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Abstract

We analytically calculate the focus setting for a beam with a high numerical aperture

(NA) that optimizes its Strehl ratio in the case of small aberrations up to the ’just’

diffraction-limited value (Strehl ratio ≥0.80). The optimum focus setting deviates from

the one that follows from a minimization of the wavefront aberration with the aid of

the Zernike aberration coefficients. This deviation stems largely from the fact that the

common quadratic approximation of the focus term becomes inadequate in the high-NA

case. Fundamental high-NA amplitude nonuniformity in the exit pupil of an optical

system in the case of a linearly polarized incident beam also influences the optimum focus

setting. Results for spherical aberration and astigmatism are presented for an NA-value

of 0.95.

Keywords: vector diffraction, aberrations, Strehl ratio, high-numerical-aperture beams

1 Introduction

Strehl ratio plays an important role in the assessment of optical systems as it is a generally

accepted number to characterize the quality of the intensity impulse response (point-

spread function) of an imaging system. In microscopy, optical data storage and optical

projection lithography [1], very high values of numerical aperture are required for the

imaging or read-out of the finest details. Obtaining the highest possible Strehl ratio and

the corresponding optimum focus-setting, both in design and operation, is crucial for

optimum printing and reading-out of sub-wavelength features. The expression for Strehl

ratio and the best focus setting for these high-quality imaging systems with a very high

numerical aperture is the subject of this paper.

The original definition by Strehl for optical system quality is given by the ratio of the

central intensity in the diffraction image of an aberrated system and the theoretical max-

imum intensity in the unaberrated case. It is usually applied to systems with a uniform
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amplitude transmittance function but can be extended to more general systems [2], [3]

where the exit pupil function g(ρ, θ) is given by

g(ρ, θ) = A(ρ, θ) exp{iΦ(ρ, θ)}, (1)

with (ρ, θ) the normalized polar coordinates on the exit pupil sphere, A the normalized

amplitude transmission function (normally taken equal to unity in the center of the exit

pupil) and Φ the phase departure due to the wavefront aberration function W in the exit

pupil of the optical system (Φ = 2πW/λ with λ the wavelength of the light). The Strehl

ratio is then given by

S =

∣

∣

∣

1
π

∫ 2π
0

∫ 1
0 A(ρ, θ) exp{iΦ(ρ, θ)}ρdρdθ

∣

∣

∣

2

∣

∣

∣

1
π

∫ 2π
0

∫ 1
0 A(ρ, θ)ρdρdθ

∣

∣

∣

2 , (2)

leading to unity in the aberration-free case (Φ ≡ 0).

The amplitude function can be partly measured in the entrance pupil of the optical system

as far as it is related to the structure of the incident beam, AE(ρ, θ), with the index E

referring to the entrance pupil of the system. In many test cases, this function will be

rather uniform and can be put equal to unity. The function AE can be further modified

on its way through the optical system and then has to be measured in the exit pupil

of the imaging system, using A(ρ, θ) =
√

I(ρ, θ), with I(ρ, θ) the intensity function over

the beam cross-section on the exit pupil sphere. If the exit pupil is not accessible to

measurements, I(ρ, θ) has to be measured in the optical ’far field’. In this paper we

include a complication that arises in high-numerical-aperture imaging systems where the

mapping of the amplitude from entrance to exit pupil is not obeying the simple scaling

law of low-NA systems. Two effects need to be considered:

• Design of the optical system

The mapping of the complex amplitude distribution from entrance to exit pupil is

determined by the design choice. For large field systems, the sine condition by Abbe

has to be satisfied [4]. In the case of an incident parallel beam, the corresponding

portions of the axial imaging pencils in object and image space are transformed in

such a way that the amplitude in the high-NA image space is given by

AN =
1

(1 − s2
0ρ

2)1/4
, (3)

with s0 = sin α = NA/n and n the refractive index of the image space of the

optical system (radiometric effect). The corresponding intensity is obtained from,

for instance, a far field measurement.

• Vector diffraction

When we take into account the vector character of the focusing beam and assume,
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for instance, an x-linearly polarized light beam in the entrance pupil, the on-axis

amplitude in focus is only built up from the x-component of the field on the exit

pupil sphere (I(0, 0) ∝ ExE
∗
x; see Fig. 1 for the definition of the field vectors in

the high-numerical-aperture image space). The contribution to the x-component in

focus by the field on the exit pupil is given by [5]

Ax(ρ, θ) =
1 +

√

1 − s2
0ρ

2 − [1 −
√

1 − s2
0ρ

2] cos 2θ

2
. (4)

This distribution can be experimentally verified by a far-field intensity measurement

using an x-analyzer that is positioned perpendicularly to the z-axis.

