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Abstract

Let X1,X2, . . . be independent variables, each having a normal distribution with nega-

tive mean −β < 0 and variance 1. We consider the partial sums Sn = X1 + . . .+Xn, with

S0 = 0, and refer to the process {Sn : n ≥ 0} as the Gaussian random walk. We present

explicit expressions for the mean and variance of the maximum M = max{Sn : n ≥ 0}.

These expressions are in terms of Taylor series about β = 0 with coefficients that involve

the Riemann zeta function. Our results extend Kingman’s first order approximation [19]

of the mean for β ↓ 0. We build upon the work of Chang & Peres [11], and use Bateman’s

formulas on Lerch’s transcendent and Euler-Maclaurin summation as key ingredients.
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1 Introduction

LetX1, X2, . . . be independent variables, each having a normal distribution with mean −β < 0

and variance 1. We consider the partial sums Sn = X1 + . . . + Xn, with S0 = 0, and refer

to the process {Sn : n ≥ 0} as the Gaussian random walk. In this paper we present explicit

expressions for several characteristics of the distribution of the maximum

M = max{Sn : n ≥ 0}. (1.1)

The distribution of M plays an important role in several areas of applied probability. In

queueing theory, it typically occurs in a regime called heavy traffic (see [2, 19, 17, 26]), in

which the load is just below its critical level, and so the queue is only just stable with relatively

large queue lengths and waiting times. For the limiting waiting time W = limn→∞Wn, with

W1 = 0 and Wn+1 = (Wn + Xn)
+, it follows from Spitzer’s random-walk identities that W

is, in distribution, equal to M . In the context of queues and heavy traffic, Kingman [19] was

the first to remark the relevance of M in his 1965 paper. He noticed among other things:

Despite the apparent simplicity of the problem, there does not seem to be an

explicit expression even for EM ..., but it is possible to give quite sharp inequalities

and asymptotic results for small β.

Indeed, Kingman showed that, for β ↓ 0,

EM =
1

2β
− c+ O(β) , c ≈ 0.58. (1.2)

The tail distribution of M is tantamount to computing level crossing probabilities of the

Gaussian random walk, i.e., for x > 0, {M > x} = {τ(x) < ∞}, where τ(x) = inf{n ≥ 1 :

Sn > x}. This level-crossings interpretation makes that the tail distribution ofM is important

in sequential analysis and risk theory. Chang & Peres [11] derived an exact expression (2.1)

for the expected value of the first ladder height ESτ , with τ = τ(0), which by the relation

ESτ = β/P(M = 0) leads to an exact expression for P(M = 0). They present ESτ as a Taylor

series about β = 0 with coefficients that involve the Riemann zeta function, a considerable
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achievement that generalizes first order approximations of Siegmund [22] and Chang [10].

Ladder heights fulfill an important role in probability theory, both in the exact analysis

of random walks (see Asmussen [2], Feller [14]), and in the asymptotic analysis of boundary

crossing problems (Siegmund [23]). In the latter case, a quantity of interest is the limiting

expected overshoot, defined as E(S2
τ )/(2ESτ ) for β = 0. This quantity can be shown to be

−ζ(1/2)/
√

2π = 0.5812 . . ., with ζ(z) the Riemann zeta function. The same quantity arises in

sequentially testing for the drift of a Brownian motion [12], corrected diffusion approximations

[22], simulation of Brownian motion [3, 9] and option pricing [7]. These applications have in

common that a Brownian motion is observed only at equidistant sampling points. As it turns

out1, the c in (1.2) is in fact −ζ(1/2)/
√

2π, so Kingman, albeit in disguised form, related EM

to the Riemann zeta function already in 1965. We shall extend Kingman’s approximation

(1.2) to an explicit expression for EM , in the same spirit as Chang & Peres extended the

results of Siegmund [22] and Chang [10]. Moreover, we present a similar expression for the

variance of M , to be denoted by VarM . The new expressions for EM and VarM both concern

Taylor series about zero with coefficients that involve the Riemann zeta function.

