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Abstract.

For v € R we let C'(v) be the set of all f € &' for which >~ [(f, hy)| (n+
1) < oo, where (hy)n=o.1,.. is the orthonormal base of Hermite functions.
We show that C(y) C S if and only if v > 1 and that Sy € C(v) if and only
if v < —i. Here S is Feichtinger’s space.
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1 Introduction

Feichtinger’s space Sy is the largest Banach space of functions of a real vari-
able that allows a relatively carefree development of time-frequency analysis
and, in particular, Gabor analysis, see [1], Ch. 3. There are many equivalent
characterizations of the space Sy. For our purposes, it is most convenient
to work with the description in terms of the Gaussian window Short-Time
Fourier Transform (STFT) of the members of Sy. Hence, letting for z,y € R

Guy(t) = 2V exp(—m(t —a)? + 2miyt) . tER, (1)

we say that an f € L? belongs to Sy when

5= [ [ 1ol ddy < o0 @)

—00 —00

In phase space analysis and in the time-frequency analysis of functions
in L*(R), the orthonormal base (h;,)n=o.1.. for L*(R) of Hermite functions
plays an important role, see [2], Ch. 1, Sec. 7, [3], Sec. 3.4. In this paper, we
aim at describing the space Sy in terms of the Hermite coefficients (f, h,,) of
its members f. To be more precise, we let for v € R

C() = {f €SI Y I(f.ha)l (n+1)7 <00}, (3)

where &’ is the set of tempered distributions (dual of Schwartz’s S). We
shall show that C'((1) € Sy C C(—%) and that C(y) ¢ So when v < 1 and
So ¢ C(v) when v > —%. Figure 1 summarizes the situation. It may be

_ N eg— U
noted here that from [4] one has § = v ER C(vy) while &' = v ER C(v).

The main tools we use to prove these results are the Bargmann transform that
allows explicit computations with the Gaussian window STFTs of the Her-
mite functions, and Mehler’s formula. The inclusions C(3) C Sy € C(—1)
are rather straightforward consequences of the explicit formulas for (h,, gs.,)
and orthonormality of the h,, n = 0,1,.... For the proof of Sy ¢ C(v),
certain manipulations with Mehler’s formula are required, while the proof
of C(y) ¢ Sy relies on a consideration of certain “lacunary” Hermite series
> Cmham for which one has || Y cnhaml|s, =D, [cm|||am]s,-
Formula (14) for the Gaussian window STFT of the Hermite functions is
crucial in these investigations. This formula shows, for instance, that the n'"-
Hermite function can be thought as being located in the time-frequency plane



near the circle around 0 of radius ((n+1)/7)'/2. Furthermore, as a function of
¢ = arg(xr —iy) for a fixed value of 7 = (v24y?)'/2, the collection of functions
(hns Gzy), n=0,1,..., is orthogonal. These circumstances lead one to expect
quite transparent characterization results for modulation spaces M4, see [3],
Definition 11.1.2 on p. 219 and 11.3.1 on p. 231, with p = ¢ = 2 and radially
symmetric, well-behaved weight functions m(z,y) = K(7(z* + y?)). Indeed,
when, say f € § and K has at most polynomial growth, one has the formula

77|(f’gmvy)|2K<7T($2+y2))dxdy —

= S ImP [ K@) ()

for the square of the M2?-norm of f. This follows readily from the above
observations on the (h,, g,,) and the completeness and orthonormality of the
h, in L*(R). When, in addition, K is slowly varying (a notion that can be
made more precise in a similar way as is done in [5], Definition 3 on p. 284),
one can effectively replace the integrals on the second line of (4) by K (n+1).
Thus we arrive at the characterization result

feM? ey |(fh)PK(n+1) <o, (5)
n=0

a result that is similar in spirit to those that can be found in [5], Sec. 4.

The results for Sy presented above show that a characterization of S
in terms of a single requirement on the Hermite coefficients of its members,
such as is the case for M2?-spaces with radially symmetric weights m of
certain type via (5), cannot be expected to exist. This is no surprise since
orthonormality is a notion that one normally associates with L?-norms while
the norm on Sy is an L'-norm, see (2). One has that Sy coincides with the
modulation space MP—_%=". The results of this paper on Sy thus show to
what extent the crisp result in (5) gets detuned when one passes from 2-
norms to 1-norms at either side of the < in (5) (K = 1 here). The proofs
of the results get more complicated as well, but the concentration result for
the Gaussian STFT of the h,,’s is still crucial.

