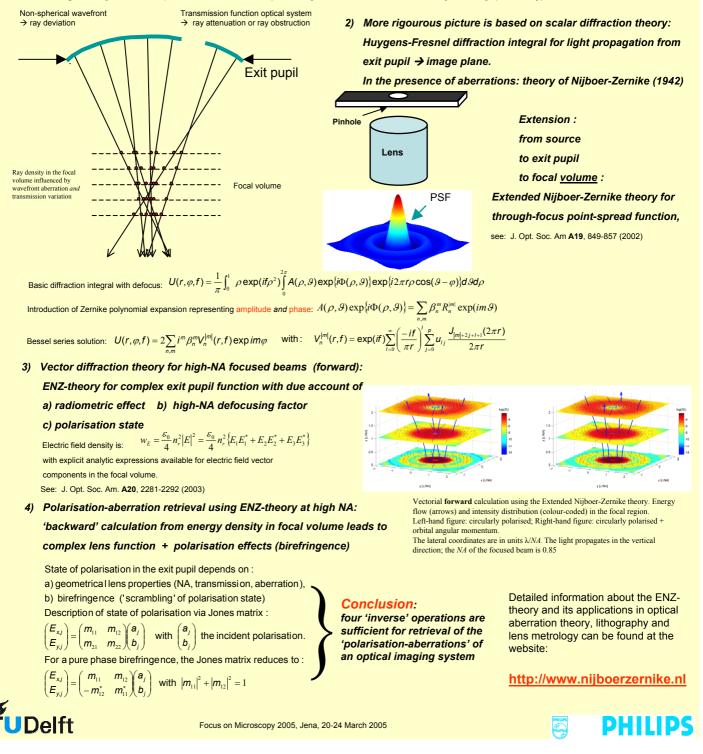
## POLARISATION-ABERRATION RETRIEVAL FOR HIGH-NA SYSTEMS USING THE EXTENDED NIJBOER-ZERNIKE DIFFRACTION THEORY

## Joseph J.M. Braat<sup>1</sup>, Peter Dirksen<sup>3</sup>, Augustus J.E.M. Janssen<sup>2</sup>, Arthur S. van de Nes<sup>1</sup>

<sup>1</sup> Delft University of Technology, Delft, <sup>2</sup> Philips Research Laboratories, Eindhoven, The Netherlands; <sup>3</sup> Philips Research Laboratories, Leuven, Belgium.

## ABSTRACT


We have derived analytical expressions for the field components in the focal region of a high-numerical-aperture imaging system using the socalled Extended Nijboer-Zernike diffraction theory. It is shown that the transmission function, aberrations and polarisation properties of an imaging system with high numerical aperture can be derived from the through-focus intensity map via an inversion process based on this analysis.

## Problem definition

How to retrieve optical system properties (amplitude, phase and polarisation in the exit pupil) from intensity measurements through the focal volume?

1) Intuitive picture, based on ray optics:

change in ray direction (wavefront aberration) and ray attenuation determine ray density (intensity) in focal volume !