We first derive the Chang & Peres result (2.1) in our own fashion. Like Chang & Peres

we start from a Spitzer-type expression for P(M = 0), take its derivative with respect to β,

rewrite the derivative in terms of the Riemann zeta function, and finally integrate to obtain

(2.1). For rewriting the derivative, Chang & Peres built upon the 1905 paper of Hardy [16]

and present an analytic continuation of the function Lis(z) =
∑∞

n=1 n
−szn, known as the

polylogarithm or Jonquières function. They were probably unaware of the fact that Lis(z) is a

special case of Lerch’s transcendent, see (2.4), for which the matter of analytic continuation has

been established in full generality by Bateman (and/or the staff of the Bateman Manuscript

Project), see [13], §1.11(8) and (2.5). Hence, although Chang & Peres [11] give a separate

proof, their Theorem 2.1 should be attributed to Bateman.

Our derivation of (2.1)–that incorporates Bateman’s formulas and an asymptotic deter-

mination of the integration constant–sets the stage for the derivation of the new explicit

1Kingman [19] presents c as (2π)−1/2
P

∞

n=1
[
√

n(
√

n+
√

n − 1)2]−1/2, which by Euler-Maclaurin summation

can be shown to be −(2π)−1/2ζ(1/2). Similar relations are the topic of Problem 602 posed by Glasser &
Boersma in [15].

2



expressions for EM and VarM . As an aside, we obtain the following asymptotic results for

β ↓ 0:

EM =
1

2β
+
ζ(1/2)√

2π
+

1

4
β + O(β2), (1.3)

and

VarM =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 + O(β3), (1.4)

where ζ(1/2) ≈ −1.4604 and ζ(−1/2) ≈ −0.2079. In comparing (1.2) and (1.3), (1.3) contains

an additional term 1
4β. This term, and − 1

24β
2 in (1.4), follow from a rather intricate applica-

tion of the Euler-Maclaurin summation formula. The error terms in both (1.3) and (1.4) will

be replaced by Taylor series with coefficients that involve the Riemann zeta function.

1.1 Structure of the paper

We present our main results in the next section. Sec. 3 is devoted to an exposition of our

derivation of the Chang & Peres result. The proofs of the new expressions for the mean and

variance of the maximum are given in Sec. 4 and Sec. 5, respectively. The new expressions for

the mean and variance of M are alternatives for their Spitzer-type counterparts. The latter

tend to converge more slowly for a decreasing drift β, whereas the opposite holds for the

new expressions. We investigate this difference in speed of convergence in Sec. 6. Concluding

remarks are made in Sec. 7.

2 Main results

We present three theorems. The first, on P(M = 0), is essentially due to Chang & Peres

[11], but we give a separate proof in Sec. 3:

Theorem 2.1. (Chang & Peres [11]) The probability that the maximum of the Gaussian

random walk is zero satisfies

P(M = 0) =
√

2β exp

{

β√
2π

∞
∑

r=0

ζ(1/2 − r)

r!(2r + 1)

(−β2

2

)r
}

, (2.1)

for 0 < β < 2
√
π.
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Then, largely motivated by Chang & Peres, but taking our own approach, we prove the

next two theorems.

Theorem 2.2. The expectation of the maximum of the Gaussian random walk satisfies

EM =
1

2β
+
ζ(1/2)√

2π
+

1

4
β +

β2

√
2π

∞
∑

r=0

ζ(−1/2 − r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

, (2.2)

for 0 < β < 2
√
π.

Theorem 2.3. The variance of the maximum of the Gaussian random walk satisfies

VarM =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − β2

24
− 2β3

√
2π

∞
∑

r=0

ζ(−3/2 − r)

r!(2r + 1)(2r + 2)(2r + 3)

(−β2

2

)r

, (2.3)

for 0 < β < 2
√
π.