In Sec. 2 we develop notations, normalizations and relevant formulas,
such as the one for (h,, g,,) and Mehler’s formula, concerning the Hermite
functions. In Sec. 3 we show the inclusions C(3) C S € C(—3). In Sec. 4
we show that Sy ¢ C(v) when ~ > —i and in Sec. 5 we show that C(y) ¢ Sy
when v < i.



2 Preliminaries about Hermite functions

We follow the notations and normalizations of [2], p. 51; these are identical
with those in [3], Sec. 3.4 and [6], except that in [3] and [6] one writes H,
and 1, respectively, for h,. Thus we let

21/4 —1\n w2 d\" —27t2
hn(t)_ﬁ(ﬁ> (& <£> € N n—O,l,..., tE(C, (6)
be the Hermite functions. In terms of the Hermite polynomials
H,(z) = (—1)”612<%>n6_12 , n=0,1,..., zeC, (7)
one has
ha(t) = (27 V20" V2 H,(tV2r)e ™, n=0,1,., teC. (8)
See [7], Sec. 5.5 and p. 190. From [7], (8.22.8) on p. 200 we have
21/2
hn(t) = —————— cos[2(m(n + %))1/% — 2]+ O((n+ %)_3/4) . (9)

(wn+ D)

where the O holds uniformly locally in ¢ € R. Also, from the table on p. 700
in [8] (in which we have h,,(t) = (27)Y* H,,(t v/27)), we get

) =0+ 7 - gt )
ha(t) = O((n +1)"112) | teR.

The Gaussian window STFT of the Hermite functions can be computed
by using properties of the Bargmann transform, see [2], p. 40 and [3], Sec. 3.4.
With f € L*(R), the Bargmann transform Bf of f is defined as

(Bf)(2) = e 27 / 2Ty seC. (1)

There holds for f € L?(R)

1 .
(fyGey) = € 27T (BEY (4 —dy) . zy€eR. (12)

From the generating formula, [2], (1.86) on p. 54, for the Hermite func-
tions and orthonormality it follows that

(71_1/2 Z)n

(Bhn)(2) = W )

n=0,1,..., ze€C. (13)



Consequently, one has

—l7r 224y?)—mix (71-1/2(37 B Zy))n
(hnagaﬁ,y) =e€ (@+y%) v (TL')UQ R n:O,l,..., ZL’JJER .

(14)

[\V]

We then compute, for instance,

T % 717”62 ) (7r1/2(m2+y2)1/2)”
Hh””So = / / e 2 (z+y%) (n‘)1/2 dxdy =

—00 —0O0

F(Gn+1)

1
sn+1
22 (n!)1/2 ’

n=01,.., (15)
in which we have used polar coordinates x +iy = r e to evaluate the double
integral.

Mehler’s formula can be found in [7], Problem 23 on p. 380. In terms of

the Hermite functions h,, it takes the form as can be found in [2], (1.87) on
p. 55: for t,s € C, w € C, |w| < 1 there holds

2 >1/2 (47rt5w —7(t* + s%)(1 + w?)
exp

i W i (£) i (5) = (1_w2 — ) . (16)

3 Proof that C(3) C Sy C C(—1)

We shall first show that C(5) C Sp. It follows from Stirling’s formula T'(z +
1) = 2”2 e \/2m (1 4+ O(1)), see [9], 6.1.37-38 on p. 257, and (15) that

halls = 2(7) "1+ O0(m7") . n=0,1,... (17)
Since S; is a Banach space, we have for f € S’ that

ST ha)l(n+ D) <oo= f =Y (f,hn)hn € Sp . (18)

Hence, when f € C(i) we have that f € Sp, and the Hermite series of f
converges in the sense of Sy to f.

We next show that Sy C Co(—7). We let f € L*(R), and we apply the
inversion formula for the STFT, see [3], Corollary 3.2.3 on p. 44, to obtain

(foha)| = / / (F. 900) 0oy, ) ddy| <

—00 —00



i I e R kA
< [ [ irae e T sy, 19
where we have used (14). Assume that f € S;. We must show that
S 1(f, ha) (n +1)744 < 0o, To that end we shall prove below that there
is a C' > 0 such that

vn/2

Fv) =) (n!)1/2(n + 1)1/4 <Ce,  0>0. (20)

n=0

It follows from (20) that

S im0 [ [y =Clfls . )

n=0
—00 —0

which implies that f € C(—1).
We shall now show that (20) holds for some C' > 0. To that end we prove
that there are ¢; > 0, ¢o > 0 such that

vte 1 exp(—% (v— 3:)2> , tx<v<2r,
Plz+1) = Vame exp(—cz |v — ) , 0<z<wv or v>2r.