The combination of the three contributions leads to an amplitude function according to

Al(ρ, θ) = AE(ρ, θ)





1 +
√

1 − s2
0ρ

2 − [1 −
√

1 − s2
0ρ

2] cos 2θ

2(1 − s2
0ρ

2)1/4



 , (5)

where we have added the index l to emphasize that the amplitude function corresponds

to an incident beam that is linearly polarized, in this particular case along the x-axis

(θ = 0).

In all cases of interest, Al(ρ, θ) will be a smooth function but its deviation from unity

can become important. This is illustrated in Fig. 2 where we have plotted the amplitude

function Al(ρ, θ) of Eq.(5) for several values of the numerical aperture s0 and for two

values of the azimuth (θ = 0 and π/2) where the deviation from unity is maximum. The

function AE has been set equal to unity. The curves in Fig. 2 show that for the high

value of s0=0.95 there is, at the rim of the exit pupil, a relative amplitude nonuniformity

of more than a factor of three.

The phase function Φ is also supposed to be a smooth function over the exit pupil.

Moreover, if the quality of the optical system is within the ’just’ diffraction-limited range,

the aberration is weak and the amplitude of Φ certainly does not exceed a range of

typically π. To allow a focal shift, we now extend the phase function with a defocusing

term Φd(ρ). At low numerical aperture, the defocusing term is well represented by a

simple quadratic exponential function of the normalized radial coordinate ρ according to

exp{ifρ2}. The defocus parameter f is related to the axial shift z of the focal plane by

z = λf/(πns2
0). The focal depth δf is defined by |f | = π/2, leading to δ = λ/2ns2

0. At

high values of s0, the parabolic approximation is insufficient and the correct expression,

see [6]- [7], reads

Φd(ρ) = f
1 −

√

1 − s2
0ρ

2

1 −
√

1 − s2
0

= fΨ(ρ), (6)

with Ψ(ρ) a defocus function that will be further analyzed in Sect. 2 of this paper. The

relationship between the focal shift z and the defocus parameter f for the high-numerical-
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aperture case is given by

z =
λ

2πn
{

1 −
√

1 − s2
0

} f (7)

and the focal depth δf now amounts to λ/(4n{1 −
√

1 − s2
0}).

Inserting the high-NA amplitude function Al in Eq.(2) and adding the defocus term to

the phase function, we obtain the following expression for the Strehl ratio,

S =

∣

∣

∣

1
π

∫ 2π
0

∫ 1
0 Al(ρ, θ) exp{i[Φ(ρ, θ) + fΨ(ρ)]}ρdρdθ

∣

∣

∣

2

∣

∣

∣

1
π

∫ 2π
0

∫ 1
0 Al(ρ, θ)ρdρdθ

∣

∣

∣

2 . (8)

Under the above mentioned conditions (smooth functions, limited phase excursion), we

are allowed, as it is customary in evaluating the Strehl ratio, to apply a series expansion

up to the second order of the integrand in the numerator of the expression in Eq.(8).

To this goal we will apply series expansions using Zernike polynomials to the functions

Φ(ρ, θ) and Ψ(ρ). Strehl ratio analysis at low numerical aperture is already based on

such expansions and here we extend this analysis to cover the particularities of the high-

numerical-aperture case. It has turned out to be important to also have an adequate

series expansion of the function Al(ρ, θ). Although moderate amplitude variation over

the beam cross-section in the exit pupil is commonly believed to be of minor influence on

the Strehl ratio, our high-NA case (s0 = 0.95) gives rise to such a modulation that it is

absolutely necessary to include this effect.

In the remainder of this paper we first present the Zernike expansions of the various

functions encountered in expression (8) for the Strehl ratio. The next step is to establsih

the second order expansions of the integrands, to evaluate the various integrals and to

find the expression for the optimum focus setting at high numerical aperture. At this

optimum focus setting, we then analytically evaluate the Strehl ratio using the second

order approximation. These results will then be compared to an analytic result where

we have put Al ≡ 1 and to numerical evaluations of the same quantities (focus setting

and Strehl ratio) using (8) without any approximation. As a typical test cases, we will

introduce spherical aberration and astigmatism of lowest order in the phase function Φ

as these aberrations show the most pronounced effect on the optimum focus setting.