The key ingredients for obtaining the above series are Euler-Maclaurin summation and a

result on Lerch’s transcendent. Lerch’s transcendent is defined as the analytic continuation

of the series

Φ(z, s, v) =
∞
∑

n=0

(v + n)−szn, (2.4)

which converges for any real number v 6= 0,−1,−2, . . . if z and s are any complex numbers

with either |z| < 1, or |z| = 1 and Re(s) > 1. Note that ζ(s) := Φ(1, s, 1). We shall use

the important result derived by Bateman [13], §1.11(8) (with ζ(s, v) := Φ(1, s, v) the Hurwitz

zeta function)

Φ(z, s, v) =
Γ(1 − s)

zv
(ln 1/z)s−1 + z−v

∞
∑

r=0

ζ(s− r, v)
(ln z)r

r!
, (2.5)

which holds for | ln z| < 2π, s 6= 1, 2, 3, . . ., and v 6= 0,−1,−2, . . . .
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3 Proof of Theorem 2.1

From Spitzer’s identity for random walks [24] we have

P(M = 0) = exp

{

−
∞
∑

n=1

1

n
P(Sn > 0)

}

= exp

{

−
∞
∑

n=1

1

n
P (−β

√
n)

}

, (3.1)

with P (·) the standard normal distribution function

P (a) =
1√
2π

∫ a

−∞
e−

1

2
x2

dx. (3.2)

The second equality in (3.1) follows from the normality of Sn.

With ψ = 1
2β

2 and F defined by

F (β) =
∞
∑

n=1

1

n

1√
2π

∫ ∞

β
√
n
e−

1

2
x2

dx, β > 0, (3.3)

we have

F ′(β) =
−1√
2π

∞
∑

n=1

e−nψ√
n

=
−e−ψ√

2π

∞
∑

n=0

e−nψ√
n+ 1

=
−e−ψ√

2π
Φ(z = e−ψ, s = 1

2 , v = 1). (3.4)

Then by (2.5), when 0 < ψ < 2π,

F ′(β) =
−e−ψ√

2π

[

Γ(1/2)

e−ψ
ψ−1/2 + eψ

∞
∑

r=0

ζ(1
2 − r)

(−ψ)r

r!

]

=
−1√

2
ψ−1/2 − 1√

2π

∞
∑

r=0

ζ(1
2 − r)

(−ψ)r

r!
, (3.5)

with ζ(s) denoting the Riemann zeta function. Restoring β we get

F ′(β) +
1

β
=

−1√
2π

∞
∑

r=0

ζ(1
2 − r)

(−1
2β

2)r

r!
, 0 < β < 2

√
π. (3.6)
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The right-hand side of (3.6) is a well-behaved function of β, and integrating we get

F (β) + lnβ = L− 1√
2π

∞
∑

r=0

ζ(1
2 − r)(−1

2)rβ2r+1

r!(2r + 1)
, (3.7)

where L = limβ↓0 (F (β) + lnβ).

We shall show that L = −1
2 ln 2. To that end we note that

F (β) =

∞
∑

n=1

1

n

1√
π

∫ ∞

√
nψ
e−u

2

du

=
1

2

∞
∑

n=1

1

n

(

2√
π

∫ ∞

√
nψ
e−u

2

du− e−nψ
)

− 1

2
ln
(

1 − e−ψ
)

=
1

2
ψ

∞
∑

n=1

1

nψ

(

2√
π

∫ ∞

√
nψ
e−u

2

du− e−nψ
)

− lnβ +
1

2
ln 2 + o(1) (3.8)

as β = (2ψ)1/2 ↓ 0. The function

g(y) :=
1

y

(

2√
π

∫ ∞

√
y
e−u

2

du− e−y

)

, y > 0, (3.9)

decays exponentially as y → ∞ while g(y) = O(y−1/2), y ↓ 0. It is then routine to show that

1

2
ψ

∞
∑

n=0

g(nψ) → 1

2

∫ ∞

0
g(y)dy, ψ ↓ 0. (3.10)

The latter integral can be evaluated as

∫ ∞

0

1

y

(

2√
π

∫ ∞

√
y
e−u

2

du− e−y

)

dy =

(

2√
π

∫ ∞

√
y
e−u

2

du− e−y

)

ln y
∣

∣

∣

∞

0
−
∫ ∞

0

(

2√
π
· −1

2
y−1/2 · e−y + e−y

)

ln y dy =

1√
π

∫ ∞

0
y−1/2e−y ln y dy −

∫ ∞

0
e−y ln y dy =

1√
π

Γ′(1/2) − Γ′(1) = −2 ln 2,

(3.11)

by Abramowitz-Stegun [1] §6.3.1-4 on p. 258. Hence, L = −1
2 ln 2 indeed, and so it is shown
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that, for 0 < β < 2
√
π, we have

F (β) = − lnβ − 1

2
ln 2 − 1√

2π

∞
∑

r=0

ζ(1
2 − r)(−1

2)rβ2r+1

r!(2r + 1)
, (3.12)

which, by (3.1) completes the proof of Thm. 2.1.

