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Abstract

For the discrete-time bulk service queueing model, the mean and variance of the steady-
state queue length can be expressed in terms of moments of the arrival distribution and
series of the zeros of a characteristic equation. In this paper we investigate the behaviour
of these series. In particular, we derive bounds on the series, from which bounds on the
mean and variance of the queue length follow. We pay considerable attention to the case
in which the arrivals follow a Poisson distribution. For this case, additional properties of
the series are proved leading to even sharper bounds. The Poisson case serves as a pilot
study for a broader range of distributions.
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1 Introduction and motivation

We consider a discrete-time queueing model with bulk service as defined by the recursion

Xn+1 = max{Xn − s, 0} + An. (1)

Here, time is assumed to be slotted, Xn denotes the queue length at the beginning of slot n,
An denotes the number of newly arriving customers during slot n, and s denotes the fixed
number of customers that can be served during one slot. The numbers of new customers
arriving per slot are assumed to be i.i.d. according to a discrete random variable A with
aj = P (A = j), and probability generating function (pgf)

A(z) =
∞

∑

j=0

ajz
j , (2)
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mail)
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that we assume to be analytic in an open set containing the closed unit disk |z| ≤ 1. In
particular, the random variable A has finite moments of all order. The model described by
(1) has a wide range of applications, including ATM switching elements [3], data transmission
over satellites [20], high performance serial busses [16], and cable access networks [8].

Let X denote the random variable following the stationary distribution of the Markov chain
defined by the recursion (1), with

xj = P (X = j) = lim
n→∞

P (Xn = j), j = 0, 1, 2, . . . , (3)

that exists under the assumption that E(A) < s. It follows that the pgf of X is given by (see
e.g. [3])

X(z) =
A(z)

∑s−1
j=0 xj(z

s − zj)

zs − A(z)
, (4)

as an analytic function in an open set containing the closed unit disk |z| ≤ 1. The expression
(4) is of indeterminate form, but the s unknowns x0, . . . , xs−1 can be determined by consid-
eration of the zeros of the denominator in (4) that lie in the closed unit disk (see e.g. [2, 21]).
By applying Rouché’s theorem on a curve |z| = 1+ ε where ε > 0, and using E(A) < s, it can
be shown that there are exactly s of these zeros. Thus, by analyticity, the numerator of X(z)
should vanish at each of the zeros, yielding s equations. One of the zeros equals 1, and leads
to a trivial equation. However, the normalization condition X(1) = 1 provides an additional
equation. Using l’Hôpital’s rule, this condition is found to be

s − E(A) =
s−1
∑

j=0

xj(s − j), (5)

which equates two expressions for the mean unused service capacity.

The s roots of A(z) = zs in |z| ≤ 1 are denoted by z0 = 1, z1, . . . , zs−1. By writing
∑s−1

j=0 xj(z
s − zj) as c(z− 1)

∏s−1
k=1(z− zk) with c a constant, and using (5) to derive the value

of c, it follows that
s−1
∏

k=1

z − zk

1 − zk
=

1

s − µA

s−1
∑

j=0

xj
zs − zj

z − 1
, (6)

so that (4) can be written as

X(z) =
A(z)(s − µA)

zs − A(z)
(z − 1)

s−1
∏

k=1

z − zk

1 − zk
, |z| ≤ 1. (7)

Expectations and variances are denoted throughout by appending the involved random vari-
able to µ and σ2, respectively. Accordingly,

E(A) = µA = A′(1); σ2
A = A′′(1) + A′(1) − (A′(1))2, (8)

and similarly for X. In cases where the random variable is a complicated expression, we use
the E-notation rather that the µ-notation. Explicit expressions for the mean and variance
of the steady-state queue length can be obtained by evaluating derivatives of X(z) at z = 1.
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There holds (see e.g. [14])

µX =
σ2

A

2(s − µA)
+

1

2
µA − 1

2
(s − 1) +

s−1
∑

k=1

1

1 − zk
, (9)

σ2
X = σ2

A +
A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)

+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

−
s−1
∑

k=1

zk

(1 − zk)2
. (10)

The series
s−1
∑

k=1

1

1 − zk
,

s−1
∑

k=1

zk

(1 − zk)2
, (11)

will be called the µ-series and σ2-series, respectively. Evidently, both series are real since
the zeros zk are either real or come in conjugate pairs. For s = 1 both series equal zero and
one obtains the exact expressions for µX and σ2

X from (9) and (10), respectively. We will
therefore consider s ≥ 2.

In [8] the bounds

σ2
A

2(s − µA)
+

µA

2
≤ µX ≤ σ2

A

2(s − µA)
+

µA

2
+

min(µA, s − 1)

2
(12)

have been shown to hold for the µ-series. The proof of these bounds was based on the
representation

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1) +

s−1
∑

j=0

xj
j(s − j)

2(s − µA)
, (13)

and identity (5). In this paper we give further bounds on µX and extend the methods of [8]
to provide bounds for σ2

X .
There is no real need for deriving bounds when the distribution of A is fully specified. In fact,

for many cases the roots of zs = A(z) can be easily determined by some numerical procedure
(see Chaudhry et al. [4]), so that one can find the mean and variance of X explicitly through
(9) and (10). Moreover, it is also possible to give explicit, analytic expressions of the Spitzer
type (that is, involving the power series coefficients of Al(z) for l = 1, 2, . . ., see [1], formulas
(8)-(9)) for both µX and σ2

X and for the boundary probabilities xj , j = 0, 1, . . ., see [10].
Furthermore, for a wide class of allowed distributions, among which the Poisson case of Sec.
6, we present in [10] an explicit Fourier series representation for the roots zk, k = 0, 1, . . . , s.
However, the bounds have added value as compared to these exact approaches in that they give
more intuitive insight in the behavior of the performance characteristics and some bounds can
be used for back-of-the-envelope computations. Furthermore, when one has only knowledge
of the first two or three moments of A, the exact approaches cannot be applied while the
presented bounds retain their value. Additionally, we identify the distributions of A for which
the bounds are attained, which gives additional insight into the behaviour of the estimated
values.

