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Abstract

We present a characterization of the modulation space S0 in terms of the

Zak transform of its elements. We illustrate our result by considering S��h,

where h is the standard Gaussian, S is the \frame" operator corresponding

to the critical-density Gabor system (h, a = 1, b = 1), and � 2 [0; 3
2
). Both

the proof of the main result and the example require basics from Gabor

frame theory; these are developed in a separate section. We further use a

result from recent work by Gr�ochenig and Leinert on Wiener-type theorems

in a non-commutative setting. We also present an extension of our main

result to more general modulation spaces.
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1 Introduction

It is now 25 years ago that Hans Feichtinger introduced the modulation space

S0, see [9]. This space turned out to be a very convenient and suÆciently large

space of functions for doing time-frequency analysis, and in particular Gabor

analysis, without being bothered by measure-theoretic intricacies that hamper

the developments in an L2-setting. We refer to [12] for an extensive survey

of the many properties and characterizations of S0 that are desirable from a

time-frequency analyst's point of view. Around the same time that S0 was

invented, the Zak transform entered the �eld of time-frequency analysis as a

tool for studying Gabor expansions at critical density, see [4], [16], [17] and

[18]. For historical surveys with attention to the several places where the Zak

transform (Weil-Brezin mapping, kq representation) occurs in the literature, we

refer to [19], [13], [14]. Already in [3], [2], the Zak transform appears implicitly or

explicitly as a tool for proving completeness and expansion results for the case of

Gaussian windows at critical density (Von Neumann lattices). The introduction
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of S0 and the occurrence of the Zak transform were events that contributed

considerably to the genesis of the �eld of mathematical time-frequency analysis;

the textbook [14] is entirely devoted to this �eld.

In this paper, we take the de�nition of S0 that is based on the short-time

Fourier transform (STFT) as our starting point. When f; g 2 L2(R), the short-

time Fourier transform of f using the window g is de�ned by

(Sgf)(x; y) =

1Z

�1

e�2�iyt f(t) g�(t� x) dt = (f; gx;y) ; x; y 2 R ; (1.1)

where � denotes complex conjugation and

gx;y(t) = e2�iyt g(t� x) ; t 2 R ; x; y 2 R : (1.2)

Now let g 2 S (Schwartz space), g 6= 0. Then an f 2 L2(R) belongs to S0 if and

only if Sgf 2 L1(R2). For deciding whether an f 2 L2(R) belongs to S0, one

can use any g 2 S0 with g 6= 0: when f 2 L2(R), g 2 S0, g 6= 0 we have f 2 S0

if and only if Sgf 2 L1(R2).

The Zak transform of an f 2 S is de�ned by

(Zf)(t; �) =

1X
k=�1

f(t� k) e2�ik� ; t; � 2 R : (1.3)

In Subsec. 2.2 we present the properties of the Zak transform as far as they

are relevant to our present purposes. We have for f; g 2 S that Zf(Zg)� is

1-periodic in its two variables, and there holds for n;m 2 Z,

1Z

0

1Z

0

(Zf)(t; �)(Zg)�(t; �) e�2�int�2�im� dt d� = (f; g�m;n) : (1.4)

The formula (1.4) represents a direct link between Zak transform theory and

(sampled) short-time Fourier transforms as used in the de�nition of S0. In fact,

this connection has been used in [26] to obtain characterizations of modulation

spaces and lattice size estimates ensuring Gabor systems to be Gabor frames.

The question we concern ourselves with in this paper is whether one can tell

for an f 2 L2(R) its membership of S0 by inspecting functions Zf(Zg)� with

g 2 S0. Here one could hope that inspection of one such function is enough.

However, when g 2 S0 we have that Zg is continuous and vanishes at least at

one point (t0; �0) 2 [0; 1)2. Consequently, Zf(Zg)� could be reasonably behaved

at (t0; �0) even though Zf itself is not. The main result that we will show is as

follows. Let g(1); g(2) 2 S0 be such that their Zak transforms have no common

zeros, and let f 2 L2(R). Then f 2 S0 if and only if Zf(Zg(1))� and Zf(Zg(2))�
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have absolutely convergent Fourier series. The proof of this result uses some

facts from S0-theory, such as a theorem on the sampling of short-time Fourier

transforms Sgf when both f; g 2 S0, some basic Gabor frame theory, and results

of the Wiener-type obtained recently by Gr�ochenig and Leinert in the context

of Gabor frames.

We illustrate our result as follows. We let

h(t) = 21=4 exp(��t2) ; t 2 R ; (1.5)

be the standard Gaussian, and we consider the Gabor system (critical density)

(h; a = 1; b = 1) = (e2�imt h(t� n))n;m2Z : (1.6)

In Sec. 3 we present basic facts about Gabor systems. Although the frame

operator S corresponding to the Gabor system in (1.6) is not invertible, we can

consider f� = S��h, with � � 0, via the Zak transform domain. According

to the functional calculus for frame operators in the Zak transform domain, see

[14], Sec. 8.3, we have, at least formally,

Z(S��h) = Zh=jZhj2� : (1.7)

The function Zh is very well-behaved, has exactly one zero in [0; 1)2, viz. at

(t; �) = (1
2
; 1
2
), while @Zh=@t, @Zh=@� do not vanish at (t; �) = (1

2
; 1
2
). Con-

sequently, the right-hand side of (1.7) is in L1([0; 1)2) when � 2 [0; 3
2
) and in