To recapitulate, we started from the Spitzer-type expression (3.1), rewrote its derivative

(3.3) in terms of Lerch’s transcendent (3.4), applied Bateman’s formulas to obtain a Taylor

series (3.5), integrated the Taylor series (3.7), and finally determined the integration constant

L.

Remark 3.1. The integration constant could have been determined from the relation P(M =

0) = β/ESτ (with ESτ the expected value of the first ladder height, see Sec. 1), and using the

fact that ESτ = 1/
√

2 for β = 0, as proven by Spitzer [25]; see also Lai [20]. Alternatively,

one could use the first order approximation in Jelenkovic et al. [17], that is, P(M = 0) =
√

2β(1 + o(1)) as β ↓ 0. The primary purpose of this section, however, is to set the stage for

the next two sections, in which there is no other way of determining integration constants

than to apply asymptotic methods.

4 Proof of Theorem 2.2

From Spitzer’s identity [24] we know that

EM =
∞
∑

n=1

1

n
E(S+

n ) =
∞
∑

n=1

(e−
1

2
nβ2

√
2πn

− βP (−β
√
n)
)

. (4.1)

With ψ = 1
2β

2 we have

∞
∑

n=1

e−
1

2
nβ2

√
2πn

=
e−ψ√

2π
Φ(z = e−ψ, s = 1

2 , v = 1) =
1

β
+

1√
2π

∞
∑

r=0

ζ(1
2 − r)

r!
(−ψ)r. (4.2)

Now we consider

G(β) =
∞
∑

n=1

1√
2π

∫ ∞

β
√
n
e−x

2/2dx. (4.3)
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We have

G′(β) =
∞
∑

n=1

1√
2π

·
√
n · −e−nψ

=
−e−ψ√

2π
Φ(z = e−ψ, s = −1

2 , v = 1). (4.4)

Then by (2.5), when ψ < 2π,

G′(β) =
−e−ψ√

2π

[

Γ(3/2)

e−ψ
ψ−3/2 + eψ

∞
∑

r=0

ζ(−1
2 − r)

(−ψ)r

r!

]

=
−1

2
√

2
ψ−3/2 − 1√

2π

∞
∑

r=0

ζ(−1
2 − r)

(−ψ)r

r!
. (4.5)

Therefore, restoring β, we get

G′(β) = −β−3 −H(β) ; H(β) =
1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r. (4.6)

We note that H(β) is well-behaved in 0 ≤ β < 2
√
π, and that

d

dβ

[

G(β) − 1

2β2

]

= G′(β) +
1

β3
= −H(β). (4.7)

By integration from 0 to β we thus get

G(β) − 1

2β2
− lim

ε↓0

(

G(ε) − 1

2ε2

)

= −
∫ β

0
H(β1)dβ1

=
−1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (4.8)

We shall show that

lim
ε↓0

(

G(ε) − 1

2ε2

)

= −1

4
. (4.9)

To that end we use the Euler-Maclaurin summation formula (see De Bruijn [8], Sec. 3.6,
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pp. 40-42)

N
∑

n=1

f(n) =

∫ N

1
f(x)dx+ 1

2f(1) + 1
2f(N)

+
m
∑

k=1

B2k

(2k!)