The model defined by (1) fits into the framework of the G/G/1 queue. That is, one can think
of Xn as being the sojourn time of the n-th customer, with An−1 its service requirement, and
s the deterministic and integer-valued interarrival time between customer n and n + 1. This
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model is also referred to as the discrete-time D/G/1 queue (see e.g. Servi [18]). Ever since
the publication of Kingman [11], a vast literature on bounding waiting time characteristics
for the G/G/1 queue has been developed. Daley et al. [6] give a comprehensive treatment
of most of this research. Simple bounds for the mean and variance of the waiting time can
be constructed by observing that the deterministic interarrival times s belong to the class of
Increasing Failure Rate (see e.g Daley et al. [6], p. 200). For the mean, we then obtain a
lower and an upper bound (see Kleinrock [12], (2.51), and Kingman [11], respectively) that,
translated to the current setting, read

σ2
A

2(s − µA)
+

µA

2
≤ µX ≤ σ2

A

2(s − µA)
+ µA. (14)

The right-hand side of (14) is known as Kingman’s upper bound. For µX the bound in (12)
is slightly sharper. We will show that it is relatively easy to further sharpen the Kingman
upper bound, although the gain is marginal.

Largely paralleling the approach used for the mean, bounds for the variance were derived
as well. The lower bound in Daley et al. [6] and the upper bound derived by Fainberg [9]
yield for the D/G/1 queue

−s2

4
+

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
(s − µA)2 +

1

12
, (15)

where, for reasons of brevity, we have given the bounds on the σ2-series. Together with (10),
they yield bounds on σ2

X . We strengthen these bounds on σ2
X and further derive some new

bounds on σ2
X that will be shown to be very sharp.

In this paper we extend and complete the approach adopted in [8] and derive relatively
simple bounds for the µ-series and the σ2-series. Here simple means bounds that require
knowledge on the arrival distribution by at most the first three moments. We do so by
representing the moment series (11) in terms of random variables related to the idle time
of the system. One of the features of this study is the fact that we extend the bounding
techniques to a discrete setting. In doing so, we obtain simple bounds on the mean and
variance of the steady-state queue length that are sharper then comparably simple bounds
(14) and (15). Finally, we show that the bounds can be further strengthened by combining
them with specific properties of the moment series (11) leading to even sharper bounds. This
is done for the Poisson distribution, which serves as a sort of pilot study for other distributions.
It is noteworthy to mention that for the Ek/G/1 queue, Daley [5] also proves properties of
roots on a particular curve in order to derive bounds.

In Sec. 2 we give a detailed account of the main results, a comparison with the bounds (14)
and (15), along with an overview of the paper.

2 Overview and results

For the discrete-time D/G/1 queue, the stationary distribution of the length of the idle
periods, I, is completely determined by the probabilities x0, . . . , xs. That is, once a customer
has a sojourn that is less than s, the slots remaining until the arrival of the next customer
remain idle, i.e.

P (I = j) =
xs−j

∑s
i=0 xi

, j = 0, 1, . . . , s. (16)
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For a convenient presentation of our results we now define two auxiliary random variables Y
and Z that are closely related to I and take values in {0, 1, . . . , s} according to

P (Y = j) =
xj

∑s
i=0 xi

, P (Z = j) =
(s − j)xj

s − µA
, j = 0, 1, . . . , s, (17)

and P (Y = j) = P (Z = j) = 0, j = s + 1, s + 2, . . .. Note that Y represents both X
conditional on X ≤ s and s − I. Further note that the kth moment of Z can be expressed
in terms of the first k + 1 moments of I. For example, µZ = s − E(I2)/µI . The random
variables Y and Z are studied in detail in Sec. 3. There holds, in particular,

µY ≤ µA; 0 ≤ µZ ≤ s − 1, (18)

with equality in the first inequality if and only if A is concentrated on {0, 1, . . . , s}. In
Sec. 3 we also present representations for the µ-series and σ2-series in terms of Y and Z
(Equations (32-34) and (35-37), respectively). From these representations, one can obtain
various inequalities, as well as insight into the matter when equality occurs in these.

We show the following bounds on the µ-series in Sec. 4.

Theorem 2.1. (i) We have

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
, (19)

and there is equality if and only if A is concentrated on {0, 1, . . . , s}.
(ii) Define f : [0, s) → [0,∞) by

f(µ) =
1

2
(s − 1) +

1

2
µ − 〈µ〉 − 〈µ〉2

2(s − µ)
, (20)

where we have defined 〈µ〉 = µ − bµc and bµc = largest integer ≤ µ. Then we have

s−1
∑

k=1

1

1 − zk
≤ f(µA), (21)

and there is equality if and only if A is concentrated on {j, j + 1} with j = 0, 1, . . . , s − 2 or
A is concentrated on {s − 1, s, s + 1, . . .}.

In Sec. 4 we present somewhat sharper forms of Thm. 2.1 that explicitly involve µY and
σ2

Y . The result in Thm. 2.1(i) presents a sharpening of the first inequality in (12) in case
that σ2

A ≤ µA(s−µA). The inequality in Thm. 2.1(ii) is a refinement of the second inequality
in (12) in which the discrete nature of the involved random variables is taken into account.
In Fig. 1, we have plotted the graphs of both f(µ) and µ → 1

2(s − 1) + 1
2 min{µ, s − 1} for

s = 5. As one sees, the graph of f hangs down from the second graph as a sort of guirlande
with nodes at all integers µ = 0, 1, . . . , s − 1.

In Sec. 5 we show the following result.

Theorem 2.2. We have

−s2

3(4 − µA/s)
+

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
(s − µA)2 +

1

12
. (22)
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Figure 1: Universal bounds for the µ-series, s = 5.

Theorem 2.2 should be considered as a counterpart of the bounds in (12) for µX . The lower
bound in (22) is far sharper than the one in (15).

In Sec. 5 we present a more precise and sharper result in which the σ2-series is bounded
in terms of µY and σ2

Y , and from which one can infer the cases of equality in (22). This
requires a result, communicated to us by E. Verbitskiy, on the extreme values of the third
central moment of a random variable taking all real values between 0 and s, whose mean and
variance are prescribed. The bounds in Thm. 2.2 disregard the discrete nature of the involved
random variable, and, indeed, there is again a guirlande phenomenon that is detailed in Sec.
5. The bounds in (22) can be sharpened somewhat by using (37). We then have

−1

9
(s − 1

2
)2 ≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 0, (23)

and this improves the bounds in (22) when µA ↑ s.

Theorem 2.3. (i) We have

s−1
∑

k=1

zk

(1 − zk)2
≤ A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)
+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

, (24)

and there is equality if and only if A is concentrated on {0, 1, . . . , s}.
(ii) Defining h : [0, s) → [0,∞) by

h(µ) =

{

0, 0 ≤ µ ≤ 2,
µ(µ − 1)(µ − 2), µ > 2,

(25)

there holds

s−1
∑

k=1

zk

(1 − zk)2
≥ h(µA) − h(s)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)
+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

. (26)
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Here σ2
A and µA must be constrained according to

σ2
A ≤ (s − µA)(µA + 2s − 4). (27)

There is equality in (26) if and only if A is concentrated on {0, 1, 2} or on {j} with j =
2, . . . , s − 1.