2 Analytic expression for Strehl ratio and optimum focus

Having analyzed the Strehl ratio definition for the high-numerical-aperture case, we now

introduce the Zernike expansions of the various functions encountered in the integrands

of Eq.(8). Regarding the exponential phase function, in line with standard aberration

analysis of Φ, we write

Φ(ρ, θ) =
∑

n,m

αm
n Rm

n (ρ) cos mθ ,
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Φ1(ρ, θ) =

(

∑

n,m

αm
n Rm

n (ρ) cos mθ

)

− α0
0R

0
0(ρ) ,

Ψ(ρ, θ) =
1 −

√

1 − s2
0ρ

2
0

1 −
√

1 − s2
0

=
∑

n,m

γ0
2nR

m
n (ρ) ,

Ψ1(ρ, θ) =

(

∑

n,m

γ0
2nR

m
n (ρ)

)

− γ0
0R

0
0(ρ) . (9)

The defocus phase term Ψ has been developed into a radially symmetric Zernike expansion

with even index coefficients γ0
2n; the values of these coefficients are basically obtained by

evaluating the inner products of Ψ with the relevant radial Zernike polynomial. The

results are given in Appendix A and have been earlier derived in Appendix B of Ref. [7].

We have introduced the functions Φ1 and Ψ1 to split off the constant phase terms that

are irrelevant for the determination of optimum focus and Strehl ratio. Note that we have

limited ourselves in the aberration analysis to cosmθ-dependent aberration terms, but an

extension of the analysis to the general case including aberration terms with arbitrary

azimuthal dependence is straightforward.

With AE(ρ, θ) ≡ 1, the amplitude function Al is split into

Al(ρ, θ) =





1 +
√

1 − s2
0ρ

2 − [1 −
√

1 − s2
0ρ

2] cos 2θ

2(1 − s2
0ρ

2)1/4





= A0(ρ) − A2(ρ) cos 2θ , (10)

with

A0(ρ) =
∞
∑

n=0

a0
2nR0

2n(ρ) , A2(ρ) =
∞
∑

n=1

a2
2nR2

2n(ρ) . (11)

The expressions for the coefficients a0
2n and a2

2n as a function of s0 can be found in

Appendix A.

To calculate the approximated Strehl ratio we start by expanding the exponential of the

integrand in the numerator of Eq.(8) up to second order according to exp(ix) = 1+ix−1
2
x2.

The complex amplitude U in the numerator (equal to |U |2) is given by

U =
1

π

∫ 2π

0

∫ 1

0
Al(ρ, θ) exp{i[Φ1(ρ, θ) + fΨ1(ρ)]}ρdρdθ

≈
1

π

∫ 2π

0

∫ 1

0

(

A0(ρ) − A2(ρ) cos 2θ
)

[1 + i {Φ1(ρ, θ) + fΨ1(ρ)}

−
1

2
{Φ1(ρ, θ) + fΨ1(ρ)}2

]

ρdρdθ. (12)

Using the notation

Φm
1 (ρ) =

∑

06=n=m,m+2,···

αm
n Rm

n (ρ) =
ǫm

2π

∫ 2π

0
Φ1(ρ, θ) cos mθ dθ, (13)

for m = 0, 2 and with ǫ0 = 1, ǫ2 = 2 , we write

U ≈ 2
∫ 1

0
A0(ρ)ρdρ + 2i

∫ 1

0
A0(ρ)

{

Φ0
1(ρ) + fΨ1(ρ)

}

ρdρ
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−
1

2π

∫ 2π

0

∫ 1

0
A0(ρ) {Φ1(ρ, θ) + fΨ1(ρ)}2 ρdρdθ

−i
∫ 1

0
A2(ρ)Φ2

1(ρ)ρdρ

+
1

2π

∫ 2π

0

∫ 1

0
A2(ρ) {Φ1(ρ, θ) + fΨ1(ρ)}2 cos 2θρdρdθ, (14)

where it may be noted that the first integral above equals a0
0.