(

f (2k−1)(N) − f (2k−1)(1)
)

−
∫ N

1
f (2m)(x)

B2m (x− ⌊x⌋)
(2m)!

dx,

(4.10)

with m = 1, N → ∞ and

fδ(x) =
1√
π

∫ ∞

√
δx
e−u

2

du =: g(δx) ; δ = 1
2ε

2. (4.11)

Hence

GN (ε) =

N
∑

n=1

1√
2π

∫ ∞

ε
√
n
e−x

2/2dx =

N
∑

n=1

fδ(n)

=

∫ N

1
g(δx)dx+ 1

2g(δ) + 1
2g(Nδ)

+ 1
2B2

(

g′(Nδ) − g′(δ)
)

δ −
∫ N

1
δ2g′′(δx)

B2(x− ⌊x⌋)
2

dx. (4.12)

Letting N → ∞ and noting that for g(y) = 1√
π

∫∞√
y e

−u2

du there holds that g, g′, g′′ → 0

exponentially fast as y → ∞, we get

G(ε) =

∫ ∞

1
g(δx)dx+ 1

2g(δ) − 1
2B2g

′(δ)δ − 1
2

∫ ∞

1
δ2g′′(δx)

B2(x− ⌊x⌋)
2

dx. (4.13)

The last integral at the right-hand side of (5.11) can be bounded by

∫ ∞

1
δ2|g′′(δx)|12B2dx = 1

12δ

∫ ∞

δ
|g′′(y)|dy. (4.14)

We further get

g′(y) = − e−y

2
√
πy

, g′′(y) =
e−y

4y
√
πy

(2y + 1) ≥ 0. (4.15)
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Therefore, we see that

δg′(δ) = O(δ1/2) , δ

∫ ∞

δ
|g′′(y)|dy = −δg′(δ) = O(δ1/2). (4.16)

Furthermore,

∫ ∞

1
g(δx)dx = δ−1

∫ ∞

δ
g(y)dy = δ−1

∫ ∞

δ

(

1√
π

∫ ∞

√
y
e−u

2

du

)

dy

= δ−1

∫ ∞

0

(

1√
π

∫ ∞

√
y
e−u

2

du

)

dy − δ−1

∫ δ

0

(

1√
π

∫ ∞

√
y
e−u

2

du

)

dy.

(4.17)

Then from g(δ) = 1
2 + O(δ1/2) we get

δ−1

∫ δ

0

(

1√
π

∫ ∞

√
y
e−u

2

du

)

dy = 1
2 + O(δ1/2), (4.18)

and

∫ ∞

0

(

1√
π

∫ ∞

√
y
e−u

2

du

)

dy =
1√
π
y

∫ ∞

√
y
e−u

2

du
∣

∣

∣

∞

0
−
∫ ∞

0
y

1√
π

1
2y

−1/2 · −e−ydy

=
1

2
√
π

∫ ∞

0
y1/2e−ydy =

1

4
. (4.19)

Therefore
∫ ∞

1
g(δx)dx =

1

4δ
− 1

2
+ O(δ1/2) , δ ↓ 0. (4.20)

It finally follows that

G(ε) =
( 1

4δ
− 1

2
+ O(δ1/2)

)

+
1

2

(1

2
+ O(δ1/2)

)

; δ = 1
2ε

2, (4.21)

and we obtain (4.9). It is thus concluded that

G(β) =
1

2β2
− 1

4
− 1√

2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (4.22)
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Combining (4.1), (4.2) and (4.22), we then obtain

EM =
∞
∑

n=1

e−
1

2
nβ2

√
2πn

− β
∞
∑

n=1

P (−β
√
n) =

∞
∑

n=1

e−
1

2
nβ2

√
2πn

− βG(β)

=
1

β
+

1√
2π

∞
∑

r=0

ζ(1
2 − r)(−1/2)r

r!
β2r − β

[

1

2β2
− 1

4
− 1√

2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1

]

=
1

2β
+

1

4
β +

1√
2π

{ ∞
∑

r=0

ζ(1
2 − r)(−1/2)r

r!
β2r +

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+2

}

.