The proof of this result uses the representation (10) together with σ2
X ≥ σ2

A for Thm. 2.3(i),
and representation (35) in conjunction with Jensen’s inequality and µY ≤ µA for Thm. 2.3(ii).

In Sec. 6 we study in considerable detail the case that A is distributed according to the
Poisson distribution. Among other things, it is shown that both the µ-series and σ2-series
increase in µA ∈ [0, s) in the Poisson case, which can be exploited to derive the following
theorems:

Theorem 2.4. For A distributed according to the Poisson distribution, i.e. A(z) = eλ(z−1),
that satisfies λ < s, the corresponding µ-series can be bounded as

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) + m1(λ), (28)

s−1
∑

k=1

1

1 − zk
≤ 1

2
(s − 1) +

1

2
λ − 〈λ〉 − 〈λ〉2

2(s − λ)
, (29)

where m1(λ) = max{ τ
2 + τ

2(s−τ) | 0 ≤ τ ≤ λ}.

Theorem 2.5. For A distributed according to the Poisson distribution, i.e. A(z) = eλ(z−1),
that satisfies λ < s, and when Cond. (27) holds, the corresponding σ2-series can be bounded
as

s−1
∑

k=0

zk

(1 − zk)2
≥ m2(λ), (30)

s−1
∑

k=0

zk

(1 − zk)2
≤ − 1

12
(s − λ)2 − 1

2
λ +

s(s + 2λ)

12(s − λ)2
, (31)

where m2(λ) = max{− 1
12(s − τ)2 − 1

2τ + s(s+2τ)
12(s−τ)2

− τ
s−τ (τ − 2

3) | 0 ≤ τ ≤ λ}.

Note that the functions m1(λ) and m2(λ) are strictly increasing for λ ∈ [0, s − √
s] and

λ ∈ [0, λ2(s)], respectively, where λ2(s) is a point close to s − (6(s2 − 1
2s))1/3.

In Sec. 7 we present examples of distributions A to illustrate the bounds on the µ-series
and σ2-series. For the Poisson case, we use the bounds in Thms. 2.4 and 2.5. For other
distributions, we employ for the µ-series the bounds in Thm. 2.1 together with 1

2(s − 1) as
an overall lower bound. For the σ2-series we employ the bounds in Thm. 2.3, where the
lower bound (26) is only used when condition (27) is satisfied. If not, we use the overall lower
bound −1

9(s − 1
2)2, and the overall upper bound 0.

The bounds on the µ-series and σ2-series provide more insight in the behaviour of the
model. However, we are primarily interested in bounds on µX and σ2

X . In Sec. 8 we present
the bounds on µX and σ2

X for the same distributions as in Sec. 7. These bounds will be
shown to be sharp, both for the low and high load situations.
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3 Representations of the µ-series and σ
2-series

In this section we take a closer look at the random variables Y and Z as defined by (17), and
we show that they give rise to the representations

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1) +

1

2
µY − σ2

Y

2(s − µY )
(32)

=
s(s − 1) − Y ′′(1)

2(s − µY )
=

s2 − E(Y 2)

2(s − µY )
− 1

2
(33)

=
1

2
(s − 1) +

1

2
µZ , (34)

for the µ-series, and

s−1
∑

k=1

zk

(1 − zk)2
=

Y ′′′(1) − s(s − 1)(s − 2)

3(s − µY )
+

Y ′′(1) − s(s − 1)

2(s − µY )
+

(

Y ′′(1) − s(s − 1)

2(s − µY )

)2

(35)

=
1

4

(

s2 − E(Y 2)

s − µY

)2

− 1

3

s3 − E(Y 3)

s − µY
+

1

12
(36)

= − 1

12
(s − µZ)2 − 1

3
σ2

Z +
1

12
, (37)

for the σ2-series.

We note that Y (z) has degree s and that the roots of Y (z) = zs are precisely z0 =
1, z1, . . . , zs−1. The latter statement follows from the fact that the numerator A(z)

∑s
j=0 xj(z

s−
zj) at the right-hand side of (4) has to cancel the s zeros of the denominator zs −A(z) within
the closed unit disk |z| ≤ 1 (when A(0) = 0 some trivial modifications are required). As a
consequence, the random variables Y and A give rise to the same µ-series and σ2-series while
P (Y > s) = 0. It follows from (5) that

s − µA = (s − µY )P (X ≤ s), (38)

and thus µY ≤ µA with equality if and only if P (X > s) = 0. From the process definition we
see furthermore that

A = X = Y ⇔ P (A > s) = 0. (39)

We now derive the representations (32-34) and (35-37). The representations (32), (35)
follow from the observation that A and Y yield the same µ-series and σ2-series, and the fact
that P (Y > s) = 0, so that (32), (35) result from consideration of the process definition and
application of (9), (10) with Y instead of A. The derivation of (33) and (36) follows from
straightforward rewriting.

Finally, we show the representations (34), (37). The former follows from

s2 − E(Y 2)

s − µY
=

1

s − µY

s
∑

j=0

(s2 − j2)P (Y = j) =
1

(s − µY )P (X ≤ s)

s
∑

j=0

(s + j)(s − j)xj

=
s − µA

(s − µY )P (X ≤ s)
E(s + Z) = s + µZ , (40)
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where we have used the definitions of Y and Z together with (38). Similarly, we have

s3 − E(Y 3)

s − µY
= E(s2 + sZ + Z2) = s2 + sµZ + E(Z2), (41)

and (37) follows after some administration.

We shall now be concerned with the question how certain concentration properties of Y
(and Z) are reflected by corresponding properties of A. The result given below is vital in
Secs. 4, 5 for settling cases of equality in our theorems.

Definition 3.1. Let B be a random variable with values in {0, 1, . . .} and let S be a subset
of {0, 1, . . .}. We say that B is concentrated on S when P (B /∈ S) = 0.

According to this definition Y is concentrated on {0, 1, . . . , s} while Z is concentrated on
{0, 1, . . . , s − 1}. Moreover, we have the following result.

Lemma 3.2. (i) Let j = 0, 1, . . . , s − 1. Then Y concentrated on {j} ⇔ A concentrated
on {j}.

(ii) Let j = 0, 1, . . . , s−2. Then Y concentrated on {j, j+1} ⇔ A concentrated on {j, j+1}.

(iii) Y concentrated on {s − 1, s} ⇔ A concentrated on {s − 1, s, s + 1, . . .}.

(iv) Y concentrated on {0, s} ⇔ Z concentrated on {0} ⇔ A concentrated on {0, s, 2s, . . .}.