L2([0; 1)2) when � 2 [0; 1). This right-hand side of (1.7) can be considered as

the Zak transform of f�, and upon applying the inverse Zak transform formally,

we are led to the de�nition

f�(t) := Z�1(Zh=jZhj2�)(t) =

1Z

0

(Zh)(t; �)

j(Zh)(t; �)j2�
d� ; t 2 R : (1.8)

Using, among other things, our main result, we show that

0 � � < 1
2

) f� 2 S0 ; (1.9)

1
2
� � < 1 ) f� 62 S0 ; f� 2 L1(R) \ L1(R) ; (1.10)

1 < � < 3
2

) f� 62 L1(R) ; f� 62 L1(R) : (1.11)

According to [18], Sec. 4.4, we have f�=1 2 L1(R)nLp(R) when 1 � p <1.

The f� per se are not particularly useful for applications since they are not

very well-behaved in terms of smoothness and decay. The case � = 1 yields

what has become known as Bastiaans' singular function (see [4] and [16], [17]),

i.e. the dual window corresponding to the Gabor system (h, a = 1, b = 1) in a
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formal sense. The case � = 1
2
yields the tight window associated to (h, a = 1,

b = 1) via the Zak transform as in [21]. We have f1=2 2 L1(R) \ L1(R) and

f1=2 is just outside S0. Furthermore, f1=2 is Fourier invariant and (f1=2, a = 1,

b = 1) is an orthonormal base for L2(R). Hence f1=2 competes with functions

like �(�1=2;1=2) or sinc�t in this latter respect. In Fig. 1 we have shown a plot of

f1 and f1=2 in the range jtj � 6, and in Fig. 2 we show a plot of f1=4 and f3=4

in the range jtj � 6.

The remainder of this paper is organized as follows. In Sec. 2 we collect what

we need here from S0-theory and the Zak transform, and in Sec. 3 we give basic

facts from Gabor frame theory. There are nowadays excellent textbooks amply

covering the material presented in Secs. 2, 3, see [10], [11], [14], [6], [5], so we

shall be brief on this point. In Sec. 4 we present the proof of our main result. In

Sec. 5 we illustrate the main result by considering f� de�ned in (1.8). Finally,

in Sec. 6 we give an extension, kindly observed to us by K. Gr�ochenig, of our

main result to more general modulation spaces.

2 Preliminaries

2.1 Preliminaries about S0

We present results about S0 as far as they are relevant to the purposes of the

present paper. We recall that an f 2 L2(R) belongs to S0 if and only if

Sgf 2 L1(R2 ) ; (Sgf)(x; y) = (f; gx;y) ; x; y 2 R ; (2.1)

where g is any member of S0 with g 6= 0. The space S0 is a Banach space when

we take the L1-norm of Sgf as the norm of f 2 S0; for de�niteness, we take here

g = h, with h the standard Gaussian in (1.5). Hence, for f 2 S0,

kfkS0 =

1Z

�1

1Z

�1

j(f; hx;y)j dx dy ; h(t) = 21=4 e��t
2

; t 2 R : (2.2)

There is the following result on sampling of a short-time Fourier transform

Sgf when f; g 2 S0. Let a > 0, b > 0. We have kSggkL1 < 1, and there is a

C(a; b) such that for all f 2 S0 there holds

X
n;m

j(f; gna;mb)j � C(a; b) kSggkL1 kfkS0 : (2.3)

See [14], Sec. 12.2 for details.
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2.2 Preliminaries about Zak transforms

We next list the results needed from Zak transform theory. Below we �rst let

f; g 2 S (Schwartz class) and x; y 2 R, t; � 2 R, n;m 2 Z; we de�ne the Zak

transform of f as

(Zf)(t; �) =

1X
k=�1

f(t� k) e2�ik� : (2.4)

There holds

A.

1Z

0

1Z

0

(Zf)(t; �)(Zg)�(t; �) dt d� =

1Z

�1

f(t) g�(t) dt ,

B. (Zf)(t+ 1; �) = e2�i�(Zf)(t; �) ; (Zf)(t; � + 1) = (Zf)(t; �) ;

C. (Zfx;y)(t; �) = e2�iyt(Zf)(t� x; � � y) ;

D.

1Z

0

(Zf)(t; �) d� = f(t) ;

E.

1Z

0

1Z

0

(Zf)(t; �)(Zg)�(t; �) e�2�int�2�im� dt d� = (f; g�m;n) ;

F. (ZFf)(t; �) = e2�i�t(Zf)(��; t) :

In F we denote by Ff the Fourier transform
1R

�1

e�2�i�t f(t) dt of f .

Property A shows that f ! Zf extends to an L2-norm preserving mapping

from L2(R) into L2([0; 1)2). Property B shows that Zf is determined by its

values on any unit square. Property C reects the basic time-frequency shift

operations in Zak transform terms. Property D shows how to recover an f from

its Zak transform. Property E shows how the Fourier coeÆcients of the (1; 1)-

periodic function Zf(Zg)� arise. Property F shows how the action of the Fourier

transform is represented in Zak transform terms.

There is also the following property.

