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1. Introduction

In many studies of digital in-line holography (DIH), the incident beam which illuminates the particles is
considered as a homogeneous and collimated plane wave. But, two problems appear in such a simple optical
configuration. First, the metrology by microscopy on small particles is not possible because a diverging beam

must be used and, second by, it also appears that in most experimental cases, the beam is Gaussian, elliptical



and astigmatic because laser diode sources are more and more used to illuminate the particles. As a result the
intensity distribution on the image detector is distorted and the quality of the reconstructed particle image is
deteriorated. Moreover, the resolution in the horizontal or vertical direction is affected by the astigmatism.!!
The holographic images can be reconstructed by means of popular mathematical tools such as the wavelet

transformation?® 719

or the Fresnel transformation.!'* Gustafsson et al. used the Rayleigh-Sommerfeld diffrac-
tion integral. However, these classical integral transformations cannot be rigourously applied to reconstruct
particle holograms that have been recorded by means of an elliptic and astigmatic Gaussian beam because
the astigmatism is not taken into account in the kernel of such integrals. Recently, the two-dimensional
fractional Fourier transformation (FRFT) has been advantageously used to reconstruct in-line holograms of
particle fields.'% 23 Many papers deal with the propagation of an elliptical Gaussian beam through a paraxial
system.® 29 More recently, a study of the fractional Fourier transform of an elliptical Gaussian beam has
been developed.’ However these studies never consider the phenomenon of diffraction by an object.

In the present publication we show that the 2D FRFT can be used to reconstruct particle holograms
recorded with elliptic astigmatic beams. In Section 2, we first give a solution to calculate the diffraction
pattern produced by a circular particle illuminated by an elliptical and astigmatic Gaussian beam by applying
a method of decomposition on the Zernike bases. These results allow us to simulate the diffraction patterns
that are necessary in Section 3. In this Section 3, we recall the definition of the two-dimensional FRFT and
we show that this tool enables us to reconstruct such particle holograms. The elliptical properties of the

recording beam are taken into account by an appropriate adjustment of the fractional orders along z-axis

and y-axis. Experimental results are also presented.

2. In-Line Holography with an elliptic and astigmatic Gaussian beam

Let us recall the intensity distribution recorded by in-line holograms. Let 1 —T'(£,7) be the amplitude trans-
mission function of the object to be recorded. This object is supposed to be illuminated by a monochromatic
electromagnetic wave that propagates through a linear, nondispersive, isotropic and homogeneous medium.
The object is supposed to be a perfectly absorbing particle located at a distance z from a quadratic sensor
along the optical axis. In this publication, we only consider the particular case where the object is centered

on the propagation axis. Under Fresnel approximation, the Huygens-Fresnel diffraction formula is given by



the scalar integral:

exp(i3fz ir

+oo +oo
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where A is the wavelength and A(z, y) is the complex amplitude in the quadratic sensor plane. The exp(i%”z)
thereafter term will be omitted . For an opaque disk of diameter d and centered at the origin O, the trans-

mittance function T'(¢,7) in the object plane is:

1 i /e +n2 <d/2,

TEn) =172 if /&2 = d/2, (2)
0 otherwise.

If we assume that this object is illuminated by an elliptic and astigmatic Gaussian beam, the expression for

E(&,n) is, up to a proportionality factor, given by

2 2 T 2 2
n

R, with ¢ = £, 7 are the wavefront curvatures and w, denote the beam widths along the {-axis and n-axis.
These four parameters are defined in the object plane. To calculate the integral of the Eq.(1), A(x,y) is split

it into two integrals:
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A. Expression for Ai(z,y)

The development of Eq.(4) gives us:
7r T
A (r) = K(we, Re) K (wy, Ry) exp (—ErTNr) exp (zErTMr) (7)

where rT represents the vector (z y), A;(r) denotes the value of A; at the point (x,7), and the factors

K(wq, Rq) in Eq.(7) are defined by
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are introduced here to simplify the equations.