For reasons of brevity we omit the proof of Lemma 3.2. It follows by a careful analysis from
the process definition.

4 Bounds for the µ-series

In this section we prove (the claims associated with) Thm. 2.1. From the process definition
in (1) we see that µX ≥ µA. So from (9) it follows that

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
, (42)

with equality if and only if A is concentrated on {0, . . . , s}. We further see from representation
(34) that

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1), (43)

and there is equality if and only if A is concentrated on {0, s, 2s, . . .}. Next we consider the
representation (32) in which the µ-series is expressed in terms of the mean and variance of Y .
Observe that for any random variable B concentrated on {0, . . . , s} with mean µ the smallest
value of σ2

B is given by 〈µ〉 − 〈µ〉2 (as defined in Thm. 2.1), and is assumed when

P (B = bµc) = 1 − 〈µ〉, P (B = bµc + 1) = 〈µ〉. (44)
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The function f as defined by (20) is strictly increasing in µ ∈ [0, s − 1], and constant, s − 1,
for µ ∈ [s − 1, s). We thus have

s−1
∑

k=1

1

1 − zk
≤ f(µY ) ≤ f(µA) ≤ 1

2
(s − 1) +

1

2
min{µA, s − 1}. (45)

In the first inequality there is equality if and only if µY = 0, 1, . . . , s−1 and Y is concentrated
on {µY }, or µY is non-integer and Y is concentrated on {bµY c, bµY c + 1}. In the second
inequality there is equality if and only if µY < s − 1 and µA = µY , or s − 1 ≤ µY < s. In
the third inequality there is equality if and only if µA = 0, 1, . . . , s − 2 or µA ≥ s − 1. The
inequalities (42-43) together with the second inequality in (45) prove Thm. 2.1. And also
the case of equality in the third inequality in (45) is settled now: it holds if and only if A is
concentrated on {j} with j = 0, 1, . . . , s − 2 or A is concentrated on {s − 1, s, s + 1, . . .}.

5 Bounds for the σ
2-series

In this section we prove Thms. 2.2-2.3. We first derive bounds for the σ2-series that depend
on the mean and the variance of Y , from which we derive bounds that depend on µA. We
consider the representation (36) in which the σ2-series is expressed in terms of µY , σ2

Y and
E(Y 3). We are interested in the smallest and largest value of (36) under the condition that µY

and σ2
Y take prescribed values. For convenience we assume Y takes, not necessarily integer,

values between 0 and s, and that 0 < µY < s. Under these assumptions, we have

0 < θ :=
µY

s
< 1, 0 ≤ ω :=

σ2
Y

µY (s − µY )
≤ 1, (46)

and equality in the last inequality occurs if and only if Y is concentrated on {0, s}. We start
by presenting a lemma.

Lemma 5.1. Let D be a random variable with values in [−c, d], where c ≥ 0, d ≥ 0, and
assume that µD = 0, σ2

D = σ2 is fixed. Then the minimum and maximum value of E(D3) are
given by

σ4

c
− cσ2, dσ2 − σ4

d
, (47)

respectively. The minimum and maximum value occur when D is concentrated on {−c, σ2/c}
and {−σ2/d, d}, respectively.

The proof of this result follows from Thm. 2.4 in [13], as was kindly communicated to us
by E. Verbitskiy.

We next present three results from which Thm. 2.2 follows. In Thms. 5.2-5.4 the random
variable Y is allowed to take non-integer values in [0, s] and θ, ω are as in (46).

Theorem 5.2. We have

s−1
∑

k=1

zk

(1 − zk)2
≥ − 1

12
s2(1 − θ + θω)2 +

1

12
− 1

3
s2(1 − ω)θω, (48)

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
s2(1 − θ + θω)2 +

1

12
. (49)
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The lower bound is assumed if and only if Y is concentrated on

{0, µY +
σ2

Y

µY
} = {0, sω + s(1 − ω)θ}, (50)

and the upper bound is assumed if and only if Y is concentrated on

{µY − σ2
Y

s − µY
, s} = {s(1 − ω)θ, s}. (51)

Theorem 5.3. We have

− s2

3(4 − θ)
+

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
s2(1 − θ)2 +

1

12
. (52)

The lower bound is assumed if and only if Y is concentrated on the set in (50) with ω =
(3− θ)/(4− θ), and the upper bound is assumed if and only if Y is concentrated on the set in
(51) with ω = 0.

Theorem 5.4. We have

−1

9
s2 +

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 1

12
. (53)

The lower bound is assumed if and only if Y is concentrated on the set in (50) with ω =
(3−θ)/(4−θ) → 2

3 and θ ↑ 1, and the upper bound is assumed if and only if Y is concentrated
on the set in (51) with ω = 0 and θ ↑ 1.

Proofs. It is convenient to combine the proofs of the above results. We rewrite representation
(36) using

E(Y 2) = σ2
Y + µ2

Y , E(Y 3) = m3
Y + 3µY σ2

Y + µ3
Y , (54)

where m3
Y = E((Y − µY )3). This yields

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12
(s − µY )2 − 1

2
σ2

Y +

(

σ2
Y

2(s − µY )

)2

+
m3

Y

3(s − µY )
+

1

12
. (55)

We then use Lemma 5.1 with D = Y − µY , c = µY , d = s − µY and some administration, to
see that

s−1
∑

k=1

zk

(1 − zk)2
≥ − 1

12

(

s − µY +
σ2

Y

s − µY

)2

+
1

12
− sσ2

Y

3(s − µY )

(

1 − σ2
Y

µY (s − µY )

)

,(56)

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12

(

s − µY +
σ2

Y

s − µY

)2

+
1

12
, (57)

with equality if and only if Y is concentrated on {0, µY +σ2
Y /µY } and on {µY −σ2

Y /(s−µY ), s},
respectively. The inequalities in (56) and (57) can be written succinctly, in terms of θ, ω as
(48) and (49), respectively, and this shows Thm. 5.2.

11



For fixed θ ∈ (0, 1), the minimum of (48) equals −s2/(4(3− θ)) + 1/12 and occurs uniquely
at ω = (3 − θ)/(4 − θ). The maximum of (49) equals −s2(1 − θ)2/12 + 1/12 and occurs
uniquely at ω = 0. This shows Thm. 5.3.

