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Abstract

The judgment of the imaging quality of an optical system can be carried out by exam-
ining its through-focus intensity distribution. It has been shown in a previous paper
that a scalar-wave analysis of the imaging process according to the extended Nijboer-
Zernike theory allows the retrieval of the complex pupil function of the imaging sys-
tem, including aberrations and transmission variations. However, the applicability of
the scalar analysis is limited to systems with an NA-value of the order of 0,60 or less;
beyond these values polarization effects become significant. In this scalar retrieval
method, the complex pupil function is represented by means of the coefficients of its
expansion in a series involving the Zernike polynomials. This representation is highly
efficient, in terms of number and magnitude of the required coefficients, and lends
itself quite well for matching procedures in the focal region. This distinguishes the
method from the retrieval schemes in the literature, that are normally not based on
Zernike-type expansions, and rather rely on point-by-point matching procedures.

In a previous paper, J. Opt. Soc. Am. A20, 2281-2292 (2003), we have incorpo-
rated the extended Nijboer-Zernike approach into the Ignatowsky - Richards/Wolf
formalism for the vectorial treatment of optical systems with high NA. In the present
paper we further develop this approach by defining an appropriate set of functions
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that describe the energy density disctribution in the focal region. Using this more
refined analysis, we establish the set of equations that allow the retrieval of aberra-
tions and birefringence from the intensity point-spread function in the focal volume
for high-NA systems. It is shown that one needs four analyses of the intensity dis-
tribution in the image volume with different states of polarization in the entrance
pupil. Only in this way it will be possible to retrieve the ’vectorial’ pupil function
that includes the effects of birefringence induced by the imaging system. A first nu-
merical test example is presented that illustrates the importance of using the vectorial
approach and the correct NA-value in the aberration retrieval scheme.

OCIS codes: 000.3860, 050.1960, 100.3190, 100.5070, 110.2990, 120.4820

1. Introduction

The characterization and the control of the quality of optical imaging systems with a
high numerical aperture, like microscope objectives and projection imaging systems,
is of great practical importance. This type of high-quality imaging systems is encoun-
tered in a manufacturing environment like that of the semiconductor industry where
very precise projection lenses are used to define lines and spacings on Si-wafers well
below 100 nm in lateral size and that are crucial for the functioning of advanced
computer processors and memories. Once applied to the silicon wafer, the character-
ization of these very fine features also asks for high-quality optical inspection devices
working well within the diffraction limit. A reliable description of the residual aber-
rations of these optical inspection systems is needed to successfully enable the precise
reconstruction of the details of the features on the wafer. In practice, we also notice
that the reliable production of advanced integrated circuits requires a constant qual-
ity monitoring of the optical projection lenses used in microlithography; this applies
to the manufacturing process itself but it also has to be repeated during the lifetime
of the apparatus in order to prevent any drift in the manufacturing conditions.

A wide-spread classical method for quality control of an optical system relies on
interferometry to derive the wavefront function in the exit pupil of the optical sys-
tem1. A practical drawback of this method is the special requirement on the source: an
at-wavelength coherent source should be available which is not always easily realized.
An interferometric method also asks for the insertion of special optical components to
realize the wavefront or amplitude splitting that is needed for interferometric measure-
ments.

An alternative to interferometry is the measurement of the intensity impulse re-
sponse of the imaging system. In the literature many papers have been published
where the intensity distributions in the image plane are measured in the presence of
a known object. In some cases, a simultaneous measurement of the intensity in the
exit pupil is included. Using the a priori object information in analyzing the image,
algorithms enable the reconstruction of the complex lens function, including the aber-
ration phase2−12 of the imaging system (inversion). The stability of these algorithms
is not always guaranteed because of inherent non-uniqueness problems. Information
obtained from a focal plane intensity pattern has to be transformed into a complex
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lens pupil function. Noise in the image capturing process tends to make the inver-
sion process unreliable and certain frequency bands can be irrevocably lost. Wiener
filtering is often used to stabilize the inversion process but this method introduces
an arbitrary parameter to the inversion process. Other approaches to retrieve the
phase of the complex lens function use least-squares method or other optimization
methods13−17 to compute the complex lens function that best fits the problem.

We propose an alternative method that is more practical and easily adapted to
e.g. the on-line quality measurement of projection lenses: starting from a quasi point-
source, we directly analyze the spatial intensity in the image volume of the imaging
system. In some previous papers, the authors have described this method that en-
ables the retrieval of the complex lens function from intensity data collected through
the focal volume of the imaging system18. To this goal they developed and used a
parametric semi-analytic description of the intensity in the focal region, the so-called
extended Nijboer-Zernike theory19,20 of diffraction. While the analytic results from
the classical Nijboer-Zernike theory were limited in practice to near best-focus image
planes, the extended analysis enables analytic results that are valid and computa-
tionally reliable in an extended focal volume. By using this extended theory and the
immediate relationship that is established in this theory between the complex field in
the exit pupil and the intensity distribution in the focal volume, we can establish a
relatively simple set of equations for the Zernike coefficients. These equations use the
measured intensity distribution in the image volume as an input for a ’matching’ op-
eration with respect to the analytically calculated intensity distribution determined
by the still unknown complex Zernike coefficients. The solution of this system of equa-
tions yields an effective representation of the complex pupil function of the imaging
system even when a relatively small set of Zernike coefficients is used in the ’match-
ing’ process.

A. From scalar-wave to vectorial-wave imaging in the presence of an aberrated op-
tical system

In the case of low-aperture scalar imaging the retrieval of the complex Zernike coef-
ficients enabled a full description of the wavefront aberration of the optical system
and of the possibly spatially varying transmission function of the lens system. The
treatment of the imaging by high-NA optical systems first requires the extension of
the forward calculated intensity pattern in the focal volume from the scalar case to
the high numerical aperture vectorial case. With respect to the scalar imaging theory,
several refinements are needed:

• The vectorial nature of the problem requires the calculation of the electro-
magnetic field vectors in the focal volume. The aberration-free case has been
thoroughly examined in two well-known publications21,22. The case of aberrated
imaging systems23−27has been analytically extended to the Zernike formalism
in a recent paper by the present authors28.

• Apart from the vectorial nature, the high-NA case also requires a more careful
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treatment of the effect of defocusing where the originally chosen quadratic phase
factor22 has to be refined

• The so-called radiometric effect22 has to be included. This can either be done
in the diffraction integrals themselves or it can be included via a non-uniform
transmission function of the imaging system.

• For a full description in the vectorial case of the optical wave exiting the imaging
system, we have to specify the complex exit pupil function for two orthogonal
polarization states. In practice, one will often use two orthogonal linear states
of polarization, e.g. along the x- and y-direction.

To carry out our forward calculations, we now define the complex pupil function,
using polar coordinates (ρ, θ) on the exit pupil sphere, according to

Bx(ρ, θ) = Ax(ρ, θ) exp [i2πW x(ρ, θ)]

By(ρ, θ) = Ay(ρ, θ) exp [i2πW y(ρ, θ)] . (1)

The Ax and Ay in this expression are real-valued functions and describe the field
strengths in the x- and y-direction. W x and W y are also real-valued functions and
they describe the wavefront aberration in units of λ, the wavelength of the polarized
light. The wavefront aberration has been caused by geometrical and polarization-
dependent optical path length variation and birefringence and the aberration applies
to linear polarization states along the x- and y-direction in the exit pupil of the
imaging system. Different values of W x and W y are caused not only by material or
stress birefringence but they can also be originated by polarization-dependent phase
jumps at discontinuities (e.g. air-glass transitions, optical surface coatings) or by
diffraction at structures with dimesnions of the order of the wavelength. Further on
in this paper, we will treat the more general case of elliptically polarized light that is
incident at the entrance pupil. Note that in Ref.(28) we included the radiometric effect
for a large-field imaging system (equal to (1 − s2

0ρ
2)−1/4 with s0 = sin α equal to the

value of the geometrical NA) directly in the functions Ax and Ay; this is because this
radiometric effect can be considered as being an intrinsic property of the large-field
imaging system as it has to obey the Abbe sine condition.22 However, in this paper
we will not follow this convention because it leads to nonzero aberration coefficients
β in the perfect imaging case and this is considered as a counterintuitive result.