B. Expression for As(z,y)

For the calculation of As(z,y), Nijboer-Zernike theory and the results for the diffraction integral in the
presence of aberrations can be used.® To do that, it is convenient here to restate As(x,y) in cylindrical coor-
dinates as follows: £ = do cos(v)/2 and n = do sin(y)/2 for the object plane. In the sensor plane, z = r cos 6,

y = rsin 0. Considering these substitutions in Eqs.(2) and (5), we obtain:

d? 772 Loz 9 9 md
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Aa(r,0) can be rewritten as the following series:®

Ay(r,0) = nd? exp (zt\—r;) Z(—i)kak Tk (1) cos(2k0) (13)

k=0

with e, = 1/2if k = 0 and 1 otherwise. T (r) is defined as:

1
Ti(r) = / exp (i;u02> T (y2 0%) Jak <7/{jra> odo, (14)
0

where
wd? o d?
u= m(—l + Azby) — lai—,
2 (15)
Yo = Z(—ﬂ'bg + iag).

It must be noted that Tj(r) will be considered in the next section for the calculation of the fractional
Fourier transform of the intensity distribution in the diffraction pattern. Thus the product of the domain
and fractional domain sampling interval must be a function of the fractional order.?! This property is linked
to the chirp functions used in the fractional operator. Consequently, to properly evaluate Ty (r), that contains

a linear chirp term (3uc?) too, it is necessary to rewrite 7% (r) as the following non-integral form:

T, (7‘) = Z ﬁ%]g-&-Qp (72)V22kk+2p (Tv u)a (16)

p=0
where the coefficient 327 42p(72) and szkk+2p (r,u) are given by the analytical development of T} (r) in Appendix
A. In Eq. (14) the first Bessel function has 7502 rather than o as argument. Consequently, the method of
Nijboer-Zernike and Bauer’s identity cannot be used to simplify the solution (see Ref.,? p. 534). Furthermore,
note that the parameter 5 is linked to the astigmatism of the Gaussian beam. Indeed, in the particular case
where the beam is circular, we have v = 0. Then the first Bessel function is equal to zero for all values of
k > 0. For k = 0, the Bessel function is unity and by using Bauer’s identity (with w # 0), we recover the
special case of an aberration-free wave.?

From the Egs. (6), (7) and (13), the intensity distribution of the diffraction pattern, denoted by I(z,y),

can be evaluated as:
I(z,y) = A(z,y)A"(z,y), (17)
where * denotes the complex conjugate. As the aim is to reconstruct the image of the particle by means

of the fractional Fourier transformation from intensity distribution of the diffraction pattern I(z,y), the



next section is devoted to recall the definition of the FRFT and gives the method for having a reliable

reconstruction of a particle image.

3. Fractional Fourier transformation analysis of in-line holograms
A. Two-dimensional Fractional Fourier transformation

The FRFT is a generalization of the classical Fourier transformation. Its mathematical definition is as

follows:!5:16:18 the two-dimensional fractional Fourier transformation of order a, for z-cross-section and a,

for y-cross-section with 0 < |a,| < 7/2 and 0 < |y | < 7/2, respectively, is defined as (with a;, = “5%)

o 1) 0re) = [ N (2,20) No, () o 9) do dy (18)

where the kernel of the fractional operator is defined by

2 2 P
Noy (o) = Clap)exp (im S 00 Y exp (- 27002, (19)
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and

exp(—i(Fsign(sina,) — 32))

Clap) = |52 sin v,y |1/2

(20)

Here p = z,y. s is an arbitrary fixed scaling parameter and has the dimension of distance. The energy-
conservation law is ensured by the coefficient C'(«,) which is a function of the fractional order . Now recall

the main properties. %, 3 /2 is the ordinary Fourier transformation and .%o is the identity operator.