Finally, the minimum of the first member of (52) equals − 1
9s2 + 1/12 and occurs uniquely

when ω = (3 − θ)/(4 − θ) → 2/3 and θ ↑ 1, while the maximum of the third member of (52)
equals 1/12 and occurs uniquely when ω = 0 and θ ↑ 1. This then also shows Thm. 5.4. �

The bounds in Thm. 2.2 are in terms of µA. They can be obtained straightforwardly from
Thm. 5.3 by noting that µY ≤ µA and the fact that the first member in (52) is decreasing in
θ while the third member in (52) is increasing in θ. A corresponding result for the inequalities
in (48) and (49) is unlikely to hold since the relation between σ2

Y and σ2
A seems much more

awkward. Note once more that Y = A when A is concentrated on {0, 1, . . . , s}, and then
Thms. 5.2-5.4 hold with Y replaced by A.

In Thms. 5.2-5.4 the discrete nature of the random variables has been disregarded. Ac-
cordingly, the two bounds in (48) and (49) are achieved by some integer-valued Y if and only
if

µY +
σ2

Y

µY
= sω + s(1 − ω)θ ∈ Z, (58)

µY − σ2
Y

s − µY
= s(1 − ω)θ ∈ Z, (59)

respectively. In general, when these integrality conditions are not met, slight improvement
of the bounds in Thm. 5.2 can be achieved by invoking an appropriate discrete version of
Lemma 5.1 in Formula (55). This then gives rise to two guirlanded (µ, σ)- or (θ, ω)-surfaces,
with contact curves described by (58) and (59), just as we had a guirlanded graph in Thm.
2.1 for the upper bound for the µ-series (since the lower bound is constant and achievable
by Y concentrated on {0, s}, no guirlande phenomenon occurs for the lower bound of the
µ-series).

A slight improvement of the upper bound in (52) can be obtained by observing that σ2
Y ≥

〈µY 〉 − 〈µY 〉2 when Y is integer-valued. Thus we find, see (57), in a similar fashion as in Sec.
4 for the µ-series

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12

(

s − µY +
〈µY 〉 − 〈µY 〉2

s − µY

)2

+
1

12

= − 1

12
(2s − 1 − 2f(µY ))2 +

1

12

≤ − 1

12
(2s − 1 − 2f(µA))2 +

1

12
=: g(µA) ≤ 0, (60)

with f as in Thm. 2.1.

We may also observe the bounds

−1

9
(s − 1

2
)2 ≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 0, (61)

and their simple proofs from the representation (37) in terms of W . Indeed, consider an
arbitrary random variable C concentrated on {0, 1, . . . , s − 1} with mean µ and variance σ2.

12
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When µ is fixed, the minimum value of

− 1

12
(s − µ)2 − 1

3
σ2 +

1

12
(62)

occurs when C is concentrated on {0, s − 1} and equals

−1

9
(s − 1

2
)2 +

1

4
(µ − 1

3
(s − 2))2 ≥ −1

9
(s − 1

2
)2. (63)

Similarly, the maximum value of (62) occurs when C is concentrated on {µ} or on {bµc, bµc+1}
(µ non-integer) and equals

− 1

12
(s − µ)2 − 1

3
(〈µ〉 − 〈µ〉2) +

1

12
≤ 0, (64)

with equality if and only if µ = s − 1.

In Fig. 2 we have plotted the bounds in (52), (60) and (61) for s = 5 and 0 ≤ µA < s.
Observe that the graph of g hangs down from − 1

12(s− µ)2 + 1
12 as a guirlande with nodes at

all integers µ = 0, 1, . . . , s − 1.

We conclude this section by proving Thm. 2.3. Theorem 2.3(i) follows at once from (10)
and the fact that σ2

X ≥ σ2
A, with equality if and only if A is concentrated on {0, 1, . . . , s}. As

to Thm. 2.3(ii) we start from the representation (35) in which we write

Y ′′′(1) = E(Y (Y − 1)(Y − 2)) = E(h(Y )), (65)

with h given in (25). In (65) the last identity follows from the fact that Y is integer-valued.
The function h is convex on [0,∞) and strictly convex on [2,∞), whence by Jensen’s inequality
there holds

E(h(Y )) ≥ h(E(Y )) = h(µY ), (66)

13



with equality if and only if Y is concentrated on {0, 1, 2} or Y is concentrated on {j} with
j = 2, 3, . . . , s−1. Next we observe from convexity of h that the function (h(µ)−h(s))/(s−µ)
is strictly decreasing in µ ∈ [0, s). Hence, as µY ≤ µA, we have

Y ′′′(1) − s(s − 1)(s − 2)

3(s − µY )
≥ h(µY ) − h(s)

3(s − µY )
≥ h(µA) − h(s)

3(s − µA)
, (67)

with equality if and only µA = µY . We next turn to the quantity

(

s(s − 1) − Y ′′(1)

2(s − µY )

)2

− s(s − 1) − Y ′′(1)

2(s − µY )
, (68)

that occurs at the right-hand side of (35). We note from (33) that

s(s − 1) − Y ′′(1)

2(s − µY )
≥ 1

2
(s − 1). (69)

Furthermore, we have from (33) and Thm. 2.1(i) that

s(s − 1) − Y ′′(1)

2(s − µY )
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
=

s(s − 1) − A′′(1)

2(s − µA)
. (70)

Denoting the far left-hand side of (70) by xY and the far right-hand side of (70) by xA we
have xY ≥ 1

2(s − 1) and xA ≥ 1
2(s − 1), whence

(x2
Y − xY ) − (x2

A − xA) = (xY − xA)(xY + xA − 1) ≥ 0, (71)

whenever xA ≥ −1
2(s − 1) + 1. This latter condition can be worked out to yield constraint

(27). Hence, under this constraint, (24) follows. The cases with equality easily follow from
what has been said in connection with occurrence of equality in (66) and (67).

6 Special results for the Poisson distribution

In case one has, or wants to use, more knowledge on the distribution of A, sharper bounds
can be derived. For example, the Kingman upper bound in case of the discrete-time D/G/1
queue (14) can be sharpened by using the quantity P (A < s) to give (see [6], (3.11))

s−1
∑

k=1

1

1 − zk
≤ 1

2
(s − 1) +

1

2
µA − 1

2
(P (A < s)−1 − 1)(s − µA). (72)

In this section we show for the case that A is distributed according to a Poisson distribution,
i.e.

aj = e−λ λj

j!
, j = 0, 1, . . . ; A(z) = eλ(z−1), (73)

that the µ-series and σ2-series are monotone functions of µA, which facilitates a sharpening
of the lower bounds for both series. For that, we consider the curve on which the roots of
A(z) = zs lie, and prove some properties for all points on this curve.