G. Assume that Z0 2 C1(R2) satis�es the quasi-periodicity relations

Z0(t+ 1; �) = e2�i� Z0(t; �) ; Z0(t+ 1; �) = Z0(t; �) ; t; � 2 R : (2.5)

Then there is a unique f 2 S(R) such that Z0 = Zf ; this f is given as

f =
1R
0

Z0(�; �) d�.
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The mapping Z extends to an isometry from L2(R) into L2([0; 1)2), with corre-

sponding extensions, in appropriate L2-senses, of the properties A{F. In G we

can allow Z0 2 L2
loc(R

2), the corresponding f being 2 L2(R).

The mapping Z can also be extended to L1(R) through formula (2.4) in

which the right-hand side converges absolutely for a.e. t 2 R. Doing so we have

that
1Z

0

1Z

0

j(Zf)(t; �)j dt d� �

1Z

�1

jf(t)j dt ; f 2 L1(R) : (2.6)

Hence Z maps L1(R) into L1([0; 1)2); the function f1, see the comment after

(1.9){(1.11), demonstrates that not every quasi-periodic Z0 2 L1
loc(R

2 ) occurs

as a Zf with f 2 L1(R).

A remarkable property of the Zak transform is the zero-phenomenon: when

Z0 is quasi-periodic, see (2.5), and continuous as a function of t, �, then Z0 has

a zero in [0; 1)2. The elements of S0 have continuous Zak transforms, and so

these Zak transforms have a zero in [0; 1)2.

3 Preliminaries from Gabor frame theory

3.1 Basic Gabor analysis

We develop the properties of Gabor systems that we need in this paper. Let

a > 0, b > 0, g 2 L2(R). We denote by (g; a; b) the system of time-frequency

shifted functions gna;mb, n;m 2 Z, and we call this a Gabor system. We call

(g; a; b) a Gabor frame when there is A > 0 and B <1 (lower and upper frame

bound, respectively) such that for all f 2 L2(R)

A kfk2 �
X
n;m

j(f; gna;mb)j
2
� B kfk2 : (3.1)

We call (g; a; b) a Riesz-Gabor basic sequence when there is C > 0, D <1 such

that for all d = (dnm)n;m2Z2 l2(Z2)

C kdk2 �
X
n;m

dnm gna;mb

2 � D kdk2 : (3.2)

When (g; a; b) is a Gabor system with a �nite upper frame bound B, the

operator S, de�ned by

f 2 L2(R) 7! Sf =
X
n;m

(f; gna;mb) gna;mb 2 L2(R) (3.3)

is bounded and positive semi-de�nite. This S commutes with all time-frequency

shift operators involved in the series on the right-hand side of (3.3). When
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(g; a; b) is a Gabor frame we have that S is positive de�nite (and hence invert-

ible), and conversely.

Assume that (g; a; b) is a Gabor frame. Since S, and hence S�1, commutes

with all relevant time-frequency shift operators, we have for all f 2 L2(R),

f = S(S�1f) =
X
n;m

(f; Æna;mb) gna;mb ; (3.4)

where Æ := S�1g. This Æ is called the canonical dual window associated with

the Gabor frame (g; a; b). The system (Æ; a; b) is also a Gabor frame, with frame

operator S�1.

There is the following result, see [15]. Assume that g 2 S0 and that a > 0,

b > 0. Then the Gabor system (g; a; b) has a �nite upper frame bound. When,

moreover, (g; a; b) is a Gabor frame, we have that Æ = S�1g 2 S0.

We shall consider in this paper, in particular, the critical case a = b = 1.

This case is called critical because of the following result of which a quick proof

can be found at the author's guest page on www.univie.ac.at/NuHAG/. Let

g 2 L2(R), a > 0, b > 0.

Density theorem for Gabor systems

(i) (g; a; b) is a Gabor frame ) ab � 1,

(ii) (g; a; b) is a Riesz-Gabor basic sequence ) ab � 1.

When ab < 1, there do exist well-behaved windows g such that (g; a; b) is a

Gabor frame. This is so for any a > 0, b > 0 with ab < 1 when g is a Gaussian,

see [24] and [25], or when g is a smooth function supported by an interval of

length � 1=b while g is constant 6= 0 on an interval of length � a, see [7].

We now turn to the critical case a = b = 1. There do exist g 2 L2(R) such

that (g; a = 1; b = 1) is a Gabor frame, but these g's are not simultaneously

smooth and rapidly decaying. Examples are g = �[0;1), g = sinc�t, while one of

the best-behaved g's of this kind is perhaps g = f1=2, see Fig. 1 and its properties

noted in Sec. 1 below (1.9){(1.11). We refer to [5] for a comprehensive survey

of this phenomenon in connection with the Balian-Low theorem. In particular,

(g; 1; 1) is not a Gabor frame when g 2 S0.

The Zak transform plays a key role in Gabor analysis for the critical case

a = b = 1. Assume that g 2 L2(R) is such that (g; 1; 1) has a �nite upper frame

bound B. Then we have jZgj2 � B a.e., and for f 2 L2(R),

Z(Sf) = jZgj2 Zf (3.5)

in L2([0; 1)2)-sense, see [14], Ch. 8. Here S is the frame operator, see (3.3). More

generally, when ' is a continuous function on �(S) � [0; B] (�(S) denotes the

spectrum of S), we have that for f 2 L2(R),

Z('(S)f) = '(jZgj2)Zf (3.6)
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in L2([0; 1)2)-sense, see [22], Sec. 1.

