approach,7,8 is tailor-made for the inverse
problem we have to solve: retrieving the phase defects~ab-
errations! of the lens from the intensity measurements
the focal region. Following the new approach, the throug
focus point-spread function is expressed as a combina
of basic functions. The coefficients of these basic functio
are identical to the Zernike coefficients that represent
pupil function and are estimated by optimizing the mat
between the theoretical intensity and the measured inten
patterns at several values of the defocus parameter.

Phase retrieval by the extended Nijboer-Zernike a
proach is applicable to lithographic projection lenses,
also to EUV mirror systems or microscopes such as
objective lens of an optical mask inspection tool. This p
61© 2003 Society of Photo-Optical Instrumentation Engineers
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Dirksen et al.: Aberration retrieval . . .
per gives a detailed description of the phase retrie
method and shows the first experimental results, dem
strating the feasibility of our approach. The last sect
discusses the extension to general aberration retrie
Here we consider the retrieval of general aberratio
A•exp(iF) with a possible non-constant pupil transmissi
amplitudeA. Retrieval of amplitude errors is a unique fe
ture of our method and is worked out in more detail
Ref. 9.

2 Basic Formulas for the Computation of the
Complex Amplitude of a Point-Spread
Function

The point-spread function or impulse response10 of an op-
ticalsystem is the image of an infinitely small object.
practice an object having a diameter of the order
; l/2NA is a fair approximation. The complex amplitud
of a point-spread function is denoted asU(x,y). The rela-
tionship between normalized image coordinates (x,y) and
the defocus parameterf and the real space image coord
nates (X,Y,Z) in the lateral and axial direction is given by

x5X
NA

l
, y5Y

NA

l
~1!

r 5Ax21y2 , ~x,y!5~rcosf,rsinf!

f 52
p

l
Z~12A12NA2!,

with (r ,f) polar coordinates in the image plane. For anu
ber of special cases the point-spread function is w
known. The in-focus (f 50), aberration-free amplitude dis
tribution of the point-spread function is the Airy pattern:

U~x,y!52
J1~v !

v
, v52pr . ~2!

A central spot is surrounded by a dark ring correspond
to the first minimum ofJ1(v). The aberrations of the opti
cal system are described by an aberration function.9 With-
out loss of generality, the usual symmetry and normali
tionassumptions may be made. For small phase defects
aberration functionF is expanded as a series of Zerni
terms9 involving the polar pupil coordinates (r,u):

F5(
nm

anmRn
m~r!cos~mu!, with real anm ,

0<u<2p, 0<r<1. ~3!

We use the Fringe Zernike convention to represent the
aberrations, as shown in Table 1 below.

The in-focus (f 50) amplitude distribution in the pres
enceof small aberrations was already given by Nijboer11 as:
62 J. Microlith., Microfab., Microsyst., Vol. 2 No. 1, January 2003
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Spherical U~x,y!'2FJ1~v !

v
1 i a4,0

J5~v !

v G ~4!

Coma U~x,y!'2FJ1~v !

v
2a3,1

J4~v !

v
cosfG

Astigmatism U~x,y!'2FJ1~v !

v
2 i a2,2

J3~v !

v
cos2fG

with v52pr . According to the extended
Nijboer-Zerniketheory,7,8 the complex amplitude of the
point-spread functionU is in first-order approximation
given by:

U'2V0012i(
n,m

anm i m Vnmcosmf, ~5!

whereanm are the Zernike coefficients of the single abe
rationsRn

m(r)cosmu. For integersn,m>0 with n2m>0
and even, the Bessel series representation forVnm reads

Vnm~r , f !5exp~ i f !(
l 51

`

~22i f ! l 21(
j 50

p

v l j

Jm1 l 12 j~v !

lv l
,

v52pr , ~6!

with v l j given by

v l j 5~21!p~m1 l 12 j !S m1 j 1 l 21

l 21 D S j 1 l 21

l 21 D
3S l 21

p2 j D Y S q1 l 1 j

l D , ~7!

wherel 51,2, . . . ; j 50, . . . ,p. In Eq. ~7! we have set

p5
n2m

2
, q5

n1m

2
. ~8!