Using the complex amplitude functions Bx and By above, we can evaluate the
complex field in the exit pupil in the presence of a general superposition of two
linear polarization states in the entrance pupil (using complex numbers a and b with
|a|2 + |b|2 = 1 for normalization puposes) and this will lead to a distribution of, in
general, elliptically polarized light in the exit pupil of the imaging system.

For the vectorial treatment of the imaging by an aberrated imaging system we
have expanded the complex exit pupil functions from Eq.(1) with the aid of a set
of complex Zernike coefficients βm

n,x or βm
n,y for the Zernike terms exp[imθ]R|m|

n (ρ). It
was shown28 that the three cartesian electric field components in the focal region,
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corresponding to an initially linearly x-polarized incident wave are given by

Ex(r, φ, f) = −iγs2
0 exp

[

−if

u0

]

∑
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imβm
n,x exp [imφ] ×
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and for a y-polarized incident field a similar expression is found

Ey(r, φ, f) = −iγs2
0 exp

[

−if

u0

]

∑
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imβm
n,y exp [imφ] ×
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n,−2 exp [−2iφ]
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2
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2
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n,−2 exp [−2iφ]
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m
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m
n,−1 exp [−iφ]









. (3)

The functions V m
n,j(r, f) have been given in Ref.(28). A minor modification is intro-

duced here concerning the radiometric effect (equivalent to a factor of (1 − s2
0ρ

2)−1/4

in the integrand). The functions are now given by

V m
n,j =

∫ 1

0

ρ|j|

(

1 +
√

1 − s2
0ρ

2

)−|j|+1

(1 − s2
0ρ

2)1/4
exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2

)

]

× R|m|
n (ρ)Jm+j(2πrρ)ρdρ . (4)

In the formulae above (r, φ, f) are normalized cylindrical co-ordinates in the image
space with the origin located at the geometrical focus, see Fig.1, with f being the
normalized axial coordinate and (r, φ) the lateral polar coordinates. The normaliza-
tion has been carried out with respect to the diffraction unit λ/NA in the radial

r-direction and f = −2πu0z/λ in the axial direction with u0 = 1−
√

1 − s2
0. As men-

tioned before, the quantity s0 = sin α equals the (geometrical) numerical aperture of
the imaging system (u0 = 1−cos α). The coefficients βm

n,x pertain to the Zernike circle

polynomials R|m|
n (ρ) and are sufficient to describe the complex pupil function (both

amplitude and phase) of the lens system under study in the case of linearly polarized
incident light in the x-direction. The integers n, m satisfy n − |m| ≥ 0 and even. An
analytical approach to evaluate the V m

n,j-integral has been obtained28 in the frame-
work of the extended Nijboer-Zernike theory and the evaluation with the radiometric
effect included is carried out along the same lines.

B. Procedure for the retrieval of the complex pupil function of a high-NA imaging
system

In the present paper, we use the results of the forward calculation according to Eqs.(2)-
(4) to obtain semi-analytic expressions for the intensity distribution through the focal
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Fig. 1. The propagation of light in a high-NA optical system. The incident
field is specified in the entrance pupil S0 of the system (polar co-ordinates
(ρ, θ) with the aid of the amplitude and phase of e.g. the tangential and radial
field vectors (~g0 and ~e0) and the unit propagation vector ~s0. After traversal of
the optical system, the field vectors and the propagation direction on the exit
pupil sphere S1 (cylindrical co-ordinates (r, φ, z) are specified by, respectively,
the vectors ~g1, ~e1 and ~s1. The numerical aperture of the imaging system is
given by NA = n sin α, with n equal to the refractive index of the image
space. The nominal image plane position is given by PI . The description of
the field vectors according to the scheme in the paper requires a distance R
that is rather large so that the aberrations of the system do not significantly
influence the directions of the electric field vectors ~g1 and ~e1 in image space.

volume as a function of the cylindrical co-ordinates (r, φ, f). Although the squaring
operation of the complex amplitudes of the electric field components leads to rather
complicated expressions, a systematic notation has turned out to be possible. From
this notation it becomes clear that each separate aberration term with an azimuthal
dependence of order m gives rise to azimuthal components in the resulting inten-
sity distribution of orders m − 2, m and m + 2. If more than one aberration type
is present in the pupil function, cross-terms are present with sum and difference or-
ders m1 ± m2 ± 0, 2, 4 of the azimuthal dependence. The complete path towards the
reconstruction of the complex pupil function uses the basic ideas developed in a for-
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mer publication18 on scalar retrieval, but now extended to the high-NA case. First,
in Section 2, we derive the expression for the electric energy density in the focal
region in the presence of aberrations and nonuniform pupil transmission, using the
Zernike coefficients that correspond to the specific exit pupil function. The expres-
sion for the Poynting vector can be obtained also but will not be used here. This
paper focuses on the aberration retrieval process. In Section 3 we introduce the en-
ergy density formulae that arise when the lens defects are relatively small and not
too far beyond the so-called diffraction limit, both regarding the lens aberration and
lens transmission defects. These formulae are derived in the presence of an arbitrary
state of polarization of the incident light and we present some special cases and com-
binations of intensity patterns that enable a stable retrieval scheme for the complex
lens pupil function. In Section 4 we extend our analysis to the practical case where
the optical system under study exhibits residual (linear) birefringence. The explicit
dependence of the detected intensity patterns is derived in the presence of both geo-
metrical aberrations, transmission defects and polarization-sensitive ’aberrations’ due
to linear birefringence that is spatially varying over the exit pupil. In Section 5 we
present the basic steps that have to be taken to retrieve the complex lens function
from a three-dimensional aggregate of intensity data in the focal volume. In Section 6
we present a detailed analysis of the functions that are used to describe the complex
amplitude and intensity distribution in the focal region. Apart from the aberration-
free case we also present graphs of the focal intensity distribution in the presence of
typical aberrations that illustrate the interaction between vectorial image formation
effects and aberrational image degradation. Finally, we present a numerical retrieval
example that is relevant in practice, viz. the high-NA retrieval of the lens function in
the presence of illumination with natural (unpolarized) light. This case is frequently
encountered in projection systems for lithography and it leads to a simplified version
of our analysis, closely resembling the one we get in the scalar case. Finally, Section
7 is devoted to some conclusions on this theoretical and numerical study about the
retrieval of lens data in high numerical aperture imaging systems.

2. Explicit expression for the electric energy density

For the retrieval of lens data we need the expression for the light intensity in the focal
volume of the imaging system. To this end we consider the time averaged value of the
electric field energy density 〈we〉 and, for a harmonic field in a homogeneous medium
with a dielectric constant ǫ = n2

r , we obtain (see Eq.(2) above)

〈we〉 =
ǫ0

4
n2

r|E|2 . (5)

The electric field components in the presence of aberrations in a high-NA system are
used to compute the scalar product E∗.E .

To examine the energy flow through the focal region, we should evaluate the time-
averaged values of the Cartesian components of the Poynting vector S and this leads
to the expression

〈S〉 =
ǫ0c

2

2
Re[E × B∗] , (6)
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with B the magnetic induction for which a similar expression holds as for the electric
field strength.28 Although the divergence of the Poynting vector would also allow
us to solve the retrieval problem, we prefer to use the expression for the electric
energy density because 〈we〉 is the electromagnetic quantity directly relevant for the
calculation of the locally absorbed electromagnetic energy (exposure)29.