It follows from (3.5) and the fact that Z is an isometry from L2(R) onto

L2([0; 1)2) that (g; 1; 1) is a Gabor frame with frame bounds A > 0, B < 1, if

and only if A � jZgj2 � B, a.e. Clearly, (g; 1; 1) is not a frame when g 2 S0: for

then Zg is continuous and thus has a zero so that A � jZgj2 a.e. cannot hold

with an A > 0.

4 Proof of the main result

In this section we shall prove the following result.

Theorem 4.1 Assume that g(1); g(2) 2 S0 and that Zg(1) and Zg(2) have

no common zeros. Let f 2 L2(R). Then f 2 S0 if and only if Zf(Zg(1))� and

Zf(Zg(2))� have absolutely convergent Fourier series.

The proof of this result requires some preparation.

Lemma 4.2 Let g 2 S0, a > 0, b > 0, and assume that (g; a; b) is a Ga-

bor frame. Then

f 2 S0 ,
X
n;m

j(f; gna;mb)j <1 : (4.1)

Proof ). Follows at once from (2.3).

(. With Æ = S�1g, where S is the frame operator corresponding to (g; a; b),

we have that (Æ; a; b) is a Gabor frame with frame operator S�1 and canonical

dual (S�1)�1 Æ = g. Also, Æ 2 S0 by [15]. Let f 2 L2(R). Then f has the

L2(R)-convergent expansion

f =
X
n;m

(f; gna;mb)
Æna;mb : (4.2)

Hence, when �n;m j(f; gna;mb)j < 1, the right-hand side of (4.2) converges ab-

solutely in S0 since k kS0 is shift-invariant. Since S0 is a Banach space, we have

then that f 2 S0.

Lemma 4.3 Let g 2 S0 and assume that (g; a = 1
2
; b = 1) is a Gabor frame.

Let f 2 L2(R). Then f 2 S0 if and only if

Zf(Zg)� and (t; �) 7! (Zf)(t; �)(Zg)�(t� 1
2
; �) (4.3)

have absolutely convergent Fourier series.

Proof We note that for t; � 2 R and n;m 2 Z

(Zg1=2;0)(t; �) = (Zg)(t� 1
2
; �) ; (g1=2;0)n;m = gn+1=2;m : (4.4)
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Hence by 2.2.E, the (n;m)th Fourier coeÆcient of the two functions in (4.3) are

given by

(f; g�m;n) and (f; g�m+1=2;n) ; n;m 2 Z ; (4.5)

respectively. When f 2 S0 the two sequences in (4.5) are absolutely summable

by (2.3). Conversely, when the two sequences in (4.5) are absolutely summable,

we have that
P

n;m j(f; gn=2;m)j <1, and thus f 2 S0 by Lemma 4.2.

Proof of Theorem 4.1 Assume that f 2 S0. Then (2.3) and 2.2.E show

that Zf(Zg(1))� and Zf(Zg(2))� have absolutely convergent Fourier series.

For the converse, we consider the \multi-window" operator S, de�ned for

k 2 L2(R) by

Sk = S(1)k + S(2)k =
X
n;m

(k; g(1)nm) g
(1)
nm +

X
n;m

(k; g(2)nm) g
(2)
nm ; (4.6)

also see [14], Comment 1 on pp. 158{159. By (3.5), applied to S(1) and S(2), we

have

Z(Sk) = (jZg(1)j2 + jZg(2)j2)Zk ; k 2 L2(R) : (4.7)

By assumption, jZg(1)j2 + jZg(2)j2 is strictly positive, Zg(1) and Zg(2) being

continuous functions with no common zeros. Hence S is boundedly invertible

on L2(R) since Z is an isometry from L2(R) onto L2([0; 1)2). Applying (4.7) we

have for g 2 L2(R) that

Z(S�1g) =
Zg

jZg(1)j2 + jZg(2)j2
: (4.8)

We shall show now that (i) := S�1g(i) 2 S0, i = 1; 2. To that end, we

let l 2 S0 such that (l; 1
2
; 1) is a Gabor frame. Since g(i) 2 S0 we see that

jZg(i)j2 has an absolutely convergent Fourier series, i = 1; 2. By strict positiv-

ity of jZg(1)j2 + jZg(2)j2 we then have by Wiener's lemma, see [14], Sec. 13.3,

that (jZg(1)j2 + jZg(2)j2)�1 has an absolutely convergent Fourier series. Also,

Zg(i)(Zl)� and Zg(i)(Zl1=2;0)
� have absolutely convergent Fourier series since all

involved windows are in S0, i = 1; 2. Combining all this and using (4.8), we see

that Z(i)(Zl)� and Z(i)(Zl1=2;0)
� have absolutely convergent Fourier series,

whence (i) 2 S0 by Lemma 4.3, i = 1; 2.

Now assume that f 2 L2(R) is such that Zf(Zg(i))� have absolutely conver-

gent Fourier series, i.e.,
P

n;m j(f; g
(i)
n;m)j <1, i = 1; 2. Then

f = S�1(Sf) =
X
n;m

(f; g(1)nm)S
�1 g(1)nm +

X
n;m

(f; g(2)nm)S
�1 g(2)nm

=
X
n;m

(f; g(1)nm) 
(1)
nm +

X
n;m

(f; g(2)nm) 
(2)
nm ; (4.9)
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where it has been used that S, see (4.6), and whence S�1 commutes with all

time-frequency shift operators occurring in (4.9). Therefore, f 2 S0 since S0 is

a time-frequency shift invariant Banach space with k
(i)
nmkS0 = k(i)kS0 < 1,

i = 1; 2.