B. Reconstruction: optimal fractional orders

In many digital reconstruction studies, the Huygens-Fresnel integral is expressed as a convolution operation.
This formulation simplifies the computation of this integral by realizing a simple product in the spectral
domain by means of the fast Fourier transformation (FFT) algorithm. In the same way, the reconstruction
process of a hologram can be expressed as a convolution between the transmission function of a holographic

plate and the Fresnel kernel h.(z,y) taking the form?”

hela,y) = - exp (in (@ +17)). (21)

It should be noted that applying such a method poses a problem because the two-dimensional convolution

kernel is a chirp-like function. Therefore, its Fourier transformation is also a chirp function. Moreover, h,



is not well adapted to analyse both = and y linear chirps at the same time (i.e. curvatures R¢ and R,) to
reconstruct the image of the particles. But this can be achieved with the fractional Fourier transformation.
The reconstruction process is decomposed into two steps: the first step consists in removing the linear chirp
along the z-axis and along the y-axis contained in the intensity distribution of the diffracted field by applying
a fractional Fourier transformation with the optimal fractional orders, noted a2”* and azpt. The second step
is to apply a standard Fourier transformation.

In order to realize this numerical reconstruction, we first have to determine the phase contained in the
intensity distribution of the diffraction pattern of the particle. This analysis is possible by using with the

analytical development presented in the previous section:
I(z,y) = A(z,y)A*(z,y) = & (|A1\2 + |A2|2) —2cR{A1 A5} (22)

R denotes the real part and x = 1/(\2)? is a constant which is not important in the present study. x|A;|?

corresponds to the directly transmitted Gaussian light. Note that if we = w;, = w and R = R,, = R then

lim x|A4;]* = 1.
w—00

R—o0

This limit corresponds to the first term of the Eqgs. (12) or (13) of [!°]. In the same way, the second term, in

the Fresnel approximation, takes the following form:

a2 nd rd® nd 1 [7d?\® J2(2r)
lim k|Agl? = U2 (T T pz (T4 TN md=\" Ji(5 93
§%H| 2l =0 <2)\z’)\zr T \ae ") T e 2 ) (me 23)

where U; and U, are the Lommel functions (see Ref. [°], p. 487). The right hand side expression of Eq.
(23) corresponds to the far-field approximation, i.e. md?/2\z < 1, on the Lommel’s functions. This term is

defined by the Fourier transform of the object function. Again we obtain the third term of the Eq. (13) of

[19]. Finally, if the same treatment is realized of the third term of the Eq. (22), one has the following limit:
. . rd® | [(7r? Jl(%r)
ﬁh_)Héo 2/{%{141142} >~ ESIH <)\Z) (%T (24)
—00 z

2k {A1 A%} is the most important term and corresponds to a modulation of the linear chirp function
modulated by sum of Bessel functions T (r). The linear chirp is inversely proportional to the recording
distance z while T} (r) is also linked to the diameter of the particle. This modulation creates the interference

pattern recorded by the CCD which enables the reconstruction of the real image. As we have seen before, the



method adopted here is to remove a quadratic phase contained in R {A; A5} to reconstruct the image of the
particle and to localize it in the space. The quadratic phase is denoted (z,y) and its analytical expression

can be determine from Eqgs. (7) and (13). Firstly, from Eq. (22) we write
A A5 = [AAs | exp (i (2, y)) (25)

where
pla.y) = —3= (@*(M, = 1) +y*(M, — 1)). (26)
M,, M, are given in the Egs. (9) and (10). The quadratic phase of the kernel of the FRFT denoted by
valz,y) is
valx,y) = 512 (x2 cot az + y? cot ay) . 27)

Now to reconstruct the image of the particle, the following transformation must be calculated:

yax,ay U (z,y)(Ta,Ya) = Kyaw,ay HAI‘Z + |A2|2] (%a, Ya)—
(28)
26F oy 0, [[A1 A3 cos(o(z,9))] (€a, Ya)
The first term is uninteresting and does not allow us to reconstruct the particle image. Only the second term

will be considered for the image reconstruction.!® By noting that 2cosp = exp(—iy) + exp(ip), Eq. (28)

becomes :

Pty L@, 9] (Tas Ya) = 6P, [[A1 7+ [A2[*] (24, a)

- KClanClay) [ Ao (o — oo (<55 (22 4 201 oy

s?2 \sina,  sinoy,

" . 21 (T Yay
- KClaCle) [ 1zl ilon + oexn (o (S + 2 ) ) dody
(20)

The reconstruction of an image is archieved when one of the quadratic phase terms under the integral

operator #,, «,, is equal to zero, i.e.:

(pa(l‘,y) + @(x,y) =0. (30)

The first solution ¢, — ¢ = 0 corresponds to the reconstruction of the real image while ¢, + ¢ = 0 leads

to reconstruction of the virtual image. The first case is realized by choosing the positive optimal fractional



orders agP* and agP*. Their explicit expression can be determined from Egs. (26) and (27).