We have
µA = σ2

A = λ; A(k)(1) = λk, (74)

14



 

 

 

 

  

 

 

 

 PSfrag replacements

-1

-1

1

1

θ = 1

θ = .5

θ = .1

Imz

Rez

Figure 3: Sθ for θ = .1, .5, 1. The roots z0, . . . , z19 (s = 20) are indicated as dots.

with A(k)(1) the k-th derivative of A(z) evaluated at z = 1. The roots z0, z1, . . . , zs−1 now
occur on, what we have called, the generalized Szegö curve

Sθ = {z ∈ C | |z| ≤ 1, |z| = |eθ(z−1)|}, θ := λ/s, (75)

see [10, 19]. In Fig. 3 some examples of Sθ are plotted.
We now introduce two useful parametrizations of Sθ. First, we represent a point z on Sθ as

z = rθ(ϕ)eiϕ, 0 ≤ ϕ ≤ 2π, (76)

where 0 ≤ rθ(ϕ) ≤ 1. In (75) and (76) we allow θ = 1, i.e. λ = s. There holds

rθ(ϕ) = exp{θ(rθ(ϕ) cos ϕ − 1)}, 0 ≤ ϕ ≤ 2π. (77)

A second parametrization of Sθ is obtained by solving for α ∈ [0, 2π] the equation

zeθ(1−z) = eiα. (78)

Denoting the solution of (78) by zθ(α), we have the following Fourier series representation,
see [10] where this is done for more general A as well,

zθ(α) =

∞
∑

l=1

e−lθ (θl)l−1

l!
eilα, α ∈ [0, 2π]. (79)

This allows convenient computation of all zk’s, since

zk = zk,θ = zθ(2πk/s), k = 0, 1, . . . , s − 1. (80)

Using the parametrizations of Sθ, we derive the following results (for the proofs we refer to
Appendix A):
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Lemma 6.1. For any z on the generalized Szegö curve Sθ, it holds that

Re

[

z

(1 − z)(1 − θz)

]

≤ 0, (81)

with equality if and only if z → 1.

Lemma 6.2. The µ-series in case of A(z) = eθs(z−1) is increasing in θ ∈ [0, 1).

Lemma 6.3. The σ2-series in case of A(z) = eθs(z−1) is increasing in θ ∈ [0, 1).

Combining the monotonicity of the µ-series and σ2-series, as proven in Lemma 6.2 and
Lemma 6.3, and the bounds in Thms. 2.1 and 2.3 yield the proofs of Thms. 2.4 and 2.5.

Fig. 4 and Fig. 6 display the µ-series and the bounds in Thm. 2.4 for s = 20 and s = 100,
respectively, with 1

2(s − 1) as an overall lower bound. The more general lower bound arising
from Thm. 2.1 is also plotted. Fig. 5 and Fig. 7 display the σ2-series and the bounds in
Thm. 2.5 for s = 20 and s = 100, respectively, where − 1

9(s − 1
2)2 holds as an overall lower
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bound and as the lower bound when condition (27), i.e. λ ≤ 19.64 for s = 20 and λ ≤ 99.66
for s = 100, is not met. The more general lower bound arising from Thm. 2.3 is also plotted.

In Figs. 4-7 it is nicely demonstrated that the lower bound is sharpened substantially when
monotonicity can be proven. We conjecture that monotonicity of the µ-series and σ2-series
can be shown for distributions of A other than Poisson, e.g. the binomial and geometric
distribution.

7 Numerical examples of bounds on the µ-series and σ
2-series

In this section we first present some more examples of distributions of A to illustrate the
behaviour of the µ-series and σ2-series and the sharpness of the bounds in Thms. 2.1 and 2.3.
In [7] we present some more examples that emphasize particular properties of the µ-series
and σ2-series. Moreover, we study in [7] the geometric properties of the series.

The µ-series and σ2-series can be computed numerically by finding the roots z1, . . . , zs−1,
which is feasible in the cases below. We display the µ-series and σ2-series, with corresponding
lower and upper bounds, for a number of parametrically given A in which µA covers the
whole range of permitted values below s = 5. For these cases we also exhibit explicitly the
quantities µA, σ2

A and A′′(1), A′′′(1), as required in the various bounds.

For the µ-series we employ the bounds in Thm. 2.1 together with 1
2(s − 1) as an overall

lower bound. For the σ2-series we employ the bounds in Thm. 2.3, where the lower bound
(26) is only used when condition (27) is satisfied. If not, we use the overall lower bound
−1

9(s − 1
2)2, and the overall upper bound 0.

Example 7.1. Let A be uniformly distributed on {0, 1, . . . , n − 1} so that

A(z) =
1

n
(1 + z + . . . + zn−1) =

1

n

zn − 1

z − 1
. (82)

We have

µA =
1

2
(n − 1), σ2

A =
1

12
(n2 − 1), (83)

and for k = 2, 3, . . .

A(k)(1) =
1

k + 1
(n − 1)(n − 2) · . . . · (n − k). (84)

Fig. 8 and Fig. 9 display the µ-series and σ2-series for s = 10, µA ∈ [0, s− 1
2), i.e. 1 ≤ n ≤ 2s.

As a curiosity we mention that the values of the µ-series and σ2-series at n = s, s + 1 are
identical, viz. 2

3(s − 1) and − 1
18(s − 1)(s + 2), respectively. Condition (27) is satisfied for

µA ≤ 8.83.

Example 7.2. Take a symmetric binomially distributed A,

aj =
1

2n−1

(

n − 1

j

)

, j = 0, 1, . . . , n − 1; aj = 0, j = n, n + 1, . . . , (85)

so that

A(z) =

(

1 + z

2

)n−1

. (86)
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Figure 9: The σ2-series, Ex. 7.1, s = 10.

We now have

µA =
1

2
(n − 1), σ2

A =
1

4
(n − 1), (87)

and for k = 2, 3, . . .

A(k)(1) =

(

1

2

)k

(n − 1)(n − 2) · . . . · (n − k). (88)

Fig. 10 and Fig. 11 display the µ-series and σ2-series for s = 10, µA ∈ [0, s − 1
2 ], i.e. for

1 ≤ n ≤ 2s, and we observe a qualitatively similar behaviour for the two series as in the
Poisson case, see Sec. 6. Condition (27) is satisfied for µA ≤ 9.81.

Example 7.3. Take a0 = 1/2, an−1 = 1/2 where n ∈ [1, 2s], so that

A(z) =
1

2
+

1

2
zn−1. (89)

We have

µA =
1

2
(n − 1), σ2

A =
1

4
(n − 1)2, (90)

and for k = 2, 3, . . .

A(k)(1) =
1

2
(n − 1)(n − 2) · . . . · (n − k). (91)

Fig. 12 and Fig. 13 display the µ-series and σ2-series for s = 10, µA ∈ [0, s − 1
2 ], i.e.

for 1 ≤ n ≤ 2s. Note that the µ-series starts decreasing as a function of n − 1 around
n − 1 = s(2 −

√
2), which is well before n − 1 = s. Condition (27) is satisfied for µA ≤ 7.57.