A straightforward notation of 〈we〉 leads to a rather lengthy expression involving a
quadruple sum over the indices m, n, m

′

and n
′

that occur in the expressions for the
products of electric field components as derived from Eq.(2). In general, we encounter
expressions that can be written as

Gkl(α, β) =
∑

n,m

im exp [imφ] αm
n V m

n,k(r, f) exp [ikφ]

×
∑

n′,m′

i−m′

exp [−im′φ]βm
′

∗
n′ V m

′

∗
n′,l (r, f) exp [−ilφ]

=
∑

n,m,n′,m′

exp [i(m − m′)π/2] exp [i(m − m′ + k − l)φ]

× αm
n βm

′

∗
n′ V m

n,k(r, f)V m
′

∗
n′,l (r, f) , (7)

where the function Gkl has the sets of Zernike coefficients αm
n and βm

n as variables (in
shorthand notation written as α and β in the argument of Gkl).

For the retrieval of Zernike coefficients, it is important to make explicit the az-
imuthal dependence of the intensity distribution in the focal region. To this end, we
write a quadruple series

∑

n,m,n
′
,m

′ an,m,n
′
,m

′ as in Eq.(7) according to the following
diagonal summation scheme

∑

m,m′,n,n′

am,m′;n,n′ =
n2
∑

n=n1

{

m2
∑

m=m1

am,m;n,n +

µmax
∑

µ=1

∑

m

(am,m+µ;n,n + am+µ,m;n,n)

}

+
νmax
∑

ν=1

{

∑

n

∑

m

(am,m;n,n+ν + am,m;n+ν,n)

+
µmax
∑

µ=1

∑

n

∑

m

[

am,m+µ;n,n+ν + am+µ,m;n,n+ν

+am,m+µ;n+ν,n + am+µ,m;n+ν,n

]}

, (8)

where the various summation ranges determined by m1, m2, n1, n2, µmax and νmax

are derived from the transformation from a rectangular summation scheme to a sum-
mation scheme along diagonals. After some rearrangement, the following expression
is obtained

Gkl(α, β) = exp [i(k − l)φ]

[

∑

n

∑

m

αm
n βm∗

n V m
n,kV

m∗
n,l +

µmax
∑

µ=1

{

exp [−iµπ/2] exp [−iµφ]
∑

m

∑

n

(

αm
n βm+µ∗

n V m
n,kV

m+µ∗
n,l

)
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+ exp [iµπ/2] exp [iµφ]
∑

m

∑

n

(

αm+µ
n βm∗

n V m+µ
n,k V m∗

n,l

)

}

+
νmax
∑

ν=1

{

∑

n

∑

m

(

αm
n βm∗

n+νV
m
n,kV

m∗
n+ν,l + αm

n+νβ
m∗
n V m

n+ν,kV
m∗
n,l

)

+
µmax
∑

µ=1

[

exp [−iµπ/2] exp [−iµφ]

{

∑

n

∑

m

(

αm
n βm+µ∗

n+ν V m
n,kV

m+µ∗
]+ν,l

+αm
n+νβ

m+µ∗
n V m

n+ν,kV
m+µ∗
n,l

)}

+ exp [+iµπ/2] exp [+iµφ]

{

∑

n

∑

m

(

αm+µ
n βm∗

n+νV
m+µ
n,k V m∗

n+ν,l

+αm+µ
n+ν βm∗

n V m+µ
n+ν,kV

m∗
n,l

)

}]}]

,

(9)

where we have suppressed the (r, f)-dependence of the V -functions.
With the G-function notation above, the electric energy density is readily written

as

〈we(r, φ, f)〉 =
ǫ0n

2
rs

4
0

4

[

G0,0(βx, βx) +

s2
0Re {G0,2(βx, βx − iβy) + G0,−2(βx, βx + iβy)} +

s4
0

4
{G2,2(βx − iβy, βx − iβy) + G−2,−2(βx + iβy, βx + iβy)} +

s4
0

2
Re {G2,−2(βx − iβy, βx + iβy)} +

G0,0(βy, βy) +

−s2
0Re {G0,2(βy, iβx + βy) + G0,−2(βy,−iβx + βy)} +

s4
0

4
{G2,2(iβx + βy, iβx + βy) + G−2,−2(−iβx + βy,−iβx + βy)} +

s4
0

2
Re {G2,−2(iβx + βy,−iβx + βy)} +

s2
0 {G1,1(iβx + βy, iβx + βy) + G−1,−1(−iβx + βy,−iβx + βy)} +

2s2
0Re {G1,−1(iβx + βy,−iβx + βy)}

]

, (10)

where the indices x, y of β in the arguments of the Gkl-functions refer to the sets of
Zernike coefficients to be used, corresponding to either x- or y- linearly polarized light
(to be denoted by βm

n,x and βm
n,y, respectively).

Using the summation property

Gkl(α1 + α2, β1 + β2) = Gkl(α1, β1) + Gkl(α1, β2) + Gkl(α2, β1) + Gkl(α2, β2) (11)

and the property
Gkl(α, β) = G∗

lk(β, α) , (12)
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we write for the electric energy density

〈we(r, φ, f)〉 =

ǫ0n
2
rs

4
0

4

[

G0,0(βx, βx) + G0,0(βy, βy) +

s2
0Re {G0,2(βx, βx) + iG0,2(βx, βy) + iG0,2(βy, βx) − G0,2(βy, βy)} +

s2
0Re {G0,−2(βx, βx) − iG0,−2(βx, βy) − iG0,−2(βy, βx) − G0,−2(βy, βy)} +

s4
0

2
{G2,2(βx, βx) + iG2,2(βx, βy) − iG2,2(βy, βx) + G2,2(βy, βy)} +

s4
0

2
{G−2,−2(βx, βx) − iG−2,−2(βx, βy) + iG−2,−2(βy, βx) + G−2,−2(βy, βy)} +

s2
0 {G1,1(βx, βx) + iG1,1(βx, βy) − iG1,1(βy, βx) + G1,1(βy, βy)} +

s2
0 {G−1,−1(βx, βx) − iG−1,−1(βx, βy) + iG−1,−1(βy, βx) + G−1,−1(βy, βy)} +

+2s2
0Re {−G1,−1(βx, βx) + iG1,−1(βx, βy) + iG1,−1(βy, βx) + G1,−1(βy, βy)}

]

.

(13)

3. Approximated G-functions for modest values of the Zernike coeffi-
cients

Like in the scalar retrieval procedure, we now make the assumption that the lens
defects (amplitude and phase) are sufficiently small and that the Strehl intensity IS

of the imaging system is relatively high. With the (scalar) relationship IS = |β0
0 |2, we

have found that in practice it is needed that β0
0 ≥ 0.5. The basic functions occurring

in the energy density function 〈we(r, φ, f)〉 applying to the vectorial case have been
denoted by Gkl(α, β). In the case of a dominating α0

0 and β0
0 term and, consequently,

modest values of any of the remaining βm
n,x and βm

n,y terms, the general expression for
Gkl(α, β) then reduces in good approximation to

Gkl(α, β) = ei(k−l)φ

[

α0
0β

0∗
0 V 0

0,kV
0∗
0,l

+
µmax
∑

µ=1

[

exp [−iµπ/2] exp [−iµφ]
(

α0
0β

µ∗
0 V 0

0,kV
µ∗
0,l + α−µ

0 β0∗
0 V −µ

0,k V 0∗
0,l

)

+ exp [+iµπ/2] exp [+iµφ]
(

α0
0β

−µ∗
0 V 0

0,kV
−µ∗
0,l + αµ

0β
0∗
0 V µ

0,kV
0∗
0,l

)

]

+
νmax
∑

ν=1

{

α0
0β

0∗
ν V 0

0,kV
0∗
ν,l + α0

νβ
0∗
0 V 0

ν,kV
0∗
0,l

+
µmax
∑

µ=1

[

exp [−iµπ/2] exp [−iµφ]
(

α0
0β

µ∗
ν V 0

0,kV
µ∗
ν,l + α−µ

ν β0∗
0 V −µ

ν,k V 0∗
0,l

)

+ exp [+iµπ/2] exp [+iµφ]
(

α0
0β

−µ∗
ν V 0

0,kV
−µ∗
ν,l + αµ

νβ0∗
0 V µ

ν,kV
0∗
0,l

)]

}]

.