Deleting 4th order terms, expanding squares and carrying out integrations (using Eq.(13)),

we obtain

|U |2 ≈ (a0
0)

2 −
a0

0

π

∫ 2π

0

∫ 1

0
A0(ρ) {Φ1(ρ, θ)}2 ρdρdθ

− 4a0
0 f

∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ

− 2a0
0 f 2

∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ

+
a0

0

π

∫ 2π

0

∫ 1

0
A2(ρ) {Φ1(ρ, θ)}2 cos 2θρdρdθ

+ 2a0
0 f

∫ 1

0
A2(ρ)Ψ1(ρ)Φ2

1(ρ)ρdρ

+
(
∫ 1

0
A2(ρ)Φ2

1(ρ)ρdρ
)2

−
(

2
∫ 1

0
A2(ρ)Φ2

1(ρ)ρdρ
)(

2
∫ 1

0
A0(ρ)

{

Φ0
1(ρ) + fΨ1(ρ)

}

ρdρ
)

+
(

2
∫ 1

0
A0(ρ)

{

Φ0
1(ρ) + fΨ1(ρ)

}

ρdρ
)2

. (15)

We shall argue now that we can ignore the last two terms of Eq.(15), and to that end

we consider orders of magnitudes guided by the numerical results of the pilot case s0 =

0.95, see Table in Appendix A. Thus, by orthogonality and normalization of the Zernike

polynomials,

2
∫ 1

0
A2(ρ)Φ2

1(ρ)ρdρ ≈
1

3
a2

2 α2
2, (16)

2
∫ 1

0
A0(ρ)

{

Φ0
1(ρ) + fΨ1(ρ)

}

ρdρ ≈
1

3
a0

2

(

α0
2 + fγ0

2

)

. (17)

This should be compared with, for instance,

a0
0

π

∫ 2π

0

∫ 1

0
A0(ρ) {Φ1(ρ, θ)}2 ρdρdθ ≈

∑

(n,m)6=(0,0)

(αm
n )2

ǫm(n + 1)
, (18)

where ǫ0 = 1 and ǫ1 = ǫ2 = ... = 2, and with

4a0
0 f

∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ ≈
2

3
fγ0

2α
0
2, (19)

2a0
0 f 2

∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ ≈

1

3
f 2
(

γ0
2

)2
. (20)
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With a0
2 = 0.056, a2

2 = 0.414, γ0
2 = 0.473, it is then easily seen that the terms in Eqs.(16)-

(17) can be ignored compared to those in Eqs.(18)-(20).

Ignoring the last two terms in Eq.(15) and differentiating we find

∂|U |2

∂f
= −2a0

0

[

2
∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ

+ 2f
∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ

−
∫ 1

0
A2(ρ)Ψ1(ρ)Φ2

1(ρ)ρdρ
]

. (21)

Setting this equal to 0, we then find

f = −

∫ 1
0 A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ − 1
2

∫ 1
0 A2(ρ)Ψ1(ρ)Φ2

1(ρ)ρdρ
∫ 1
0 A0(ρ) {Ψ1(ρ)}2 ρdρ

. (22)

Using the results from Appendix A,

A0(ρ)Ψ1(ρ) =
∞
∑

n=0

C0
2nR0

2n(ρ), A2(ρ)Ψ1(ρ) =
∞
∑

n=1

E2
2nR2

2n(ρ), (23)

we get the final expression for the optimum focus setting

f = −

∑∞
n=1

C0

2n
α0

2n

2(2n+1)
− 1

2

∑∞
n=1

E2

2n
α2

2n

2(2n+1)
∑∞

n=1
C0

2n
γ0

2n

2(2n+1)

(24)

from orthogonality of the Zernike polynomials, normalized according to
∫ 1
0 {Rm

n (ρ)}2 ρdρ =

[2(n + 1)]−1.

As an incidental note we observe that

∞
∑

n=1

C0
2n α0

2n

2(2n + 1)
=

∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ ,

1

2

∞
∑

n=1

E2
2n α2

2n

2(2n + 1)
=

1

2

∫ 1

0
A2(ρ)Ψ1(ρ)Φ2

1(ρ)ρdρ ,

∞
∑

n=1

C0
2nγ0

2n

2(2n + 1)
=

∫ 1

0
A0(ρ) (Ψ1(ρ))2 ρdρ . (25)

When substituting the identities above in Eq.(24) we observe that the inner product (ρdρ

on 0 ≤ ρ ≤) of the functions (fA0Ψ1 + A0Φ0
1 −

1
2
A2Φ2

1) and Ψ1 has been made zero by

the particular choice of f . This means that the aberration function corresponding to

’best’ focus does not contain a high-NA defocus term of the form Ψ1 = (Ψ(ρ)− γ0
0). The

appearance of the high-NA amplitude functions A0 and A2 in the aberration function

(fA0Ψ1 + A0Φ0
1 − 1

2
A2Φ2

1) means that the true phase aberration fΨ1 + Φ1 has been

automatically weighted with the high-NA amplitude functions in obtaining the optimum

focus setting.