Az Az
t ot — 7 t L — 31
an af 200, — 1) an oy 20, = 1) (31)

The second case is realized by choosing the negative fractional orders —a2P* and —azpt. Finally, the optimal
fractional orders allow us to reconstruct the image of the particle using a standard Fourier transformation.
For infinite values of R, and w, (particular case of an homogeneous plane wave), Eq. (35) of Ref. [!] is

recovered.

C. Numerical experiments

The simulations are realized in the experimental context presented by the Fig. (1). The diameter of original
and circular beam width in front of the cylindric lense (CL) is 2w = 14mm and the particle is located at a
distance § = 250mm from CL. The focal lengths f, of the cylindrical lens are infinite along an axis parallel
to the &-axis and equal to 200mm along an axis parallel to the n-axis. The wavelength of the laser beam
is A = 632.8nm. From theses four characteristics of the beam, the numerical values (R¢, R,, we and w,
from the Eq. (3)) which describe the geometry of the beam in the plane of the particle are determined by a

straightforward analytical development of the Fresnel integral applied to a circular Gaussian function :

Figure 2 illustrates an application of this model by a simulation of the diffraction pattern resulting from a
particle with a diameter d = 150pm illuminated by an elliptical and astigmatic Gaussian beam and localized
at z = 145mm from the CCD camera. By using Eq. (32), the characteristics of the Gaussian beam in the
object plane are wg = Tmm, w, = 1.75mm, and curvatures radius are R¢ = —2.36 - 10°m, R,, = —50mm.
The analytical expression developed in Section 2 has been used to calculate the intensity distribution in a
diffraction pattern recorded by means of an elliptic beam. As a result, knowing the beam parameters, the
optimal fractional orders can be easily calculated and used for image reconstruction.

Now, consider the diffraction pattern represented in Fig. (2) of a 150um particle located at distance

z = 107mm from the CCD camera. Recall that the characteristics of the Gaussian beam in the plane of the



particle are wg = Tmm, w, = 1.75mm, and curvatures are defined by R = —2.36 - 10°m and R, = —50mm.

The optimal fractional orders obtained from the relations (31) are:
a’? = 0.521 a?* = 0.816. (33)

The reconstructed particle image with the fractional Fourier transformation is shown in Fig. (3). As we
can see, a circular particle image has been retrieved from a noncircular symmetric diffraction pattern. This
particle image could not have been obtained with the conventional methods such as Fresnel or Fraunhofer
transformations. Indeed the quadratic phase term of the Fresnel integral kernel defined by Eq. (21) cannot
accommodate the condition imposed by Eq. (30) and therefore is unsuited to reconstruct particle images.
Another particular case merits to be presented in order to complete our argumentation on the advantages
of using the fractional Fourier transformation. Let us consider a particular case of the diffraction pattern
represented in Fig. (4). In this example, 6 = 135mm and z = 154mm. Such a hyperbolic shape of the
diffraction pattern results from a singular location of the particle (d = 150um). This situation occurs when
the object is placed between the cylindric lens (CL) and the beam waist. In this case, R, and R, have
opposite signs. From Eq. (32), we find we = Tmm, w, = 2.27mm, R¢ = —4.38 - 10°m and R,, = 65mm for
the characteristics of the Gaussian beam in the object plane. These values allow us to determine the optimal

fractional orders by means of Eq. (31):
a’? = 0.633 ag?t = —0.718. (34)

The particle image reconstructed with these fractional orders is represented in Fig. (5). Here again, a circular
shape of the particle image is recovered. In both cases (Figs. (3), (5)) background fringes, that appear around

the images, are due to the so-called twin image usually observed in Gabor holography.