5 Application to Gaussian window Gabor system at

critical density

We let h(t) be the standard Gaussian 21=4 exp(��t2), and we consider the

critical-density Gabor system

(h; a = 1; b = 1) = (hnm)n;m2Z (5.1)

with frame operator S, see (3.3). We are interested in properties of the windows

f� := S��h, � � 0, in order to illustrate our main result in Sec. 4 and to

generalize what is known for the cases � = 1; 1
2
(see [4], [16]{[18] and [21]). One

of the �ndings is that the negative conclusion of the Balian-Low theorem just

holds true in S0.

The de�nition of f� = S��h is awkward for � > 0 since the frame operator

S is not invertible (because h is in S0). We circumvent this problem by de�ning

f� indirectly via the Zak transform domain. We compute the Zak transform of

h as

(Zh)(t; �) = 21=4
1X

k=�1

e��(t�k)
2

e2�ik�

= 21=4 e��t
2

#3(�(� � it); e��)

= �21=4 i e��(t�1=2)2+�i(��1=2)2 #1(�(� �
1
2
� i(t� 1

2
); e��) ;

(5.2)

where

#3(z; q) =

1X
k=�1

qk
2

e2ikz ; #1(z; q) = �i

1X
k=�1

(�1)k q(k+1=2)2 e(2k+1)iz (5.3)

are theta functions as in [27], Ch. 21. It follows from the properties of the

theta functions that Zh vanishes in [0; 1)2 at (t; �) = (1
2
; 1
2
) and nowhere else.

Furthermore,

(Zh)(t; �) = �21=4 � #01(0)(t �
1
2
+ i(� � 1

2
)) +O((t� 1

2
)2 + (� � 1

2
)2) ; (5.4)
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where

#01(0) =
d

dz
#1(z; q = e��)(z = 0) = 2

1X
k=0

(�1)k e��(k+1=2)2
6= 0 : (5.5)

A second observation is that we have by functional calculus in the Zak transform

domain, see (3.6), that for � � 0

Z(S�f) = jZhj2� Zf ; f 2 L2(R) : (5.6)

Combining this with the inversion formula 2.2.D for the Zak transform, we are

led to the following de�nition.

De�nition 5.1 Let � � 0. For t 2 R, not of the form n + 1
2
with integer

n, we set

f�(t) :=

1Z

0

(Zh)(t; �)=j(Zh)(t; �)j2� d� : (5.7)

De�nition 5.1 is such that we formally have Zf� = Zh=jZhj2�, see (5.6) and

take f = S��h (formally). Note that, from what has been said about Zh before,

0 � � < 3
2

) Zh=jZhj2� 2 L1([0; 1)2) ; (5.8)

0 � � < 1 ) Zh=jZhj2� 2 L2([0; 1)2) ; (5.9)

0 � � � 1
2

) Zh=jZhj2� 2 L1([0; 1)2) : (5.10)

More precisely, when � � 0 we have that Zh=jZhj2� is in any Lp([0; 1)2) with

(�� 1
2
) p < 1 (here we use 0 � 1 = 0 for the case � = 1

2
).

Theorem 5.2 There holds

0 � � < 3
2

) f� 2 L1
loc(R) ; (5.11)

0 � � < 1 ) f� 2 L2
\ L1 \ C(R) : (5.12)

Proof The statement in (5.11) follows from the de�nition in (5.7), quasi-

periodicity of Zh (see 2.2.B) and Fubini's theorem.

To prove (5.12), we �x 0 � � < 1. Then Zh=jZhj2� 2 L2([0; 1)2) by (5.9).

Since Zh=jZhj2� is quasi-periodic, we get from the discussion following 2.2.G

that there is a unique f 2 L2(R) such that Zf = Zh=jZhj2� a.e. By the L2-

extension of the inversion formula 2.2.D we have that this f agrees in L2-sense

with f�. The statement that f� 2 L1\C(R) follows from the de�nition in (5.7),

the fact that Zh=jZhj2� is smooth on [0; 1)2 except at (t; �) = (1
2
; 1
2
), formula
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(5.4), the fact that j� � 1
2
j1�2� 2 L1([0; 1)), and dominated convergence.

The case that � = 1 was excluded in Thm. 5.2. We have that

f1(t) = �
23=4

#01(0)
e�t

2
X

n�1=2�jtj

(�1)n e��(n�1=2)2 (5.13)

when t is not a half-integer, see [4], [16]{[18]. In [18], 4.4 Theorem, it is noted

that f1 2 L1(R)nLp(R) for any p with 1 � p < 1. Accordingly, one should

consider Zf1 in distributional sense. This is done in [18], Sec. 4.4, where it is

shown that Zf1(Zh)� = 1 in distributional sense. Hence, in the main result it

is certainly necessary to consider more than one \test" window g: Zf1(Zh)�

has an absolutely convergent Fourier series while f1 is not even in L2(R). It is

also shown in [18], Sec. 4.4, that f1 is Fourier invariant (in distributional sense).