(14)
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A more compact notation is possible according to

Gkl(α, β) = exp [i(k − l)φ]
νmax
∑

ν=0

+µmax(ν)
∑

µ=−µmax(ν)

{exp [−iµπ/2] exp [−iµφ]

× α0
0β

µ∗
ν V 0

0,kV
µ∗
ν,l + (1 − ǫνµ) exp [iµπ/2] exp [iµφ] αµ

νβ0∗
0 V µ

ν,kV
0∗
0,l

}

,

(15)

where ǫνµ equals unity for ν = µ = 0 and zero for any other combination of (ν, µ)-
values.

A special case arises when the coefficients α and β are equal and k = l. We then
obtain

Gkk(α, α) =
∣

∣

∣α0
0

∣

∣

∣

2 ∣
∣

∣V 0
0,k

∣

∣

∣

2
+

2
νmax
∑

ν=0

+µmax(ν)
∑

µ=−µmax(ν)

Re
{

exp [iµπ/2] exp [iµφ] αµ
να0∗

0 V µ
ν,kV

0∗
0,k

}

, (16)

with the value µ = 0 excluded in the double summation.
Using the simplified expression for the functions Gkl(α, β), we subsequently ana-

lyze a general state of polarization that is incident on the optical system by putting

βm
n,x = aβm

n , βm
n,y = bβm

n , (17)

with |a|2+|b|2 = 1 for normalization purposes. The generally complex quantities (a, b)
allow us to specify the initial state of polarization. Using the result of Eq.(13), we
obtain

〈we(r, φ, f)〉0 =
ǫ0n

2
rs

4
0

4

[

G0,0(β, β) +

s2
0

{[

|a|2 − |b|2
]

Re{G0,2(β, β)} − 2Re(ab∗)Im{G0,2(β, β)}
}

+

s2
0

{[

|a|2 − |b|2
]

Re{G0,−2(β, β)} + 2Re(ab∗)Im{G0,−2(β, β)}
}

+

s4
0

2
[{1 − 2Im(ab∗)}G2,2(β, β) + {1 + 2Im(ab∗)}G−2,−2(β, β)] +

s2
0 [{1 − 2Im(ab∗)}G1,1(β, β) + {1 + 2Im(ab∗)}G−1,−1(β, β)] +

−2s2
0

{[

|a|2 − |b|2
]

Re {G+1,−1(β, β)}+

2Re(ab∗)Im {G+1,−1(β, β)}}
]

. (18)

The index zero has been added to 〈we(r, φ, f)〉 to indicate that no spatially varying
birefringence was present in the optical system.

Several special cases for the energy density function arise when we choose special
values for (a, b):

• linear polarization in the x- or y-direction, resp. (a, b) = (1, 0) and (a, b) =
(0, 1), and in the diagonal directions, resp. (a, b) = (1/

√
2, 1/

√
2) and (a, b) =

(1/
√

2,−1/
√

2)

11



• left- or right-handed circular polarization, resp. a = 1/
√

2, b = i/
√

2 and a =
1/
√

2, b = −i/
√

2 ,

• unpolarized or natural light, a summation in intensity of the above mentioned
orthogonal linear or circular states

• radial or tangential (azimuthal) states of polarization

A. Linear polarization in the x-direction, (a,b)=(1,0)

Note that in the absence of birefringence the coefficients βm
n,x equal the corresponding

βm
n,y and with this assumption the energy density becomes

〈wx
e (r, φ, f)〉0 ∝ G0,0(β, β) + s2

0Re [G0,2(β, β) + G0,−2(β, β)]

+
s4
0

2
[G2,2(β, β) + G−2,−2(β, β)]

+s2
0 [G1,1(β, β) + G−1,−1(β, β)]

−2s2
0Re {G+1,−1(β, β)} . (19)

B. Linear polarization in the y-direction, (a,b)=(0,1)

The energy is proportional to

〈wy
e(r, φ, f)〉0 ∝ G0,0(β, β) − s2

0Re [G0,2(β, β) + G0,−2(β, β)]

+
s4
0

2
[G2,2(β, β) + G−2,−2(β, β)]

+s2
0 [G1,1(β, β) + G−1,−1(β, β)]

+2s2
0Re {G+1,−1(β, β)} . (20)

Again supposing the absence of (linear) birefringence effects, the subtraction of the
two exposure patterns in (19) and (20) yields

∆wl,0 = 〈wx
e (r, φ, f)〉0 − 〈wy

e(r, φ, f)〉0 =

2s2
0 Re [G0,2(β, β) + G0,−2(β, β) − 2G+1,−1(β, β)] . (21)

The subtraction of two exposure patterns resulting from orthogonal diagonal linear
polarization states yields

∆wl,π/4 = 〈wx
e (r, φ, f)〉3π/4 − 〈wy

e(r, φ, f)〉π/4 =

2s2
0 Im [G0,2(β, β) − G0,−2(β, β) + 2G+1,−1(β, β)] . (22)

C. Circular polarization (LC and RC)

We follow a similar procedure to calculate the exposure patterns in the case of circular
polarization. With our convention exp{i(kz − ωt)} for an outgoing plane wave in the
positive z-direction we find the relations b = ia for left-handed circular polarization

12



(LC) and b = −ia for the right-handed case (RC). A straightforward calculation
shows

〈wRC
e (r, φ, f)〉0 ∝ G0,0(β, β) + s4

0 G2,2(β, β)

+2s2
0 G1,1(β, β) (23)

and, in a corresponding way,

〈wLC
e (r, φ, f)〉0 ∝ G0,0(β, β) + s4

0 G−2,−2(β, β)

+2s2
0 G−1,−1(β, β) . (24)

The difference between right- and left-handed polarization exposure distributions thus
equals

∆wC,0 = s4
0 [G2,2(β, β) − G−2,−2(β, β)]

+2s2
0 [G1,1(β, β) − G−1,−1(β, β)] . (25)

D. Natural light

Finally, the exposure with natural light gives rise to the summation of either both
linear orthogonal or circular orthogonal polarization states and this yields, apart from
a factor of 2 due to the normalization of the circular eigenstates,

〈wN
e (r, φ, f)〉 = G0,0(β, β) + s2

0 [G1,1(β, β) + G−1,−1(β, β)]

+
s4
0

2
[G2,2(β, β) + G−2,−2(β, β)] . (26)

Recall again that in this analysis we have excluded any birefringence effect, which
implies that βm

n,x and βm
n,y are related by a simple factor of proportionality to the

coefficients βm
n that are uniquely defined by the geometrical lens properties.

The general case of partially polarized light can be accounted for by defining a
total exposure that is a weighted sum of a fully polarized exposure pattern and an
unpolarized pattern according to the degree of partial polarization.