D. Experimental results

In order to validate the above method to a practical case, we have used an experimental setup where
the beam parameters are close to the parameters used in the previous subsection. Here, a He-Ne laser of
wavelength equal to 632.8nm is used. And a 150um opaque disk localized at z = 106mm is illuminated by
an elliptical Gaussian beam with the widths we = 7mm, w, = 1.75mm. The curvatures along each axis are

Re = —2.36 - 10°m and R,) = —50mm. The pixel size of the CCD camera is equal to 11um. The diffraction

10



pattern recorded by this camera is illustrated in Fig. (6). The optimal fractional orders deduced from the
previous parameters are equal to: a2?’ = 0.518 and agpt = 0.813. Figure 7 shows the reconstruction of the
object field from the Fig. (6).

Secondly, we have computed the reconstruction of a 150um particle diameter illuminated by the same
Gaussian beam but located between CL and the beam waist. Here, the beam widths are wg = Tmm,
wy = 2.27mm and the curvatures along each axis are R = —4.38 - 105m and R,, = 65mm. The diffraction
pattern recorded by this camera is illustrated in Fig. (8). The optimal fractional orders deduced from the
previous parameters are equal to: a??® = 0.633 and agpt = —0.718. Figure 9 shows the reconstructed object
field. The straight fringes observed in both sides of the Fig. (7) and (9) are due to the Gibbs phenomenon
and are close to the signal reconstruction from amplitude in Ref. [?]. The experimental results presented in

this subsection show that the particle images are well reconstructed with a high contrast.

4. Conclusion

In this paper we have proposed an analytical solution of scalar diffraction of an elliptical and astigmatic Gaus-
sian beam by an opaque disk under Fresnel approximation. For two examples a good agreement between the
simulated intensity distributions and experimental results has been demonstrated. Such a diffraction pattern
cannot be directly analyzed by Fresnel integral and therefore cannot lead to a satisfactory image reconstruc-
tion. However, using the fractional Fourier transformation allows us a good particle image reconstruction.
Again, this presents a strong advantage as regards to classic methods based on the convolution product

where three FFT and a multiplication must be realized before reconstructing the object field.

11



A Appendix A : Analytical development of T (r)

To develop an analytical solution of T} (r), Ji(v2 0?) is developed as a Zernike 2k-series® 1% in order to
obtain a solution in the general case :
o0
Te(20%) =Y Bk 2p(12) REE 2(0)- (A1)

p=0
Here 33, 5,(72) equals the decomposition coefficient and R3}, ,,(0) equals the basis function of decomposi-

tion (Zernike polynomial). The mathematical expression for the coefficients is:

1
B3k ap(v2) = 2(2k +2p+ 1) /0 Je(v2 0?)R3) 5, (0) 0 do. (A2)

The factor 2(2k + 2p + 1) in front of the previous integral allows us to normalize the coefficients. By taking

into account the Egs. (17) and (A2) and by introducing them in Eq. (16), we obtain :

Ti(r) = Z 5§]l§+2p(72)vzzlck+2p(7"a ), (A3)
p=0
where
2k ! 1 md
Vigap(Tsu) = | exp zguo R2k+2p( o) Jak Sl odo. (A4)
0

The V3l ,, can be evaluated by means of a digital computation scheme.'>'3 Its development is based
on the the recent extension of the Nijboer-Zernike approach in terms of Bessel-Bessel series expression by
linearization of Zernike polynomials products. The Bessel-Bessel series expression for 1/'22k’“+2p is :

oo m+ wd
V2k+2p(r u) = exp <27> Z (2m + 1)i jm(%) Zp (_l)lwmlW' (A5)
m=0

l=max(0,m—2k—p,p—m) Az
All coefficients are defined in the Appendix B. These series allow us to apply our method in the future for

cases where |u| may be much larger. Now, it is possible to give a series expression for the decomposition

coefficient 37, 5, (72)- To do this, it is necessary to recall that:'

k oo (1. 2\ 2s
oy _ (1 o (3in207)
Hoso) = (520°) LS (A6)

Equation (A6) is introduced in Eq. (A2) and by changing the integral and the sum symbols, we can write:

k oo 1. 2s
1 5172 s
Baerap(12) = 2(2k +2p + 1) (572) > % / oM REY o, (0)odo. (A7)
s !
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Next we use the following relationship proposed in Ref.!? and proved in Ref.,% Appendix A :