Also see Fig. 1, which shows discontinuities of f1 at all half-integers.

The case � = 1 is furthermore interesting since f1 is formally the canonical

dual S�1h corresponding to the Gabor \frame" (h; 1; 1), and satis�es (f1; hnm) =

ÆnoÆmo. In fact, this f1 was constructed in [16], 2.14, as the unique regular

distribution satisfying (f1; hnm) = ÆnoÆmo.

A related result can be found in [18], 4.8. Here an explicit formula for the

unique coeÆcients cnm(a; b) with cnm(a; b) ! 0, n2 +m2 ! 1, in the Gabor

expansion of the time-frequency shifted window ha;b with a; b 2 R is given. There

holds, in distributional sense,

ha;b =
X
n;m

cnm(a; b)hnm ; (5.14)

where

cnm(a; b) = (ha;b; f
1) =

(�1)n+m#1(�(a+ ib))

�#01(0)(a + ib� n� im)
e2�iab��b

2

: (5.15)

Note that jcnm(a; b)j exhibits a (n2 + m2)�1=2 decay, and is, therefore, not in

l2(Z2) unless a and b are integer, in which case #1(�(a+ ib)) = 0.

Proposition 5.3 Let 1 < � < 3
2
. Then f� 62 L1(R), f� 62 L1(R).

Proof To show that f� 62 L1(R), we consider f�(t) near t =
1
2
, and to that

end we use (5.4). Note that

������
1Z

0

t� 1
2
+ i(� � 1

2
)

jt� 1
2
+ i(� � 1

2
)j2�

d�

������ =
�(�� 1

2
) �(1

2
)

�(�)
jt� 1

2
j
2�2� +O(jt� 1

2
j) ; (5.16)

hence jf�(t)j has leading order behaviour jt � 1
2
j2�2� as t ! 1

2
. Therefore,

f� 62 L1(R) since � > 1.



ZAK TRANSFORM CHARACTERIZATION OF S0 13

Next suppose that f� 2 L1(R). By Fourier invariance of h we have, see 2.2.F,

(Zh)(t; �) = e2�i�t(Zh)(��; t) : (5.17)

Since f� 2 L1(R) we have Zf� 2 L1([0; 1)2), see (2.6), and by the L1-extension

of 2.2.D there holds a.e. that

(Zf�)(t; �) =
X
k

f�(t� k) e2�ik� = (Zh)(t; �)=j(Zh)(t; �)j2� : (5.18)

Because of (5.17) we have then that

e�2�i�t(Zf�)(t; �) = (Zf�)(��; t) ; a:e: t; � : (5.19)

Now integrate this identity over t 2 [0; 1). For the left-hand side we get

1Z

0

e�2�i�t(Zf�)(t; �) dt =

1Z

0

X
k

f�(t� k) e�2�i(t�k)� dt

=

1Z

�1

f�(t) e�2�it� dt = (Ff�)(�) ; a:e: � ; (5.20)

while for the right-hand side we get by the L1-extension of 2.2.D that

1Z

0

(Zf�)(��; t) dt = f�(��) ; a:e: � : (5.21)

Hence f�(��) = (Ff�)(�), a.e. �. But since f� 2 L1(R), we have that Ff� 2

L1(R), whence f� 2 L1(R). Contradiction.

Note 5.4 We also have � � 3
2
) f� 62 L1

loc(R).

We limit our attention in the sequel to the case that 0 < � < 1.

Theorem 5.5 Let 0 < � < 1. Then Zf� = Zh=jZhj2�, and

(i) Ff� = f�,

(ii) f� and f1�� are dual in the sense that Zf�(Zf1��)� = 1.

Proof The proof of (i) follows the same argument that was used in the proof

of Prop. 5.3 to show (5.21); here we also use that f� is even (an f 2 L2(R) is

even if and only if (Zf)(t; �) = (Zf)(�t;��), whence evenness of f� is inherited

from h). The proof of (ii) follows from the fact, as in the proof of (5.18), that
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Zf� = Zh=jZhj2�, Zf1�� = Zh=jZhj2�2�, a.e.

Theorem 5.6 Let 0 < � < 1. Then f� 2 L1(R).

Proof We follow to a large extent the proof of [21], Thm. 2 in Sec. 4, that

would apply to the case � = 1
2
. We have for t 2 [0; 1), t 6= 1

2
and n 2 Z by

partial integration that

f�(t+ n) =

1Z

0

e2�in�(Zf�)(t; �) d� =
�1

2�in

1Z

0

e2�in�
@Zf�

@�
(t; �) d� : (5.22)

Let 1 < p � 2, q = (1� p�1)�1. By H�older's inequality

X
n6=0

jf�(t+ n)j �

0
@X

n6=0

��� 1

2�n

���p
1
A

1=p 0
@X

n6=0

������
1Z

0

e2�in�
@Zf�

@�
(t; �) d�

������

q1
A

1=q

�
1

2�
(2�(p))1=p



0
@

1Z

0

e2�in�
@Zf�

@�
(t; �) d�

1
A

n2Z


lq(Z)

:

(5.23)

By the Hausdor�-Young inequality, see [8], 13.5.1 on p. 153 (p0 = q), we have

for t 2 [0; 1), t 6= 1
2
, that



0
@

1Z

0

e2�in�
@Zf�

@�
(t; �) d�

1
A

n2Z


lq(Z)