The special case off 50 corresponds to Eq.~4!. For the
numberL of terms to be included in the infinite series ov
l the following rule8 is used: ifL is three times the defocu
parameter, the absolute truncation error is of the or
1026.

Table 1 Fringe Zernike convention.

(n,m) Name Rn
m(r)cos(mu) Term

(0,0) Piston 1 Z1

(1,1) Tilt rcos(u) Z2

(2,0) Defocus 2r221 Z4

(2,2) Astigmatism r2cos(2u) Z5

(4,0) Spherical 6r426r211 Z9

(3,1) X-Coma (3r322r)cos(u) Z7

(3,3) X-Three point r3cos(3u) Z10
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Fig. 1 The through-focus aberration-free amplitude and intensity
distribution of the point-spread function. The horizontal axis repre-
sents the radial axis in normalized units [see Eq. (1)].
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c5
b4

2304
1

b6

46080
, d5

b2

8
1

b4

384
1

b6

10240
. ~12!

A similar correction can be carried out in the case wh
the conventional approximation exp(ifr2), describing defo-
cusing in the diffraction integral, is no longer adequate d
to high numerical aperture~see Ref. 9 for further details!.
Accordingly, the application range of the method is e
tended fromNA of around 0.65 toNA up to 0.85. Figure 2
shows a comparison of the extended Nijboer-Zern
theory and a commercial lithographic simulat
~SOLID-C13!. As an example we chose an aberration-fr
lens, two settings of the numerical apertureNA 5 0.6 and
NA 5 0.80 and two diameters of 0.1mm and 0.3mm. The
intensity deviations between the analytical computation a
the Solid-C full vectorial, unpolarized calculation has
standard deviation typical of the order of;1%. A detailed
assessment and additional examples can be fo
elsewhere.8,12

2.2 Determination of the Zernike Coefficient: Phase
Retrieval

There is a considerable amount of literature on the prob
of phase retrieval from intensity measurements with
without focusvariation.14 The method we describe below
has the following new features. In the first place, t
method is analytical in nature and uses some parts of lin
algebra. The resulting linear systems for the aberration
efficients are generically well-conditioned due to ne
orthogonality of the relevant basic functions. This ne
orthogonality is brought about by consideration of a who
range of defocus values.

The observed quantity is theimage intensity I(x,y, f )
5uU(x,y, f )u2. Usually the image intensity is measured u
ing rectangular coordinates. The first step is to transfo
the observed image intensity to polar coordinatesI (r ,f, f ).
Using Eq. ~5!, the intensity is in a first-order approxima
tion:

I'4uV00u218(
nm

anm Re$ i m11V00* Vnm%cosmf. ~13!

It is our task to estimate the Zernike coefficientsanm
from I.

A Fourier analysis with respect to the angular depe
dence of theobserved image intensity is made:

Cm~r , f !5
1

2pE0

2p

I ~r ,f, f !cosmf df. ~14!

An inner product is defined in the (r , f ) space:

~C,x!5E
0

RE
2F

F

r •C~r , f !•x~r , f !* drdf . ~15!

We denote:

Cn
m~r , f !5gm Re$ i m11V00* Vnm% , ~16!
Figure 1 gives a result of the through-focus aberrati
free amplitude and intensity distribution of the point-spre
function, calculated with Eq.~5!.

High-order aberrations, i.e., large values ofn andm and
large defocus values up tof 564p, provide no problem
for the convergence of the series in Eq.~6!. The extended
Nijboer-Zernike approach is thereforetailor-made for o
phase retrieval problem.