4. The incorporation of polarization and birefringence effects

The propagation of a polarized wave through a general optical system leads to a per-
turbation of the initial state of polarization due to the polarization-dependent am-
plitude and phase changes on transmission through the (coated) air-glass interfaces.
On top of this, anisotropy of the lens materials, induced by structural properties or
e.g. by residual stresses in the lens materials, leads to a gradual change of the state
of polarization on propagation. In this section we first describe the cumulative effect
of the birefringence on the polarization state in the exit pupil. In the next step, we
incorporate the amplitude and phase effects due to the birefringence in our descrip-
tion of the complex exit pupil function for x and y-polarization using an extra set
of complex Zernike coefficients and we point out how a set of exposures with dif-
ferent polarization states at the entrance of the optical system yield the unknown
birefringence data in the exit pupil.
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A. The field components Ex and Ey in the exit pupil

We approximate the cumulative effects of birefringence in the optical system by defin-
ing at each point in the exit pupil a certain value of the retardation due to the bire-
fringence, ∆, and the azimuths of the orthogonal principal axes, e.g. by defining the
angle α of the ’slow’ axis of the birefringence. In practical cases, it is allowed to ne-
glect the dichroism introduced by an optical system and for this reason we will limit
ourselves to the influence of the phase retardation on the strength of the x- and y-field
components in the exit pupil of the optical system.
To analyze the state of polarization in the exit pupil in the presence of a sequence
of birefringent elements and surfaces effects we use the Jones matrix analysis30. The
matrix relation between the x- and y-components of the input and output electric
fields is in general given by31

(

Ex

Ey

)

=

(

m11 m12

m21 m22

)(

aj

bj

)

(27)

where the complex amplitudes of the x- and y components of the incident electric
field at the j-th exposure have been denoted by (aj, bj). Note that the field compo-
nents (Ex, Ey) are a function of the position in the pupil; the functions describing
their locally varying complex amplitude can be expanded with the aid of Zernike
polynomials. The field components (Ex, Ey), affected by the birefringence of the op-
tical system, formally replace the original components (aj, bj) related to the entrance
pupil. The Zernike expansion corresponding to (Ex, Ey) is used to determine the vec-
tor components of the field on the exit pupil sphere; these are then used to evaluate
the field in the focal region, see Eqs.(2)-(3).

B. Procedure for evaluation of the birefringence of the optical system

Basically, we need to evaluate the four complex matrix elements mij for each sample
point in the exit pupil, leading to eight independent quantities to be determined. But
since we have excluded dichroism, the matrix above has a special structure32−36 and
can be written as

M =

(

m11 m12

−m∗
12 m∗

11

)

, (28)

with the property |m11|2 + |m12|2 = 1. The eigenstates of this matrix are elliptical in
general. Once the eigenvalues and eigenstates have been found, the orientation α of
the slow and fast axes and the value ∆ of the phase birefringence are known.
Because of the special structure of the unitary matrix M , three independent quanti-
ties need to be determined on top of the geometrical wavefront aberration and trans-
mission defects of the system. We thus need four retrieval operations to determine
the complex quantities m11 and m12 plus the polarization-independent geometrical
defects of the system. Preferred polarization states (aj, bj) are two orthogonal lin-
ear polarization states, e.g. (1, 0) and (0, 1) and the circular ones, viz. (1, i)/

√
2 for

left-circularly polarized and (1,−i)/
√

2 for right-circularly polarized light. The four
exposures with the preferred polarization states lead, after retrieval, to four different
sets of β-coefficients, βm

n;(1,0), βm
n;(0,1), βm

n;(1,i) and βm
n;(1,−i). Note that the coefficients
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βm
n,x and βm

n,y, used previously in Eqs.(2)-(3), correspond to the first two sets that
we discuss here in the framework of birefringence retrieval. From the four sets of β-
coefficients we obtain the complex amplitude in a general point of the exit pupil for
four different polarization states. This is basically sufficient to uniquely determine the
size and the orientation of the cumulative birefringence of the optical system in that
specific point of the exit pupil. In addition, we obtain the geometrical defects of the
system that are independent of the state of polarization of the incident light.

5. Outline of the basic retrieval scheme

The various expressions that have been obtained for the electric field density consti-
tute the intensity pattern detected by a sensor or the exposure profile in a storage
layer (e.g. a photoresist layer in lithography). These measured data, collected from a
set of axially displaced (defocused) planes, serve as the input for the retrieval scheme
that will yield the complex βm

n;(aj ,bj)
-coefficients that describe the high-NA imaging

system. The basic term that appears in the expressions is the real or imaginary part
of Gk,l(β, β); if k = l the function is real anyhow. We now want to sketch the basic
approach for retrieval of the complex β-coefficients.

Following our retrieval approach for the low-NA scalar case18 we first detect the
azimuthal periodicities in the measured intensity patterns according to

Ψm(r, f) =
1

2π

∫ +π

−π
I(r, φ, f) exp(imφ)dφ , (29)

where I(r, φ, f) is the measured intensity function in the focal volume.
In our retrieval scheme, the measured through-focus intensity pattern will be matched
by the linearized intensity distribution according to Eq.(18). In compact notation we
write this approximated analytical expression as

wan(r, φ, f) =
∑

k,l

Fk,l(r, φ, f) (30)

and the various functions Fk,l are, apart from a constant factor, given by

F0,0 = G0,0(β, β)

F0,2 = s2
0

[{

|a|2 − |b|2
}

Re {G0,2(β, β)}
−2Re(ab∗)Im {G0,2(β, β)}]

F0,−2 = s2
0

[{

|a|2 − |b|2
}

Re {G0,−2(β, β)}
+2Re(ab∗)Im {G0,−2(β, β)}]

F+1,−1 = −2s2
0

[{

|a|2 − |b|2
}

Re {G+1,−1(β, β)}
+2Re(ab∗)Im {G+1,−1(β, β)}]

F1,1 = s2
0 {1 − 2Im(ab∗)}G1,1(β, β)

F−1,−1 = s2
0 {1 + 2Im(ab∗)}G−1,−1(β, β)

F2,2 =
s4
0

2
{1 − 2Im(ab∗)}G2,2(β, β)

F−2,−2 =
s4
0

2
{1 + 2Im(ab∗)}G−2,−2(β, β) . (31)
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The general expression for Gk,l (linearized approximation for dominating β0
0) reads

Gk,l(β, β)} = β0
0 exp{i(k − l)φ}

∑

ν

∑

µ

{

βµ∗
ν Ψµ∗

ν;k,l(r, f) exp(−iµφ)

+ (1 − ǫνµ)βµ
ν Ψµ

ν;l,k(r, f) exp(+iµφ)
}

, (32)

where ǫνµ has been defined in Eq.(15) and where we also introduced the shorthand
notation

Ψµ
ν;k,l(r, f) = (+i)µV 0∗

0,k(r, f)V µ
ν,l(r, f) . (33)

A harmonic decomposition applied to the general terms Gk,l of this analytic function
yields the result

1

2π

∫ +π

−π
Gk,l(r, φ, f) exp(imφ)dφ =

β0
0

∑

ν

[

β(+k−l+m)∗
ν Ψ

(+k−l+m)∗
ν;k,l (r, f)

(1 − ǫν,−k+l−m)β(−k+l−m)
ν Ψ

(−k+l−m)
ν;l,k (r, f)

]

, (34)

where we have used the property that, without loss of generality, β0
0 can be taken to be

real (reference phase of the pupil function is zero). We ultimately need the harmonic
decomposition of the full analytic expression wan(r, φ, f); because of the rather lengthy
expression involved, we give the result for the various harmonic functions Ψm

an(r, f)
that arise from this decomposition in the Appendix.