�

@Zf�
@�

(t; �)

Lp([0;1))

: (5.24)

We compute for t 6= 1
2
, t 2 [0; 1) that

���@Zf�
@�

��� =
��� @
@�

Zh

jZhj2�

��� =

�������

@

@�
Zh

jZhj2�
� 2�

Zh

jZhj2�+1

@

@�
jZhj

�������

�

(2� + 1)
 @

@�
Zh

1

jZhj2�
: (5.25)

From the analysis given on Zh earlier in this section we infer the existence of

" > 0, Æ > 0, C > 0, D > 0, c > 0 such that

j(Zh)(t; �)j � (C2(t� 1
2
)2 +D2(� � 1

2
)2)1=2 (5.26)
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when jt� 1
2
j � " and j� � 1

2
j � Æ, and j(Zh)(t; �)j � c otherwise. Therefore,

���@Zf�
@�

(t; �)
��� = O((C2(t� 1

2
)2 +D2(� � 1

2
)2)��) (5.27)

when jt � 1
2
j � " and j� � 1

2
j � Æ, and j@Zf

�

@� (t; �)j = O(1) otherwise. We thus

get that

@Zf�
@�

(t; �)
p
p
=

1Z

0

���@Zf�
@�

(t; �)
���p d�

=

8>>><
>>>:

O(1) +O

0
B@

1=2+ÆZ

1=2�Æ

(C2(t� 1
2
)2 +D2(� � 1

2
)2)�p� d�

1
CA ; jt� 1

2
j � "

O(1) ; jt� 1
2
j > " :

(5.28)

We compute furthermore that

1=2+ÆZ

1=2�Æ

(C2(t� 1
2
)2+D2(�� 1

2
)2)�p� d� = 2C1�2p�D�1

jt� 1
2
j
1�2p�

x(t)Z

0

dx

(1 + x2)p�
;

(5.29)

where x(t) = DÆ=Cjt� 1
2
j.

Case 1=2 � � < 1 Then, with p as before, 2p� > 1 so that
1R
0

(1+x2)�p� dx <

1. Thus we �nd on combining (5.23), (5.24), (5.28) and (5.29) that

X
n6=0

jf�(t+ n)j = O(jt� 1
2
j
p�1�2�) ; t 2 [0; 1) : (5.30)

The right-hand side of (5.30) is integrable over [0; 1) when p�1 � 2� > �1, i.e.

when p 2 (1; (2� � 1)�1) 6= ;. Hence f� 2 L1(R).

Case 0 < � < 1

2
Now take p > 1 such that 2p� < 1. Then

x(t)Z

0

dx

(1 + x2)p�
= O((x(t))1�2p�) = O(jt� 1

2
j
2p��1) : (5.31)

Hence
P

n6=0 jf
�(t+ n)j = O(1), t 2 [0; 1), so that f� 2 L1(R).
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Note 5.7 According to [21], Thm. 1, we have S
�1=2
a h! f1=2 as a " 1, where Sa

is the frame operator corresponding to the Gabor frame (h; a; a). In the proof

it is used that kS
�1=2
a hk = a! 1 = kf1=2k as a " 1. Hence it is not obvious how

to prove [21], Thm. 1 for general � 2 (0; 1).

We shall now apply our main result to �nd out when f� 2 S0 with � 2 (0; 1).

We use for this the following result.

Proposition 5.8 Let g 2 S be such that (Zg)(1
2
; 1
2
) 6= 0, and let 0 < � < 1.

Denote by cnm(�) = (f�; g�m;n) the (n;m)th Fourier coeÆcient of Zf�(Zg)�,

see 2.2.E. Then there is a C 6= 0 such that for integer n, m with n2 +m2 !1,

(�1)n+m cnm(�) r
3�2� e�i' ! C ; (5.32)

where we have written n+ im = r ei' with r > 0, ' 2 R.

Proof Since Zf�(Zg)� is (1; 1)-periodic and in C1([0; 1)2=f(1
2
; 1
2
)g), the be-

haviour of its Fourier coeÆcients

cnm(�) =

1Z

0

1Z

0

(Zf�)(t; �)(Zg)�(t; �) e�2�int�2�im� dt d� (5.33)

when n2+m2 !1 is in leading order determined by the behaviour of Zf�(Zg)�

at (t; �) = (1
2
; 1
2
). Note that by (5.4) we have

(Zf�)(t; �)(Zg)�(t; �) = (5.34)

D
t� 1

2
+ i(� � 1

2
)

((t� 1
2
)2 + (� � 1

2
)2)�

+O(((t� 1
2
)2 + (� � 1

2
)2)��+1)

as (t; �)! (1
2
; 1
2
), where

D = �(21=4 � #01(0))
1�2�(Zg)�(1

2
; 1
2
) 6= 0 : (5.35)

Therefore, the leading order behaviour of cnm(�) as n2 + m2 ! 1 coincides

with that of

dnm(�) = D

1Z

�1

1Z

�1

t� 1
2
+ i(� � 1

2
)

((t� 1
2
)2 + (� � 1

2
)2)�

K(t; �) e�2�int�2�im� dt d� ; (5.36)

where K is any smooth and rapidly decaying element of C1(R2) with K(1
2
; 1
2
) =