8 Numerical examples of bounds on µX and σ
2
X

We now present bounds on µX and σ2
X for the Poisson case and the examples given in Sec.

7, to see how well these bounds perform as approximations to the actual values. We denote
the lower and upper bound on µX by µ̌X and µ̂X , respectively, and similarly for σ2

X . These
bounds are simply the addition of the bounds on the µ-series and σ2-series as described at the
beginning of Sec. 7. For comparison we also display the known bounds given by Expressions
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Figure 10: The µ-series, Ex. 7.2, s = 10.
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Figure 12: The µ-series, Ex. 7.3, s = 10.
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Figure 13: The σ2-series, Ex. 7.3, s = 10.

(14) and (15). The actual values µX and σ2
X are computed numerically by finding the roots

z1, . . . , zs−1, which is feasible in the cases below.

Table 1 displays the bounds on µX for various load values θ := µA/s and s = 5, 10. For
s = 5, the bounds are sharp, irrespective of the load values θ. For low load values the
lower bound on the µ-series is extremely sharp, as we have seen in Sec. 7, leading to sharp
bounds on µX as well. For higher load values, the bounds on the µ-series tend to be less
sharp. However, comparing with the µ-series, the other terms in (9) containing the first two
moments of A get more dominant for an increasing load θ, which gradually diminishes the
influence of the µ-series. This makes that the bounds on µX are sharp, even asymptotically
for θ ↑ 1. We further note that while the series in Sec. 7 have similar order of magnitudes for
all four examples, the mean and variance of X show large differences, in particular for high
load values. Again, this is due to σ2

A/(2(s − µA)) being dominant. Finally, we observe that
the bounds derived in this paper slightly improve the known bounds.

Although for s = 10 the values are somewhat larger than those for s = 5, the bounds remain
sharp. In particular, the lower bound µ̌X substantially improves the known lower bound.
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Table 1: Bounds on the mean queue length µX . Lower bound µ̌X and upper bound µ̂X following
from the addition of the bounds on the µ-series as described at the beginning of Sec. 7. Lower bound
lb(14) and upper bound ub(14) from expression (14). Various traffic intensities θ = µA/s for s = 5
and 10.

s = 5 Poisson Example 7.1
θ lb(14) µ̌X µX µ̂X ub(14) lb(14) µ̌X µX µ̂X ub(14)
0.2 0.63 0.97 0.97 1.06 1.13 0.58 1.00 1.00 1.08 1.08
0.4 1.33 1.98 2.00 2.27 2.33 1.33 2.00 2.00 2.33 2.33
0.6 2.25 3.01 3.17 3.68 3.75 2.50 3.00 3.21 4.00 4.00
0.8 4.00 4.74 5.14 5.91 6.00 5.33 5.33 6.13 7.33 7.33
0.9 6.75 7.51 7.98 8.75 9.00 10.50 10.50 11.32 12.40 12.75

s = 5 Example 7.2 Example 7.3
θ lb(14) µ̌X µX µ̂X ub(14) lb(14) µ̌X µX µ̂X ub(14)
0.2 0.56 1.00 1.00 1.06 1.06 0.63 1.00 1.00 1.13 1.13
0.4 1.17 2.00 2.00 2.17 2.17 1.67 2.00 2.00 2.67 2.67
0.6 1.88 3.00 3.02 3.38 3.38 3.75 3.75 4.04 5.25 5.25
0.8 3.00 4.00 4.37 5.00 5.00 10.00 10.00 10.35 12.00 12.00
0.9 4.50 4.50 4.96 6.50 6.75 22.50 22.50 22.82 24.50 24.75

s = 10 Poisson Example 7.1
θ lb(14) µ̌X µX µ̂X ub(14) lb(14) µ̌X µX µ̂X ub(14)
0.2 1.13 1.96 1.96 2.07 2.13 1.13 2.00 2.00 2.13 2.13
0.4 2.33 3.96 3.97 4.28 4.33 2.56 4.00 4.00 4.56 4.56
0.6 3.75 5.98 6.06 6.69 6.75 4.75 6.00 6.32 7.75 7.75
0.8 6.00 8.07 8.85 9.93 10.00 10.00 10.00 11.75 14.00 14.00
0.9 9.00 9.41 12.08 13.41 13.50 19.50 19.50 21.31 24.00 24.00

s = 10 Example 7.2 Example 7.3
θ lb(14) µ̌X µX µ̂X ub(14) lb(14) µ̌X µX µ̂X ub(14)
0.2 1.06 2.00 2.00 2.06 2.06 1.25 2.00 2.00 2.25 2.25
0.4 2.17 4.00 4.00 4.17 4.17 3.33 4.00 4.00 5.33 5.33
0.6 3.38 6.00 6.00 6.38 6.38 7.50 7.50 8.07 10.50 10.50
0.8 5.00 8.00 8.24 9.00 9.00 20.00 20.00 20.69 24.00 24.00
0.9 6.75 9.00 10.22 11.25 11.25 45.00 45.00 45.67 49.50 49.50

Table 2 displays the bounds on σX for various load values and s = 5 and s = 10. As for
the bounds on µX , the bounds are sharp, both in the lower and higher load regime. The
improvement of the upper bound σ̂2

X in comparison with the known bound is considerable.

9 Conclusions

For the discrete-time bulk service queueing model we have derived bounds for the mean and
variance of the stationary queue length distribution. These bounds are simple, in the sense
that they involve at most the first three moments of the arrival distribution. For various
settings we have shown that the bounds are sharp indeed, and that they improve the bounds
known in the literature. In particular, the bounds on the variance of the stationary queue
length are sharpened substantially.