Having available now the harmonic azimuthal dependence of order m both from
the measurement data (Ψm(r, f)) and from the analytical functions (Ψm

an(r, f)) with
which the measurement data have to be matched, the equation to be solved for each
azimuthal order number m reads

Ψm
an(r, f) ≈ Ψm(r, f) . (35)

Here, the right-hand side function has been obtained via measurement values in a large
number of lateral and axial positions in the focal volume. The left-hand side contains
the unknown β-coefficients that have to be calculated and the ≈-sign expresses that
the linearized version of the analytical intensity distribution that has been used.

The approximate equality in Eq.(35) can be solved for the unknown β-coefficients
in various ways. Our preferred method uses the fact that the functions Ψµ

ν;k,l(r, f)
that implicitly appear at the right-hand side of Eq.(35) are close to being orthogonal.
By applying inner products with the involved Ψµ

ν;k,l on either side of (35), we obtain
an approximate linear system in the β-coefficients that produces estimates of these
β-coefficients upon solving it. The inner product that we choose here is defined for
functions Ψ(r, f) and Φ(r, f) as

(Ψ, Φ) =
∫ R

0

∫ +F

−F
Ψ(r, f)Φ∗(r, f)rdrdf . (36)

The integration limits R and ±F formally should be infinitely large but, in practice,
they are determined by the lateral and axial extent of the measured data set. The
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inner products of the form
(

Ψm
ν;k,l, Ψ

m
′

ν′ ;k′ ,l′

)

are calculated just once and their numer-

ical values serve to fill the matrix corresponding to the system of linear equations. In
general, the procedure is to first calculate the best fit β-values without the birefrin-
gence included. Given the residual error of this solution for the various polarization
states, the full set of βm

n;(aj ,bj)
-coefficients is then taken into account to evaluate the

birefringence effects of the optical system.

6. Graphical illustration of the basic functions V m
n,j(r, f), Gkl(β, β) and a

high-NA retrieval example

In this section we present some typical examples of the amplitude function V m
n,j(r, f)

that plays a basic role in the calculation of the complex amplitude of the cartesian
electric field components in the focal region. We also present some examples of the
analytical function Gkl(β, β) that plays an important role when evaluating the energy
density in the focal region and when the inverse problem is solved for retrieving aber-
rational lens properties. Some characteristic aberrations like coma and astigmatism
will be treated in more detail and the subtle interplay between the state of polariza-
tion in the exit pupil and the azimuth of a non-circularly symmetrical aberration will
be discussed.

A. The aberration-free V m
n,j-functions

In Fig.2 we have plotted the functions V 0
0,0(r, 0), V 0

0,+1(r, 0), V 0
0,−1(r, 0) and V 0

0,±2(r, 0)
in the upper row. The same functions have been represented in the middle row for
a value of the defocus parameter equal to 2π. In both cases, the numerical aperture
of the imaging system was 0.95. These functions with n = m = 0 are generally the
dominant ones that determine the complex amplitude of the electric field components.
If there are no aberrations at all, they are the only ones needed for the calculation
of the intensity in the focal region (the coefficient β0

0 equals unity and all other β-
coefficients are zero). Some remarks follow from the inspection of the V 0

0,j-functions
for the aberration-free case. The amplitude at the central point of the diffraction
image (r = f = 0) is given by the value of V 0

0,0 only. We also note that for equal
values of |j| the V -functions change sign for odd j. In the defocused case, we see
that the on-axis amplitude does not vanish for a value of the defocusing parameter
equal to 2π. In the scalar diffraction case at low numerical aperture, the V 0

0 -function
is zero precisely at this defocusing value. At high numerical aperture, the on-axis
amplitude is non-vanishing because of the non-quadratic defocus phase and the non-
uniform amplitude distribution over the exit pupil (radiometric effect). In the lower
row of Fig.2 we have produced contour plots of the absolute value of the three electric
field components and of the resulting total energy density (or intensity) in optimum
focus. The incident state of polarization was linear and oriented along the x-axis (see
Eq.(2) for the expressions for the field components in the focal region). The Ex field
is the sum of the dominant V 0

0,0-function and the smaller contributions from the V 0
0,±2-

functions (with zero-azimuth off-set) which tend to reduce the field value along the
azimuths φ = 0, π (x-axis) and lead to an increase along the azimuths φ = π/2, 3π/2.
The Ey-component only consists of a 2φ-component with a phase shift of π/4 and is
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Fig. 2. The functions V 0
0,j(r, f) (upper row: f = 0, middle row: f = 2π) for the

aberration-free case (NA=0.95, linear polarization along the x-direction). The
horizontal coordinate r is expressed in the diffraction unit λ/s0 with s0 the
numerical aperture of the imaging system. The solid and dotted lines in the
first and second row apply to, respectively, the real and imaginary part of the
V 0

0,j-functions. Lower row: contour plots of the three electric field components,
|Ex|, |Ey| and |Ez|, and of the electric energy density

∑ |Ei|2. The contour
lines for the electric field components have been chosen at 0.5, 0.09 and 0.025;
for the electric energy density the levels are 0.75, 0.50, 0.25, 0.017 and 0.005.
In the latter contour plot, the dotted circle indicates the circular 0.50-contour
of the hypothetical in-focus scalar intensity distribution.

the weakest of all three. In the intensity plot we have also given the 50%-level of the
scalar Airy distribution with the transverse position expressed in units of λ/NA. It is
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clearly visible from the contour plot that the full width at half maximum (FWHM)
of the high-NA intensity distribution is slightly smaller in the y-cross-section but
drastically increased along the x-cross-section. From the contour plots of the three
field components, it can be seen that this effect is created by the Ez-field component
that constitutes the most prominent extra feature at high-NA values with respect to
the scalar case.

B. The definition of Strehl-intensity at high NA

A close inspection of the upper-left graph of Fig.2, representing the function V 0
0,0(r, 0)

at NA=0.95, reveals that the on-axis amplitude in the nominal focal plane is not
equal to unity but slightly larger because of the vector addition and the radiometric
effect. In the absence of aberrations we define the Strehl intensity by

IS =

∣

∣

∣

1
π

∫ 2π
0

∫ 1
0 A(ρ, θ)ρdρdθ

∣

∣

∣

2

1
π

∫ 2π
0

∫ 1
0 |A(ρ, θ)|2 ρdρdθ

. (37)

With the amplitude function

A(ρ, θ) =
1

(1 − s2
0ρ

2)1/4

[

1 + (1 − s2
0ρ

2)1/2

2

]

, (38)

we find the following expression for the Strehl-intensity

IS =

(

8

75s2
0

)

[

8 − 5(1 − s2
0)

3/4 − 3(1 − s2
0)

5/4
]2

4 + 3s2
0 − (1 − s2

0)
1/2 {4 − s2

0}
(39)

For the value of s0=0.95, the on-axis intensity is 1.05856 (numerator of Eq.(37)) and,
after normalisation to the incident power (1.060075), we find a Strehl intensity IS

equal to 0.99857. All calculated intensity values in the remainder of this paper have
been normalized according to this definition.