(4.23)

Splitting off the term with r = 0 and replacing the summation index r = 1, 2 . . . by r + 1,

r = 0, 1, . . . in the first series in (4.23), we get

EM =
1

2β
+

1

4
β +

1√
2π
ζ(1

2) +
1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)rβ2r+2

r!(2r + 1)(2r + 2)
. (4.24)

5 Proof of Theorem 2.3

From Spitzer’s identity [24] we get

VarM =

∞
∑

n=1

1

n
E((S+

n )2), (5.1)

which, using the normality of Sn, yields

VarM =

∞
∑

n=1

1

n
√

2π

∫ ∞

β
√
n
(x
√
n− βn)2e−x

2/2dx

=
∞
∑

n=1

(

(β2n+ 1)P (−β
√
n) − β√

2π

√
ne−β

2n/2

)

, (5.2)

where the second equality in (5.2) follows from partial integration. We have established

earlier, see (4.6) that

1√
2π

∞
∑

n=1

√
ne−β

2n/2 =
1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r +

1

β3
. (5.3)

11



Therefore, it remains to evaluate

I(β) =
∞
∑

n=1

nP (−β
√
n) =

∞
∑

n=1

n√
2π

∫ ∞

β
√
n
e−x

2/2dx, (5.4)

and to combine the results with (5.3) and (4.22) according to (5.2).

There holds, with ψ = 1
2β

2 as earlier,

I ′(β) = −
∞
∑

n=1

n3/2

√
2π
e−nψ =

−e−ψ√
2π

Φ(z = e−ψ, s = −3
2 , v = 1), (5.5)

and by Bateman’s result (2.5),

I ′(β) =
−e−ψ√

2π

[

Γ(5/2)

e−ψ
ψ−5/2 + eψ

∞
∑

r=0

ζ(−3
2 − r)

(−ψ)r

r!

]

=
−3

4
√

2
ψ−5/2 − 1√

2π

∞
∑

r=0

ζ(−3
2 − r)

(−ψ)r

r!

= −3β−5 − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!
β2r, (5.6)

assumed that 0 < β < 2
√
π. The series on the last line of (5.6) is well-behaved in 0 ≤ β < 2

√
π,

whence I ′(β) + 3β−5 is integrable, and we obtain

I(β) − 3
4β

−4 = lim
ε↓0

(I(ε) − 3
4ε

−4) − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (5.7)

We shall show that

lim
ε↓0

(

I(ε) − 3
4ε

−4
)

= − 1

24
(5.8)

by applying the Euler-Maclaurin summation formula (4.10) with m = 1, N → ∞ as before.

We consider now

fδ(x) =
δx√
π

∫ ∞

√
δx
e−u

2

du =: h(δx) ; δ = 1
2ε

2, (5.9)

in which

h(x) = xg(x) ; g(x) =
1√
π

∫ ∞

√
x
e−u

2

du, x ≥ 0. (5.10)

12



Then

I(ε) =
1

δ

[
∫ ∞

1
h(δx)dx+ 1

2h(δ) − 1
2B2h

′(δ)δ −
∫ ∞

1
δ2h′′(δx)

B2(x− ⌊x⌋)
2

dx

]

. (5.11)

Next we shall take δ ↓ 0, and to that end we see that

1

δ
h(δ) = g(δ) → 1

2 ; h′(δ) = g(δ) − δ1/2

2
√
π
e−δ → 1

2 , δ ↓ 0. (5.12)

Furthermore,

1

δ

∫ ∞

1
h(δx)dx =

1

δ2

∫ ∞

0
h(x)dx− 1

δ2

∫ δ

0
h(x)dx, (5.13)

in which

1

δ2

∫ δ

0
xg(x)dx→ 1

4 + O(δ1/2). (5.14)

Also, by partial integration,

∫ ∞

0
h(x)dx =

∫ ∞

0
x

1√
π

(
∫ ∞

√
x
e−u

2

du

)

dx

=
x2

2
√
π

∫ ∞

√
x
e−u

2

du
∣

∣

∣

∞

0
−
∫ ∞

0

x2

2
√
π
· −1

2x
−1/2e−xdx

=
1

4
√
π

∫ ∞

0
x3/2e−xdx =

1

4
√
π

Γ(5/2) =
3

16
. (5.15)

Therefore

1

δ

∫ ∞

1
h(δx)dx =

3

16δ2
− 1

4
+ O(δ1/2). (5.16)

Finally,

h′′(x) = (xg(x))′′ = 2g′(x) + xg′′(x)

=
1

2
√
πx

(x− 3
2)e−x ∈ L1 ([0,∞)) , (5.17)

and

1
2B2(x− ⌊x⌋) =

1

2π2

∞
∑

k=1

cos 2πkx

k2
, (5.18)
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see De Bruijn [8], p. 41. Therefore,