(22)

To show (22), we first note that from the inequality I'(z 4+ 1) > 2% e~ /27,
x >0, see [10], bottom half of p. 251, we have that

vreV 1 v v
< e [:U(ln——i—l——)}, z0>0. 23
D(z+1) ~ 2z P T x (23)

The function w > 0 — r(w) := Inw+ 1 — w is smooth and concave, and has
its maximum 0 at w = 1. Consequently, there are ¢; > 0, ¢ > 0 such that

r(w) < —c(w— 1), <w<2, (24)

N[

r(w) < —cy|lw—1], O<w<3 or w>2. (25)

From this (22) follows. Therefore, when v > 1, we have

_1, . soteVN 1/2 1

n=0




< (£ ) ) oot +

1<n<;v nz2v

CF () )

Jv<n<2v

The first term on the second line of (26), exp(—3v), is bounded in v > 0.
The second term is bounded by (4/7)"* (1—exp(—4 ¢2)) ™" exp(—1 cv), and
the term on the last line is bounded by

[e.9]

<m>m Z exp(—icw‘l(v—n)?) -

2 1/4 ,4 12 >
- <—> <ﬂ> > exp[—4n’mPv/e; + 2rimu] <
o )

v+ 2 c1 =
3271 v\ S -
< (c—% » +2> mz_oo exp(—4rmv/cy) <

< (362—;>1/4 i exp(—4m*m?*/c;) (27)

m=—0o0

when v > 1. Here we have used the Poisson summation formula for the first
identity in (27). This shows (20).

Notes.

1. In a similar fashion one can prove the existence of a D > 0 such that

S <D [ [ sl e pia o

—00 —0O0

holds for any f € L?(R). Furthermore, many variations on this theme are
possible.

2. From what we show in Sec. 5 it follows that C(—3) ¢ Sp. Nevertheless,
the members of C' (—%) are reasonably well-behaved functions. Indeed, it



follows from (9) and/or (10) that the function f and its Fourier transform

Ff,
F=Y (Fihn)bn,  Ff=Di"(f hn) hn
n=0

n=0

(29)

are continuous, the series being locally uniformly convergent when f €

(-1,

4

4 Proof that Sy ¢ C(vy), v > _i

We shall now show that Sy ¢ C(v) when —; < v
Mehler’s formula (16) with s = 0 and w = v,
0<v<l1l,teR

i i" V" hy (0) hy(t) = (1 502)1/2 exp(—w 1 :L 22 t2> .

n=0

[VARWAN

We observe from [7], 5.5.4-5 on p. 106 that hg,,.1(0) =0, m =0,1, ..

. RPN INTE
(=1)™ o (0) = (2 2 +1/2m> . om=0,1,...

From Appendix A it follows that

(onrn) <0< (5

et A+ )

1/4
) , m=0,1,....
)

For this we use
< 1, so that for

(30)

., while

(31)

(32)

Now let a € (1, 1], multiply (30) by (1 —v)*™!, and integrate over v €

[0,1). There results

i (=1)™ gy (0) Blev, 2m + 1) ho () =

m=0

1

= [() e(n ) rta= 1),

0

where for m = 0,1, ...

L(a)T(2m+1)
r2m+14a)

1
B(o,2m+1) = / (1—v)* " 0*" dv =
0

8

teR,
(33)

(34)



In (33) we have interchanged the summation over m = 0, 1, ... and the inte-
gration over v € [0,1). This is justifiable by (9) and/or (10), (32), and the
fact that the integrand in (34) is non-negative while by Appendix A

F(a)(2m+1)"* < B(a,2m+1) <T(a)2m+ ja+3) . (35)

We also see from (32) and (35) that f, € C(v) if and only if a > 2 + .
We shall now show that f, in (33), with & > 1, is in Sy. To that end we
compute for 3 > 0 the Gaussian window STFT of exp(—73t?) as

/ e—7r,8t2 21/4 e—w(t—m)2—27riyt dt =
1 —70 T 271
= 2 exp | 0 - 2 | eR
vits Pl st 1Y Taep™l MY .

and the Sy-norm of exp(—m/3t?) as

7 7 \/?/TZL& exp [1_:% 72— 1_7;—_6 yQ] dady = 21/4<#>1/2 @

—00 —0O0

It follows that

1

2 1/2 2 1/2
< . ya—1ol/4
el o _/<1+U2) (1—v)*'2 (1_U2> dv<oo  (38)
0

since a > % Conversely, when we consider f, in (33) with a@ > 0, we have

that . .
/ falt) dt = / ( 2 )1/2<1—v>a‘3/2dv<oo (39)

14w

if and only if a > % Thus f, € 5 if and only if o > %

We conclude that for v > — we have f, € S)\C(y) if and only if
3 < a <2+, In particular, So\C(7) is non-empty when > —1. At this
point it is interesting to ask whether perhaps the Hermite series for f,, see
(33), converges in Sp-sense when % < a < 1. This is indeed so, but the proof
is quite technical and so we omit it.