2.1 Extension to Finite Hole Size

Up to now we have assumed that the diameter of the hol
the binary mask is so small that it can be regarded as a
delta function. From a practical point of view, however,
would be favorable to use holes with a non-negligible
ameter since the increased amount of light would sign
cantly reduce the required exposure dose, making the
perimental procedure much more practical. We assume
the diameter is small compared to the coherence radiu
the illumination source, a condition that is almost alwa
fulfilled. The effect of a non-negligible diameter is a dro
in amplitude at the rim of the pupil. In normalized coord
nates, this means that the pupil function must be multipl
by the Fourier transform of a disk:

J1~2par!

par
, ~9!

with a the normalized diameter of the hole. Here onesho
think of a as being as large as 1/p so that an amplitude
drop of some 40% at the rimr51 of the pupil results from
multiplication by the function in Eq.~9!. In fact, in the
experiments described in Sec. 3.2 we have used holes
a diameter of 0.6mm, which corresponds to a normalize
diametera of NA/2pl* diam;0.31.

The extended Nijboer-Zernike theory is sufficiently fle
ible to account for this effect.12 Here one approximates

J1~2par!

par
'exp~c2dr2!, ~10!

with optimal c,d, and theVnm(r , f ) of Eq. ~6! should be
replaced throughout by

exp~c!Vnm~r , f 1 id !. ~11!

As one sees from Eq.~6!, nothing prevents us from usin
the Bessel series representation with complex defocus
rameterf 1 id. The optimalc,d in Eq. ~10! are accurately
given as a function ofb52pa by
63J. Microlith., Microfab., Microsyst., Vol. 2 No. 1, January 2003
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with gm54, m51,2,•••, g058. Then by multiplying Eq.
~13! by cosmf and integrating overf, them’th harmonic
of the observed intensity is expressed as a linear sum of the
Cn

m(r , f ) functions with coefficientsanm :

(
n

anmCn
m~r , f !'Cm~r , f !, ~17!

which is a near identity between measured quantities on the
right and theoretical quantities on the left. By taking the
inner product, defined above, of Eq.~17! with Cn8

m , the
Zernike coefficients can be estimated on solving a linear
system of equations:

(
n

anm~Cn
m ,Cn8

m
!5~Cm,Cn8

m
!. ~18!

By restricting the number of then8 at the right-hand side
and the summation at the left-hand side of Eq.~17! to M
terms, the linear combination of theCn

m , obtained by solv-
ing the M3M linear system, gives the least square ap-
proximation ofCm as a linear combination of theCn

m . The
solution is the best linear combination that one can obtain
from the experimentally observed intensity profile usingM
terms in Eq.~17!.

2.3 Validating the Phase Retrieval Capabilities

In this subsection we discuss the retrieving capabilities
the extended Nijboer-Zernike theory. As an example
calculate the complex amplitude in the presence of lo
order comaa3150.05 using Eq.~5!; it is assumed that the
first-order approximation of the complex amplitude is val
Then we show that phase retrieval is exact. The problem
have to solve is how to retrieve the phase defect, i.e.,a31,
from the3-D image intensity.

Following the phase retrieval recipe discussed abo
the first step is to form the linear system. In our exam
we use the first three coma termsn51,3,5 to describe the
aberrations of the point-spread function:

a1,1~C1
1 ,C1

1!1a3,1~C3
1 ,C1

1!1a5,1~C5
1 ,C1

1!5~C1,C1
1!
~19!

a1,1~C1
1 ,C3

1!1a3,1~C3
1 ,C3

1!1a5,1~C5
1 ,C3

1!5~C1,C3
1!

a1,1~C1
1 ,C5

1!1a3,1~C3
1 ,C5

1!1a5,1~C5
1 ,C5

1!5~C1,C5
1!

with C1 the measured first harmonic andC1
1
•••C5

1 the
calculated inner product. Next we explicitly calculate t
inner products, properly discretizing Eq.~15!, and we ob-
tain the linear system:

11411a1,12236a3,1241a5,15211.8 ~20!

Fig. 2 The intensity point-spread function of an aberration-free lens for various values of the numerical aperture and hole size. The extended
Nijboer-Zernike theory (dashed lines) is compared with a commercial lithographic simulator (solid lines). The deviations are typically 1%.
64 J. Microlith., Microfab., Microsyst., Vol. 2 No. 1, January 2003
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Table 2 Simulated phase retrieval.