δ

∫ ∞

1
h′′(δx)1

2B2(x− ⌊x⌋)dx =

∫ ∞

δ
h′′(x)1

2B2(x/δ − ⌊x/δ⌋)dx

=
1

2π2

∞
∑

k=1

1

k2

∫ ∞

δ
h′′(x) cos(2πkx/δ)dx→ 0 , δ ↓ 0,

(5.19)

since
∫∞
δ h′′(x) cos(2πkx/δ)dx → 0 as δ ↓ 0 by the Riemann-Lebesgue lemma on Fourier

integrals. Putting this altogether, we find (recall δ = 1
2ε

2)

lim
ε↓0

(

I(ε) − 3
4ε

−4
)

= −1
4 + 1

2 · 1
2 − 1

2 · 1
6 · 1

2 − 0 = − 1
24 . (5.20)

Hence we obtain for 0 < β < 2
√
π

I(β) =
3

4
β−4 − 1

24
− 1√

2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (5.21)

We insert this result, together with (5.3) and (4.22), into (5.2) and get

VarW = − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+3 +

3

4
β−2 − β2

24

− 1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1 +

1

2
β−2 − 1

4

− 1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r+1 − β−2. (5.22)

Splitting off the terms with r = 0 and replacing the summation index r = 1, 2 . . . by r + 1,

14



r = 0, 1, . . . in the last two series in the right-hand side of (5.22), we get

VarW =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 − 1√

2π

∞
∑

r=0

{

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+3

+
ζ(−3

2 − r)(−1/2)r+1

(r + 1)!(2r + 3)
β2r+3 +

ζ(−3
2 − r)(−1/2)r+1

(r + 1)!
β2r+3

}

=
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 − 2√

2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)rβ2r+3

r!(2r + 1)(2r + 2)(2r + 3)
.

(5.23)

6 Convergence comparison Spitzer formulas and Lerch series

Is is immediately clear that the infinite series in (2.1), (2.2) and (2.3) converge more rapidly

for smaller values of β, while the contrary holds for their Spitzer-type counterparts (3.1), (4.1)

and (5.1). To exemplify this difference in speed of convergence, we consider (4.2), i.e.,

∞
∑

n=1

e−
1

2
nβ2

√
2πn

=
1√
2π

∞
∑

r=0

ζ(1
2 − r)

r!

(

−β
2

2

)r

. (6.1)

The left-hand side series converges for all β > 0 while the right-hand side series converges for

all β ∈ C, |β| < 2
√
π. From Whittaker & Watson [27] §13.151 (p. 269),

21−sΓ(s)ζ(s) cos(1
2sπ) = πsζ(1 − s). (6.2)

With s = r+ 1
2 , the asymptotics of the Γ-function and the fact that ζ(r+1/2) → 1 as r → ∞,

we see that
∣

∣

∣

∣

∣

1√
2π

ζ(1
2 − r)

r!

(

−β
2

2

)r
∣

∣

∣

∣

∣

≈ 1

π
√

2r + 1

(

β2

4π

)r

, r → ∞. (6.3)

Hence, for comparing the convergence rates of the two series in (6.1), it is enough to find the

point β0 > 0 such that

e−
1

2
β2

0 =
β2

0

4π
. (6.4)

With x = 1
2β

2 we need to solve x0e
x0 = 2π with x0 > 0. This yields x0 = 1.4597, β0 = 1.7086,

and the common value of the two members in (6.4) equals 0.2323. See [6], Sec. 2, where a
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similar strategy is developed in connection with the evaluation of Legendre’s chi-function.

7 Concluding remarks

Throughout this paper, the increments Xi were assumed to have variance 1. Results for the

more general case in which the Xi are normally distributed with mean β̂σ and variance σ2

readily follow from

∞
∑

n=1

1

n
E((S+

n )k) =
∞
∑

n=1

1

n
√

2π

∫ ∞

β̂
√
n
σk(

√
nx− β̂n)ke−x

2/2dx, k = 1, 2, . . . . (7.1)

Results for higher moments of M may be obtained along the same lines as the mean and

variance, starting from (7.1).
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