1. For the computations below it will be convenient to choose

K(t; �) = exp(��(t� 1
2
)2 � �(� � 1

2
)2) : (5.37)
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We thus compute, using polar coordinates t� 1
2
+ i(� � 1

2
) = � ei# and n+ im =

r ei' with 0 � �; r <1, 0 � #; ' < 2�,

dnm(�) =

= (�1)n+mD

1Z

�1

1Z

�1

t� 1
2
+ i(� � 1

2
)

((t� 1
2
)2 + (� � 1

2
)2)�

e�2�in(t�1=2)�2�im(��1=2)
�

� e��(t�1=2)2��(��1=2)2 dt d� =

= (�1)n+mD

2�Z

0

1Z

0

� ei#

�2�
e�2�i�r cos(#�') e���

2

� d� d# : (5.38)

On simplifying and by using that (see [1], 9.1.42{43 on p. 361)

2�Z

0

ei# e�2�i�r cos(#�') d# = �2�i J1(2��r) e
i' ; (5.39)

where J1 is the Bessel function of the �rst kind and of order 1, we obtain

dnm(�) = �2�i(�1)n+mD ei'
1Z

0

�2�2� e���
2

J1(2��r) d� : (5.40)

The remaining integral in (5.40) can be expressed, by using [1], 11.4.28 on p. 486,

as

1Z

0

�2�2� e���
2

J1(2��r) d� =
1
2
�(2� �)���1 rM(2� �; 2;��r2) ; (5.41)

where M(a; b; z) is Kummer's function 1F1(a ; b ; z) (conuent hypergeometric

function) as in [1], 13.1.2 on p. 504. Using [1], 13.1.5 on p. 504, we have as

r !1

M(2� �; 2;��r2) =
(�r2)��2

�(�)
(1 +O(r�2)) ; (5.42)

so that, as r !1,

1Z

0

�2�2� e���
2

J1(2��r) d� =
�(2� �)

2�(�)
(�r)2��3(1 +O(r�2)) : (5.43)
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Therefore, the leading behaviour of dnm(�), and, hence, that of cnm(�), as n
2+

m2 !1 is given as

��i(�1)n+mD ei'
�(2� �)

�(�)
(�r)2��3 ; (5.44)

with D given in (5.35) and n+ im = r ei', as required.

Note 5.9 Compare with [23], Thms. 5.9{10 on pp. 122{123, where Fourier

integrals as in (5.38) are considered.

Theorem 5.10 There holds

0 < � < 1
2

) f� 2 S0 ; (5.45)

1
2
� � < 1 ) f� 62 S0 : (5.46)

Proof We take g(1); g(2) 2 S with (Zg(1))(1
2
; 1
2
) 6= 0 6= (Zg(2))(1

2
; 1
2
) and such

that Zg(1) and Zg(2) have no common zeros. We have that

X
n;m6=(0;0)

1

(n2 +m2)3=2��
<1, � < 1

2
; (5.47)

and we get (5.45){(5.46) at once from the main result.

Note 5.11 The proof of the leading order behaviour formula (5.44) for the

cnm(�) continues to work when 1 � � < 3
2
. In the case that � = 1 this yields for

(f1; g�m;n) the leading order behaviour

(�1)n+m i(Zg)�(1
2
; 1
2
) ei'

21=4 � #01(0) r
(5.48)

when n+im = r ei' with r !1. Consequently, when g 2 S and (Zg)(1
2
; 1
2
) 6= 0,

the coeÆcients (g; f1nm) in the Gabor expansion (in distributional sense) of g,

g =
X
n;m

(g; f1nm)hnm (5.49)

(Gaussian window h, critical case), have leading order behaviour

�
(�1)n+m(Zg)(1

2
; 1
2
)

21=4 � #01(0)(n + im)
: (5.50)
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6 Extension of the main result

It was kindly observed to the author by K. Gr�ochenig that the main result of

this paper has an extension to more general modulation spaces.

Taking the notation and de�nitions as in [14], Chs. 11{12, we let v;m � 0

be locally integrable on R2d , where v is assumed to be submultiplicative on R2d

and m is assumed to be v-moderate on R2d so that

v(z1 + z2) � v(z1) v(z2) ; m(z1 + z2) � C v(z1)m(z2) ; z1; z2 2 R
2d ; (6.1)

where C is some constant > 0. Now let 1 � p; q � 1, and let g(r) 2 M1
v ,

r = 1; :::; N , be such that the Zg(r) have no common zeros. Also, let f 2 L2(Rd).

Then f 2M
p;q
m if and only if Zf(Zg(r))� have Fourier series

X
k;l

c
(r)
kl e

2�ik�t+2�il�� ; (6.2)

where

(c
(r)
l;�k)k2Zd;l2Zd 2 lp;qm (Z2d) ; r = 1; :::; N : (6.3)

The proof contains essentially the same ingredients as the proof of the main

result given in Sec. 4.

This extension can be used in conjunction with Prop. 5.8 in Sec. 5 to tell to

which spaces a particular f� belongs. For instance, when vs(t; �) = (1 + (t2 +

�2)1=2)s, then

f� 2M1
vs , 2�+ s < 1 : (6.4)
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Fig. 1. Plot of (a) f1(t) and (b) f1=2(t) for �6 � t � 6.
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Fig. 2. Plot of (a) f1=4(t) and (b) f3=4(t) for �6 � t � 6.