! 1 (—2s)
2k+4s p2k _I(_1\p p A
A o R2k+2p(0)0d0 2( 1) (Qk + %25 ¥ 1)p+1 ) ( 8)

where (g), denotes the shifted factorial defined by ¢(¢+ 1)(¢g+2)...(¢+n —1) for n > 0, (¢)o = 1. Note

that (—2s), = 0 for 0 < 2s < p — 1. So the decomposition coefficients are

k oo ll . 2s _1)P(—92s
B3E 1 op(12) = 2(2k + 2p + 1) (%ﬂ 3 S(!?kv+)s)! %(22 +1)2 ,9(+21)),f+1' (A9)

S=r
The variable r is the first integer > % p. We can now write j = s —r so that the previous expression becomes

k+2r oo (_iV%)j

1
Bheapl) = 26+ 20+ D(-1) (570) Somih (A10)
with
K= j! (_l)p(_2j - QT)P (A]l)

G+m)(k+7+7r)! (2k+25+2r +1)p1
The coefficients of (%i’yg)% are rational functions of j whence it is possible to express (A10) in terms of

hypergeometric functions'* by considering two cases: 2r —p = 0 and 2r — p = 1. In the case 2r — p = 0 one

obtains :
1 k+2r r+1 k+r+1L 1
Bk = (-1 @i ar 1) () om| : Lzl
3 k+2r+3 k+2r+1
In the case 2r — p = 1, one obtains:
k+2r r+% k4+r+1 1
Bk = dh (1 @i+ ar=1) (Gra)  om| : ) I
S k+2r+1 k+2r+13
In Eq. (A12) and (A13) , the coefficients dJ and d} are defined as follows:
2r)1(2k + 2r)! 2r)1(2k + 2r)!
o ik 4 ek "
rI(k + r)!(2k + 4r + 1)! rI(k + r)!(2k + 4r)!
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B Appendix B : Coefficients of the Bessel-Bessel series expansion for ‘/'22kk+2p

The quantities occuring in the series expression for \/'22kk+2p, see Eq. (A5), are given as:

p min(m,s

)
_ 2k 2k
Wml = § E fps bmstgm+s—2t,la
s=0 t=0

%+p—s—1 2% +p+s
2k —1 s
2 1
= (= L s=0p
b pts+1
p+s
s
2k u+1
; / (B1)
2k + 20 + 1 v
2k
= =1,...,1+2k =0,1,...
Jul = okt ut+i+1 o u=heirak o sps =01
2k +1+u
2k +1
2 289 — 4t +1 Ay, 1AL As,— .
by syt = St 2% + Lt t, t=0,...,min(sy, s2),
231 + 282 — 2t + 1 A51+527t
2m
A, =
m
The spherical Bessel function j,.(z) is defined by
T
NOEREF NG (B2)
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Fig. 1. Experimental optical set-up.
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Fig. 2. Diffraction pattern with A = 632.8nm, we = Tmm, w, = 1.75mm, R¢ = —2.36 - 10°m,

R, = —50mm, d = 150pum and z = 107mm
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Fig. 3. Image reconstructed by the fractional Fourier transformation with a2”* = 0.521 and aJ’* =

0.816
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Fig. 4. Diffraction pattern with A = 632.8nm, we = Tmm, w, = 2.2Tmm, R = —4.38 - 10%m,

R, = 66mm, d = 150pm and z = 154mm
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Fig. 5. Image reconstructed by the fractional Fourier transformation with a”* = 0.633 and a(?" =

—0.718
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Fig. 6. Diffraction pattern with A\ = 632.8nm, we = Tmm, w, = 1.75mm Re = —2.36 - 10°m,

R, = —50mm, d = 150pum and z = 106mm
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Fig. 7. Image reconstructed by the fractional Fourier transformation with a”* = 0.518 and a(?" =

0.813
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Fig. 8. Diffraction pattern with A = 632.8nm, we = Tmm, w, = 2.27mm, R = —4.38 - 10°m,

R, = 66mm, d = 150pum and z = 154mm
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Fig. 9. Image reconstructed by the fractional Fourier transformation with a2?* = 0.633 and aJ’* =

—0.718
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