5 Proof that C(vy) ¢ Sy, v < 1

We start by noting that C(v;) C C(v2) when =3 > 72, whence it is sufficient
to consider 0 < v < 1. We shall consider f € L*(R) of the form

f=> cnhg, . (40)
m=0

where we take K,, = A™ with integer A > 4 and ¢,,, = (K,, + 1)~/ This f
satisfies

S ) (n+1)7 =) (A" 1) <00, (41)

Hence f € C(y) for v < 1, and certainly f € L*(R).
We compute, using (14), for this f

1/2m—2y
715, = / / | dody -
1 oo 21 0o
— o [ 13 entutere e v (12)
0 0 m=0

where we have used polar coordinates x + iy = r e’ and subsequently sub-
stituted v = 7r?, and where f,, is defined by

pfm v

fm(v):( — )1/2, m=0,1,.., v>0. (43)

Since A > 4, K,, = A™, we have that the intervals (% K., 2K,,) are non-
overlapping. Consequently,

175 > 5 > / / (cm Jn®) = D7 e fulv)) dvdp =

0 n#m



where
2K m

Ln = / cn fn(v)do m,n=20,1,.... (45)

1

2

For m = 0,1, ..., there holds

Km

o)

]mm = / Cm fm(v) dv — / Cm fm(v) dv ) (46)
0 VE (2 Ko 2Km)
while for n =0, 1, ..., there holds
[e'e) 0o 2Km
Z Lm = Z / Cn frn(v)dv < / cn fu(v)dv . (47)
m=0,m#n m=0,m#n 1
§Km vé(iKnQKn)
Hence
=D / Cm frn (V) dv =2 ) / e fm(0)dv . (48)
m=0 0 m=0 1

v@(5 Km 2Km)

Now from (43) and (22) we see that

o0

1 4
m(v)dv < -1 —Kp|)dv = ——r .
/ () “—\/m/“p( sl Rl dv =T,

—00

V(5 Kom 2Km)

(49)
With ¢, = (K, +1)"Y4 K,, = A™ A > 4, we then see that the second
series at the right-hand side of (48) is finite. On the other hand, we have
from (43)

k; L \V2 [ o1 1 2Km T2(L K, + 1)y 1/2
n(v)dv = (— 21 73y = 2 )
/f (v) dv (Km!> /” ¢ 2y T(K, +1)
0 0
(50)
By Appendix A there holds for y > 0
20T2(Ly+1)
T2t o> iy (51)

L(y+1)

11



Therefore

/j%@mvsz#MK%% (52)

whence the first series at the right-hand side of (48) equals oo since ¢, =
(K,, —|— 1)~'/4. Therefore, || f||ls, = oo and thus f & Sy. Since f € C(v) when
v < 1, we see that C(y) ¢ So, and the proof is complete.

A Appendix. Some lemmas about B-functions

In the main text we needed for m =0,1,..., a € (0,1), y > 0

- < , (53)

D(@)(2m+1)"* < B(a,2m+1) <T(a)2m+sa+ 37",  (54)
2Ty +1)

S Ty+1)

where the B-function is given as

=1(y+1)BE,ty+1)>/iny, (55)

1

(o) T(x+1)
1) )T dy =
B(a,z + / v Tetlta) (56)
0
We first observe that
. (2m)! I'(m+3) 1
9—2m ( = 2 =_-B(% 1 57
miml ~ T(m+ 1)T(3) FBGmt3), (57)
and that for x > —1
222 12(x + 1) 9
—_— 2 = 27%(2 1)B 1 1
Tz £ 1) 2x+1)Bx+1,z+1), (58)
while
1 1
2 Bz + 1, +1) = 229”/(t(l—t))’”dt:/(1—(1—2t)2)xdt =
0 0
1
= %/(1—5)9”51/2ds:%B(%,x+1). (59)

0

12



It thus suffices to show that for a € (0,1], x > —1
Fa)(z+1)"*<Bla,z+1) <T(a)(z+5a+3)". (60)

We have by the substitution v = e, ¢ € [0, 00)

1

B(OZ,[L’—{—l) _ /(1_ oclx /1_6t041—($+1)dt:
0

0

i 1 a—1
[ (D ke e
0

Since for t > 0, b > 0

inh(¢/2 r
l—e'<t, St/#zh /t“‘le"’tdt:b‘“F(a), (62)
0
we get (60).
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Figure 1: Positioning of Sy relative to C'(v), v € R.
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