Name Term n m Zernike coefficients

Input aberrations Retrieved

Tilt Z2 1 1 0.0175 0.0175

Defocus Z4 2 0 20.0187 20.0187

Astigmatism Z5 2 2 0.0726 0.0726

Coma Z7 3 1 20.0588 20.0588

Spherical Z9 4 0 0.2183 0.2183

Three-point Z10 3 3 20.0136 20.0136

Astigmatism Z12 4 2 0.0114 0.0114

Coma Z14 5 1 0.1067 0.1067

Spherical Z16 6 0 0.0059 0.0059
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therefore cancel on forming the linear systems for the
efficientsanm in Eq. ~18!. In a similar fashion the quadrati
term in expanding the complex aberration amplitude d
not show up in the linear system. With respect to the s
sitivity to measurement noise, a preliminary simulati
showed a satisfactory result; this is to be expected from
well-conditionedness of the linear systems and the la
data sizes. These points and a further mathematical un
pinning of the method are presented elsewhere.12

3 Experimental Results

3.1 Microlithography Simulation Microscope Results

The microlithography simulation microscope~MSM 100!15

emulates the optics of a scanner and is used for the ev
ation of mask defects and optimization of lithographic pr
cesses. The MSM 100 microscope is set to emulatel
5193 nm,NA50.75 scanner. The acquired through-foc
aerial images of the isolated hole are transferred to an
line computer for evaluation using homemade software

We retrieved the Zernike coefficients as described in
previous section. As a check, we calculated the image
tensity using the retrieved Zernike coefficients and co
pared it with the experimental image intensity as shown
Fig. 3. The dominant aberration is 5th-order X-com
which is clearly visible in the extreme defocus positions

3.2 Lithographic Projection Lens

Getting an electronic version of the point-spread funct
of a scanner is somewhat more complicated. Image sen
are usually line detectors with relative broad lines hav
only two orientations. Even if multiple orientations wou
have been available, the procedure to reconstruct a po
spread function out of the image sensor signal, which
sentially integrates perpendicular to the line direction, i
nontrivial procedure. Therefore we have chosen a res
based experiment.

The reticle, shown in Fig. 4, is a simple chrome o
quartz reticle with a 430.1550.6mm transparent hole. An
ASML PAS5500/950 system with al5193 nm, NA
50.63 projection lens is used to image the reticle on
resist on aSiONantireflective coating. UsingSiON instead
2236a1,11320a3,1279a5,15116

241a1,1279a3,11103a5,1523.9

The magnitude of the inner products depend on the s
pling scheme in the (r , f ) space. The solution of Eq.~20! is:

a1,150, a3,150.05, a5,150 , ~21!

exactlymatching the input.
In the next example we used a set of 40 random abe

tion coefficientsanm for input, as shown in Table 2.
Using Eq.~5! we calculated the complex amplitude an

the image intensity. The phase retrieval procedure is
plied and aperfect reconstructionresults.

Why does phase retrieval using the extended Nijbo
Zernike approach work so well? The basic functio
V00* Vnm are nearly orthogonal and the matrix to sol
Zernike coefficients, similar to Eq.~20!, is well condi-
tioned. The perfect reconstruction results, provided su
cient (n,m) terms are taken into account. Equations~5! and
~13! suggest that we have neglected the quadratic inten
term in determining the Zernike coefficients. This is not t
case. One can show that the quadratic terms are orthog
to the linear terms with respect to their dependence onf and
Fig. 3 Cross sections of the MSM 100 point-spread function at various focus levels. Solid lines represent the experimental data and the dashed
lines are calculated using the retrieved Zernike coefficients. High-order X-coma is the dominant aberration. The (X,Y) axes are in normalized
radial units [see Eq. (1)].
65J. Microlith., Microfab., Microsyst., Vol. 2 No. 1, January 2003
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Fig. 4 SEM image of a chrome on quartz reticle with an isolated
hole, with a 0.6 mm-diameter, used in our phase retrieval experi-
ments.
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The procedure is repeated for a number of focus a
exposure dose settings, i.e., the reticle is exposed in a fo
exposure matrix~FEM!. A SEM, under job control, collects
all images. The data reduction is done off-line. All contou
are combined into a through-focus aerial image from wh
the projection lens aberrations are determined as descr
above. Figure 6 shows the calculated image intensity us
the retrieved Zernike coefficients compared to the exp
mental image intensity. The dominant terms are low-or
astigmatism and low order three-point.