C. Field components and intensity belonging to an aberrated system (coma)

In Fig.3 we have plotted the set of graphs belonging to a wavefront in the exit pupil
(linear polarization along the x-direction) that has a comatic aberration of the lowest
order. The wavefront aberration is given by 2πW x(ρ, θ) = Φ(ρ, θ) = α1

3R
1
3(ρ) cos θ

and the corresponding coefficients βm
n,x have been calculated by the insertion of this

expression in Eq.(1). In the upper row we have now plotted the radial cross-sections of
functions V 1

3,j(r, 0); in the graphs of the middle row, the same functions appear with a
defocus value of f = 2π. The functions now show a more general behavior and there is
no identity or change of sign, respectively, for indices j that are even or odd. The field
components (moduli) and the intensity pattern are given in the lower row and they
show the typical cos(φ)-asymmetry. But on top of this basic azimuthal frequency, we
expect higher frequency components because of the presence of azimuthal components
with ranges from −3φ to +3φ for the Ex- and Ey-components and from −2φ to +2φ
for the Ez-component. After the squaring operation, we thus can expect a highest
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Fig. 3. Same legend as in Fig.2 but now with comatic aberration of lowest order
(α1

3 = 1). The values of the relevant βm
n,x-coefficients (second-order approxima-

tion of the phase aberration function) are: β0
0,x=15/16, β0

2,x=-1/80, β0
4,x=-1/16,

β0
6,x=-9/80, β1

3,x=β−1
3,x=i/2, β2

2,x=β−2
2,x=-1/20, β2

6,x=β−2
6,x=-3/40; all βm

n,y identical
zero. In the contour plot of the energy density (lower row, right-hand figure)
the contour levels have been chosen 0.5, 0.1, 0.05, 0.01, 0.005 and 0.002. For
reasons of comparison, we have also included the dotted contour plot in the
center corresponding to the 50% relative height for the hypothetical scalar
diffraction image (same comatic aberration value).

azimuthal frequency of 6φ in the intensity pattern of the lower-right graph. In this
graph, for comparison, we have again plotted the FWHM-contour (dotted) of the
hypothetic scalar diffraction pattern at the same value of the numerical aperture
(aberration-free case).
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D. Construction of the image intensity from the G-functions

In the retrieval procedure that was presented in Section 5, the functions Gkl(r, f)
play a key role. The ranges of values of (k, l) are limited by the condition |k|, |l| ≤ 2
and there are in total eight G-functions that occur in the expression for the energy
density in the focal region, see Eq.(13). In Fig.4 we have plotted these eight functions
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Fig. 4. The eight Gkl(r, f)-functions that contribute to the energy density in
the focal volume and that are used in the aberration retrieval scheme. The
unit along the axes is the diffraction unit. The contour plots apply to the
aberration-free case in the nominal focal plane (f=0, NA=0.95). To visualize
the features of the various functions, the contour levels have been changed
from plot to plot. G0,0: 0.75, 0.5, 0.25, 0.10, 0.07, 0.05, 0.02, 0.01, 0.005 and
0.001 ; Re[G0,2], Re[G0,−2] and 2Re[G1,−1]: 0.055, 0.015, 0.005, 0.001, 0, -0.001,
-0.005, -0.015, -0.055 (contours with negative values are dotted); G1,1, G−1,−1,
G2,2 and G−2,−2: 0.12, 0.06, 0.005, 0.002, 0.001, 0.0005. Note that the functions
G1,1, G−1,−1, G2,2 and G−2,−2 all have a dough-nut shape with a zero on axis.

according to their relative importance in the expression for the energy density (weight
factor containing s0); the imaging system is free of any aberration. The dominating G-
function is G0,0 and this is the only one that remains in the limiting case of very small
numerical aperture (s0 → 0). In the nominal aberration-free focus, this function equals
|V 0

0,0(r, f)|2 and it closely resembles the basic Airy diffraction pattern if we neglect
the influence of the radiometric effect and an average increase in lateral size due to
the vectorial image formation. The functions in the lower row with equal k- and l-
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indices have a central zero in the nominal focal plane. They lead to a further ’blurring’
of the diffraction image because of the vectorial effects. The functions in the upper
row with |k − l| = 2 lead to the absence of rotational symmetry in image formation
with e.g. linearly polarized light. These functions are not everywhere positive as were
the functions with k = l. The contributions to the focal plane intensity of the G-
functions with |k − l| = 2 is proportional to Re[G0,2 + G0,−2 − 2G1,−1] if we have
linearly polarized light along the x-direction in the entrance pupil (see Eq.(13) with
βy = 0). From Fig.4 we see that the contributions from the three non-circularly
symmetric G-functions lead to a broadening of the central lobe along the x-cross-
section (FWHM is 34% larger than that of the hypothetical scalar profile). Their
negative contributions along the y-cross-section lead to a narrowing of the intensity
profile and a reduced FWHM-value (-7% with respect to the ’scalar’ profile). The
asymmetry effect leads to an elliptic 50%-intensity contour and the ratio of the long
and short axis amounts to 1.44. In Fig.5 we have plotted the G-functions in the same

Fig. 5. Gray-level plots of the G-functions for the aberration-free case in the
nominal focal plane. The order of representation is the same as in Fig.4. The
plots of the functions Re[G0,2], Re[G0,−2] and 2Re[G1,−1] have been coded with
gray for zero level and with white and black shades for positive and negative
values, respectively. Note the dough-nut shape of the functions G1,1, G−1,−1,
G2,2 and G−2,−2 in the lower row. There is no relationship between the gray
levels in the various graphs; all levels are relative with respect to the local
maximum or the zero level.

order but now using gray scale levels to represent the intensity contributions. This
is especially useful for a comparison of the intensity levels of the Gkk-functions and
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to make clear the doughnut-shape of the G-functions with k = l 6= 0. Note that in
image formation with natural light or circularly polarized light we only encounter
the Gkk-functions in the expression for the energy density. This means that for these
cases the vectorial image formation will always lead to larger FWHM-values than
those given by the scalar extrapolation.

E. Application of the G-functions to a general aberrated system

In this subsection we discuss the G-functions for a general aberrated case with lin-
early polarized illumination in the x-direction. As the aberration function we choose
lowest order astigmatism with 2πW x(ρ, θ) = Φ(ρ, θ) = α2

2R
2
2(ρ) cos 2(θ − θ0). For the

off-set angle we take θ0 = π/6 and the amplitude of the phase aberration is given
by α2

2 = 1. A first approximation of the main aberration coefficients is given by
β2

2,x = i(1/4− i
√

3/4) and β−2
2,x = i(1/4+ i

√
3/4) and the remaining βx-coefficients are

found from the Zernike expansion of the function exp{iΦ(ρ, θ)}, approximated up to
the second order; all βy-coefficients are identical zero. In Fig.(6) we have plotted the
corresponding Gkl-functions for a defocus value f = 0. We see that the G00-function
resembles the intensity profile we would expect in the case of astigmatic aberration
with an azimuth of π/6. The Gkk-functions with k 6= 0 in the middle row also show
the astigmatic behaviour with maximum azimuthal periodiciteis of 4φ. The functions
G1,1 and G−1,−1, as well as G2,2 and G−2,−2, show a mutual rotation of π/2. This fol-
lows from e.g. Eq.(16) for the astigmatic case because the intensity contribution with
periodicity 2φ in these functions changes sign when the k-index of the Gkk-functions
changes sign. The three G-functions (Re[G0,2], Re[G0,2] and Re[G1,−1]), that introduce
by themselves an extra periodicity of 2φ in the intensity pattern due to the linear
state of polarization, show the most complicated patterns because of the summation
of periodicities with an azimuthal off-set of π/6. The intensity distributions can show
periodicities up to a frequency of 8φ. In the retrieval approach we have chosen to se-
lect the azimuthal periodicities from the through-focus intensity distribution because
these periodicities have a virtually straightforward relationship with the azimuthal
periodicities we encounter in the aberration function. Finally, in the lower row of
Fig.6, we have plotted the intensity distribution in three focal planes, resp. with f -
parameters of −π/3, 0 and +π/3. The axial settings f = ±π/3 correspond well with
the positions of the astigmatic focal lines according to scalar diffraction theory. The
focal lines are clearly visible as well as their distortion due to the nonparallellism of
the linear state of polarization and the astigmatic principal cross-sections. The orien-
tation of the elliptic shape in focus due to the linear state of polarization is preserved
on both sides of focus; the two astigmatic focal lines are perpendicular to each other.
The combined effect at an angular off-set of π/6 leads to the typical pattern in the
last row of the picture.