The bounds can be easily generalized to more complicated structures such as the delay in
cable networks (see [8]). Furthermore, the bounds in this paper also apply in more general
settings, see e.g. [17]. It is our belief that using similar techniques bounds for the discrete-
time bulk service queue with correlated arrivals can be derived as well. This is subject of
future research.
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Table 2: Bounds on the mean queue length σ2

X
. Lower bound σ̌2

X
and upper bound σ̂2

X
following

from the addition of the bounds on the σ2-series as described at the beginning of Sec. 7. Lower bound
lb(15) and upper bound ub(15) from expression (15). Various traffic intensities θ = σA/s for s = 5
and 10.

s = 5 Poisson Example 7.1
θ lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15) lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15)

0.2 0.59 1.03 1.03 1.08 5.52 0.34 0.67 0.67 0.67 5.26
0.4 1.33 2.04 2.07 2.79 6.83 1.11 2.00 2.00 2.67 6.61
0.6 2.56 3.11 3.48 4.56 8.48 3.00 4.00 4.25 5.00 8.92
0.8 7.33 7.33 8.29 9.58 13.50 14.44 14.44 15.88 16.69 20.61
0.9 25.50 25.56 26.43 27.81 31.73 72.19 72.25 73.67 74.50 78.42

s = 5 Example 7.2 Example 7.3
θ lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15) lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15)

0.2 0.25 0.50 0.50 0.50 5.17 0.52 1.00 1.00 1.00 5.43
0.4 0.53 1.00 1.00 1.33 6.03 2.44 4.00 4.00 4.02 7.94
0.6 0.89 1.50 1.52 2.89 6.81 9.31 9.31 11.12 11.56 15.48
0.8 2.00 2.00 2.67 4.24 8.17 72.00 72.00 73.95 74.25 78.17
0.9 6.19 6.25 6.83 8.50 12.42 420.18 420.25 422.31 422.50 426.42

s = 10 Poisson Example 7.1
θ lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15) lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15)

0.2 1.10 2.09 2.09 2.38 20.76 1.02 2.00 2.00 2.25 20.68
0.4 2.33 4.07 4.08 6.14 24.33 3.64 6.67 6.67 10.00 25.64
0.6 4.06 6.08 6.29 12.84 27.73 10.06 14.00 14.63 18.84 33.73
0.8 9.08 9.08 11.65 19.11 34.00 47.75 47.75 53.31 57.78 72.67
0.9 27.75 27.75 29.94 37.78 52.67 240.00 240.00 245.48 250.03 264.92

s = 10 Example 7.2 Example 7.3
θ lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15) lb(15) σ̌2

X
σ2

X
σ̂2

X
ub(15)

0.2 0.50 1.00 1.00 1.13 20.17 2.06 4.00 4.00 4.50 21.72
0.4 1.03 2.00 2.00 3.00 23.02 9.77 16.00 16.00 16.89 31.77
0.6 1.64 3.00 3.00 10.42 25.30 37.00 37.00 44.42 47.03 61.92
0.8 3.00 4.00 4.49 12.78 27.66 287.75 287.75 295.79 297.77 312.66
0.9 7.31 7.31 8.72 17.34 32.23 1680.75 1680.75 1688.81 1690.77 1705.66

A Proofs Sec. 6

Proof Lemma 6.1

With z = reiϕ, we get

Re

[

z

(1 − z)(1 − θz)

]

=
r

|1 − z|2|1 − θz|2 Re[eiϕ(1 − re−iϕ)(1 − θre−iϕ)]

=
r

|1 − z|2|1 − θz|2 (cos ϕ − (1 + θ)r + θr2 cos ϕ),

and it suffices to show that, omitting the subindex θ in rθ for notational convenience,

g(ϕ) := (1 + θr2(ϕ)) cos ϕ − (1 + θ)r(ϕ) ≤ 0, (92)

with equality if and only if ϕ = 0. Here it is evidently sufficient to consider the case that
cos ϕ > 0, ϕ ≥ 0, i.e. ϕ ∈ [0, 1

2π). There is indeed equality in (92) when ϕ = 0 since r(0) = 1.
It follows from (77) that

r′(ϕ) =
−θr2(ϕ) sin ϕ

1 − θr(ϕ) cos ϕ
, (93)
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and hence

g′(ϕ) = −(1 + θr2(ϕ)) sin ϕ + (2θr(ϕ) cos ϕ − 1 − θ)r′(ϕ))

= −(1 + θr2(ϕ)) sin ϕ − (2θr(ϕ) cos ϕ − 1 − θ)θr2(ϕ) sin ϕ

1 − θr(ϕ) cos ϕ

=
− sin ϕ

1 − θr(ϕ) cos ϕ
[(1 + θr2(ϕ))(1 − θr(ϕ) cos ϕ) + (2θr(ϕ) cos ϕ − 1 − θ)θr2(ϕ))]

=
− sin ϕ

1 − θr(ϕ) cos ϕ
[1 − θr(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ)]. (94)

Now, as cos ϕ > 0 and θ ≤ 1,

1 − θr(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ) ≥ 1 − r(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ)

= (1 − r(ϕ) cos ϕ)(1 − θ2r2(ϕ)) ≥ 0, (95)

with equality in the last inequality if and only if ϕ = 0. Thus g′(ϕ) < 0 for ϕ > 0, and it
follows that (92) is less than or equal to 0 with equality if and only if ϕ = 0. �

Proof Lemma 6.2

From

zθ(α) = eθ(zθ(α)−1),
dzθ(α)

dθ
=

zθ(α)(zθ(α) − 1)

1 − θzθ(α)
, (96)

we obtain

d

dθ
(1 − zθ(α))−1 =

1

(1 − zθ(α))2
dzθ(α)

dθ
=

−zθ(α)

(1 − zθ(α))(1 − θzθ(α))
. (97)

Applying Lemma 6.1 then shows that the real part of (97) is greater than or equal to 0 for
each point on Sθ, and thus for all roots z1, . . . , zs−1. �

Proof Lemma 6.3

It is readily seen that

d

dθ

(

zθ(α)

(1 − zθ(α))2

)

=
−zθ(α)

(1 − zθ(α))(1 − θzθ(α))

1 + zθ(α)

1 − zθ(α)
, (98)

and thus

Re

[

d

dθ

(

zθ(α)

(1 − zθ(α))2

)]

= Re

[ −zθ(α)

(1 − zθ(α))(1 − θzθ(α))

]

Re

[

1 + zθ(α)

1 − zθ(α)

]

− Im

[ −zθ(α)

(1 − zθ(α))(1 − θzθ(α))

]

Im

[

1 + zθ(α)

1 − zθ(α)

]

. (99)

First note that with z = reiϕ

Im

[

z

(1 − z)(1 − θz)

]

=
r

|1 − z|2|1 − θz|2 Im[eiϕ(1 − re−iϕ)(1 − θre−iϕ)]

=
r(1 − θr2)

|1 − z|2|1 − θz|2 sin ϕ. (100)
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Furthermore, we have
1 + z

1 − z
=

1

|1 − z|2 (1 − r2 + 2ir sin ϕ), (101)

whence

Re

[

1 + z

1 − z

]

=
1 − r2

|1 − z|2 , Im

[

1 + z

1 − z

]

=
2r

|1 − z|2 sin ϕ. (102)

Altogether, this shows that both members at the right-hand side of (99) are greater than or
equal to 0, and thus the real part of (98) is greater than or equal to 0 for each point on Sθ,
including all roots z1, . . . , zs−1. �
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