3.3 Outlook: Extension to General Aberration
Retrieval

A further extension concerns the retrieval of a general
errationA•exp( iF) with a possible non-constant transmi
sion amplitudeA. Now one expands

A•exp~ iF!5(
n,m

bnmRn
m~r!cosmu,

0<u<2p, 0<r<1 , ~22!

where we now aim at estimation of theb coefficients. In a
case whereA[1 andF has been expanded as in Eq.~3!,
one would get@under the assumption thatF is so small that
exp(iF) may be linearized#

bnm5dndm1 ianm ~23!

whered is Kronecker’s delta. In general, we may assum
that b00 is positive and large compared to the otherbnm’s.
Now instead of Eq.~13! we get

I'4b0,0
2 uV00u21b0,0 (

(n,m)Þ(0,0)
Im~bnm!Cn

mcosmf ~24!

1b0,0 (
(n,m)Þ(0,0)

Re~bnm!xn
mcosmf.

Here we have, in addition to theCn
m in Eq. ~16!, introduced

the basic functions

xn
m~r , f !5gmRe$ i mV00* Vnm%. ~25!

Note that we now have to solve for both Im(bnm) and
Re(bnm). It turns out that the two corresponding line
systems decouple. These systems are obtained by inte
tion over f as in Eq.~14! and taking inner products with
Cm8

m andxm8
m , and it now happens thatCm8

m andxm8
m have

opposite parity with respect to their dependence onf so that
their inner product vanishes. When in the presence of b
amplitude and phase errors, two sets of linear equati
must be solved instead of one. The solution is the se
bnm coefficients that must be converted to the amplitu
and phase errors using Eq.~22!. Retrieval of phase and
transmission is feasible and a further analysis of this ext
sion is discussed elsewhere.12 Note that the pure-phas
of an organic antireflective coating has the advantage th
provides a good contrast in the SEM. First two small r
erence marks are exposed, using the same reticle. The
ordinate system, superimposed onto the image, is sho
The relative large central image in Fig. 5 represents a sin
contour of the point-spread function at a certain expos
dose and defocus value. Inside this contour, the image
tensity is above the resist threshold value and the re
completely develops away, leaving theSiON layer. Outside
the contour, the SEM image shows the undeveloped re

Fig. 5 SEM image of an exposure onto resist. First two reference
marks are exposed defining the coordinate system. The central im-
age represents a single contour of the point-spread function.
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retrieval method and the general aberration retrieval
method use the same set of data.

Observe that the method as presented in Sec. 2.2 is con-
siderably simpler and works directly in terms of optical
relevant parametersanm , i.e., the Zernike coefficients.
However, its applicability is restricted to the cases that we
may assume negligible amplitude errors.

4 Discussion

In this paper we have given the proof of principle of a new
experimental method to determine the aberrations of an op-
tical system in the field. The measurement is based on the
observation of the intensity point-spread function of the
lens and uses an analytical method, the so-called extended
Nijboer-Zernike approach, for analysis and interpretation of
the measurement. The new method is applicable to litho-
graphic projection lenses, but also to microscopes such as
the objective lens of an optical mask inspection tool. Phase
retrieval was demonstrated both analytically and experi-
mentally. Extension of the method to the case of a medium-
to-large hole sized test object as well as to the case of
aberrations comprising both phase and amplitude errors
was presented. These features make our method suitable for
the characterization of future-generation high numerical ap-
erture tools.
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Fig. 6 The point-spread function of a scanner reconstructed from resist images. Solid lines represent the experimental data and the dashed
lines are calculated using the retrieved Zernike coefficients. Low-order astigmatism and low-order three-point are the dominant aberrations. The
(X,Y) axes are in normalized radial units [see Eq. (1)].
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