F. Retrieval at high-NA with unpolarized light

Finally, we present in this section a relatively simple numerical example that shows
the importance of including the high-NA imaging effects in the retrieval scheme.
We consider the frequently occurring situation, e.g. like in a lithographic projection
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Fig. 6. Same legend as in Fig.4 for the upper and middle row. The graphs apply
to a system with astigmatic wavefront aberration and the β-coefficients (second
order approximation of the aberration function) are given by the following
values: β0

0,x=11/12, β0
2,x=-1/8, β0

4,x=-1/24, β2
2,x=1/4(

√
3+ i), β−2

2,x=1/4(−
√

3+

i), β4
4,x=1/16(1 + i

√
3), β−4

4,x=1/16(1 − i
√

3). In the lower row, contour plots
are given for the astigmatic focal distribution with defocus values f of −π/3,
0 and +π/3, respectively, where the defocus values f = ±π/3 approximately
correspond to the image positions of the two focal lines of the astigmatic pencil.
The choice of the various contour levels is identical to that in Fig.4.

system, that the illumination is unpolarized (’natural’ light). Unpolarized light is
represented in our analysis by adding incoherently two orthogonal polarization states;
for the sake of simplicity, we select linearly polarized light along the x- and y-direction.
If we turn to Eq.(A1) and carry out the summation of both orthogonally polarized
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contributions with, respectively, (a, b) = (1, 0) and (a, b) = (0, 1), we find

Ψm
an(r, f) =

β0
0

∑

ν

{

βm∗
ν

[

Ψm∗
ν;0,0 + s2

0

{

Ψm∗
ν;1,1 + Ψm∗

ν;−1,−1

}

+
s4
0

2

{

Ψm∗
ν;2,2 + Ψm∗

ν;−2,−2

}

+β−m
ν (1 − ǫν,m)

[

Ψ−m
ν;0,0 + s2

0

{

Ψ−m
ν;1,1 + Ψ−m

ν;−1,−1

}

+
s4
0

2

{

Ψ−m
ν;2,2 + Ψ−m

ν;−2,−2

}

]}

(40)

and this function is then used to construct the linear system of equations as indicated
in Section 5.

In this numerical experiment, we used an asymmetric set of Zernike coefficients
according to: β+1

3 = β−1
3 = 0.1i, β+1

5 = β−1
5 = −0.02i and β+1

7 = β−1
7 = −0.02i. The

fact that the (small) coefficients are purely imaginary implies that the lens defect can
be contributed to wavefront aberration, of comatic nature in this case. The through-
focus intensity distribution has been calculated using the basic result from Eqs.(2)-(4)
with a value of the numerical aperture equal to 0.95 (refractive index n equals unity).
The retrieval scheme is then applied using values of the numerical aperture in the
range from 0.001 to 0.95. In Fig. 7 we show that the correct values are retrieved only
if the exact value of the numerical aperture is used and thus the influence of the
vectorial effects is correctly included. The scalar case (NA → 0) shows a substantial
deviation from the correct lens values of the order of 10 to even 100%, especially for
the higher order β-coefficients.

Data sets taken from intensity patterns in the focal volume at different incident
states of polarization could not be studied yet. These data sets at high NA are not
easily created in a lithographic projection system since the standard illumination
system has not been provided with special polarization means. For this reason, a
complete check of the vectorial retrieval scheme, including the birefringence effects of
the projection lens, could not be carried out yet. With respect to the sensitivity of
the method and the range of aberration that can be covered, we refer to two recent
publications37−38 for the scalar case. Here it is first shown that retrieval operations
remain stable down to Strehl intensity levels as small as 0.30; or, equivalently, rms
wavefront aberration values are allowed up to twice the diffraction limit (150 mλ).
The robustness of the retrieval method in the presence of noise and off-sets has also
been studied in these references. When using a basically identical retrieval scheme
as the one described in the preceding chapter, signal to noise ratios in the intensity
patterns as low as 10 to 5 can be allowed without comprimising the retrieved lens
data.

7. Conclusion and outlook

We have presented a high-numerical-aperture analysis of the intensity distribution in
the focal volume of an imaging system using the vectorial version of the extended
Nijboer-Zernike approach. The three-dimensional intensity distribution has been ob-
tained by means of a series expansion of basic functions in the Nijboer-Zernike theory
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Fig. 7. Variation in the retrieved value of optical aberration coefficients when
an incorrect value of the numerical aperture is used and the vectorial imaging
effects are not correctly applied. Forward calculation at an NA-value of 0.95.
Retrieval of the β-aberration coeffcients (comatic wavefront aberration of 3rd,
5th and 7th order, resp. with Zernike coefficients of +0.1, -0.02 and -0.02 radi-
ans) at various values of NA. The correct aberration values are only retrieved
when the NA-value at retrieval is chosen identical to the value used in the for-
ward calculation scheme. The retrieved values for the scalar scheme, +0.088,
-0.050 and -0.042, respectively, are found in the graph at the abscissa-value
NA=0.

using generalized aberration coefficients related to both the amplitude and the phase
of the complex pupil function. For high-NA imaging systems, the original scalar theory
has been extended to the vectorial case and an extended set of aberration coefficients
has been introduced, describing the behavior of the optical system as a function of
the state of polarization of the incident light. It has been shown that the intensity
distribution in the focal region can be constructed from a set of elementary functions
that give rise to the basically non-circularly symmetric intensity profile in the focal
region and to the relative increase in spot size at high NA as compared to the scalar
prediction. Our theoretical approach has also shown that the collection of focal in-
tensity data from four exposures with well-selected polarization states of the incident
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light enables the retrieval of the ’polarization’ aberration coefficients. They represent
the geometrical aberrations and the spatial distribution of birefringence (azimuth
and size) in the exit pupil of the optical system. A first numerical exercise to illus-
trate our theoretical approach has shown that, even in the case of illumination with
unpolarized light, the correct aberration coefficients are only retrieved when the vec-
torial formulation of image formation is correctly included. Future experimental work
should concentrate on the collection of through-focus intensity data for various inci-
dent polarization states in a high-NA imaging system; with such experimental data,
the retrieval of polarization aberrations becomes possible along the lines described in
this paper.
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Appendix A
Expression for the azimuthal harmonic components of the an-
alytically derived intensity distribution in the focal volume

To solve the basic ’retrieval’ problem as represented by Eq.(35), we need analytic
expressions for the azimuthal harmonic components that are present in the linearized
intensity distribution through the focal volume of an aberrated imaging system. The
incident illumination is a linear superposition of two ortohogonal linear states of po-
larization (with complex amplitudes a and b, respectively, for the x- and y-polarized
states). After some straightforward manipulation one obtains for the component with
upper index m

Ψm
an(r, f) =

β0
0
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{(

|a|2 − |b|2
)

Re
[

β(−m−2)
ν Ψ

(−m−2)
ν;−2,0

]

+2Re(ab∗)Im
[

β(−m−2)
ν Ψ

(−m−2)
ν;−2,0

]}

−2s2
0(1 − ǫν,−m−2)

{(

|a|2 − |b|2
)

Re
[

β(−m−2)
ν Ψ

(−m−2)
ν;−1,+1

]

+2Re(ab∗)Im
[

β(−m−2)
ν Ψ

(−m−2)
ν;−1,+1

]}}

, (A1)

where the function Ψ has been defined in Eq.(33).
Note that in the special case treated in the numerical example of Section 6 (’natu-

ral’ light), the only non-zero contributions to Ψm
an(r, f) are those found on the second

and fourth line of the equation above.
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