The expression for Strehl ratio of Eq.(15) holds for the on-axis intensity. To gather

information on the off-axis intensity at a certain focus setting f , we can introduce a
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wavefront tilt in, for instance, the x- or the y-direction. Wavefront tilt is represented by

the coefficient α1
1, multiplied with cos θ for an x-excursion in the focal volume and sin θ

for the y-direction. We have introduced such a wavefront tilt in the expression for U in

the case that the wavefront aberration itself is limited to the circularly symmetric terms

(α0
2n 6= 0). Carrying out the integrations of the relevant terms of Eq.(15), see Appendix

B.1, we obtain

|U(r, φ, f)|2 ≈
(

a0
0

)2
− 2a0

0

[
∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ

+2f
∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ + f 2
∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ

+
(2πr)2

8
a0

0

(

a0
0 +

1

3
a0

2

)

−
(2πr)2 cos 2φ

24
a0

0 a2
2

]

, (26)

where we have used cylindrical coordinates (r, φ, f) in the focal region with the origin in

the center of the nominal image plane. The expression is quadratic in the lateral field

coordinate r and provides us with the principal curvatures in the x- and y-cross-sections

of the intensity distribution in the chosen focal plane. It follows from the expression of

Eq.(26) that, when focusing a high-NA beam, the intensity distribution has two principal

curvatures leading to the well-known elliptical profile of the point-spread function if the

incident state of polarization is linear. The analytic expression also confirms that the

major axis of the elliptic intensity profile is found along the polarization direction of

the incident light. The method using a wavefront tilt coefficient to obtain the off-axis

intensity can be extended to non-circularly-symmetric aberration, for instance lowest

order astigmatism.

The Strehl ratio following from Eq.(26) is given by

S ≈ 1 −
2

a0
0

[
∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ + 2f

∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ

+ f 2
∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ

]

= 1 −
2

a0
0

[

∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ + f

∞
∑

n=1

C0
2nα0

2n

2n + 1
+ f 2

∞
∑

n=1

C0
2nγ0

2n

2(2n + 1)

]

, (27)

where the optimum f -value has to be used to find the focus setting with maximum Strehl

ratio.

The evaluation of the remaining integral in Eq.(27) in terms of Zernike coefficients a0
2n

and α0
2n can be done in principle by working out the Zernike coefficients of {Φ0

1(ρ)}
2
. In

the examples in Section 3 with α0
2 and α0

4 as the only nonzero coefficients, this is easily

done (see Appendix B). In Section 3 we also present an analysis of S in the presence of

lowest order astigmatism (α2
2 and α0

2). The detailed derivation of S for this case is also

found in Appendix B.
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3 Numerical results

The effects of a high NA-value (NA=0.95) on the Strehl ratio and optimum focus setting

are illustrated in Figs. 3, 4 and 5. To check the foregoing analysis we start by introducing

spherical aberration of lowest order accompanied by a focus off-set, represented by their

Zernike coefficients α0
4 and α0

2. We then first apply our high-NA analysis with an exact

treatment of the defocus effect according to Eq.(6) but neglecting the amplitude effects

at high NA that are given by Eq.(5). This approach is in line with the common opinion

that phase defects are more influential on a quantity like Strehl ratio than amplitude

nonuniformities. Fig. 3 present the paraxially approximated Strehl ratio using Eq.(27)

with s0 → 0, the value according to Eq.(27) for s0 = 0.95, and the result from a numerical

calculation using, for instance, Eq.(8). Note that the numerical calculation does include

the basic high-NA amplitude nonuniformity Al(ρ, θ) according to Eq.(5) with AE ≡ 1.

We observe from the figure that our analytic predictions for the optimum focus setting

approach the exact numerically calculated values, but a significant difference is still there.

The same holds for the predicted maximum Strehl ratios according to the exact numerical

calculation and our predicted values from Eq.(27). The conclusion from the foregoing is

that the amplitude nonuniformity at a value s0 = 0.95 is such that it can not be neglected.

In Fig. 4 we produce the results of our analytic treatment including the high-NA ampli-

tude function Al(ρ, θ) of Eq.(5) with AE ≡ 1. The curves apply to the same aberration

and defocus settings as in Fig. 3 and present the paraxial approximation, the analytic

results from our analysis and the numerically obtained data from Eq.(8). We remark

that, like in Fig. 3, this latter result could also have been obtained by a numerical eval-

uation of the vector diffraction integral [5] with the appropriate normalization according

to Eq.(2); both results were found to be in perfect correspondence. In contrast with Fig.

3 we now observe an almost perfect correspondence between the analytic results and the

numerically obtained values. They show a pronounced difference with the predictions

from paraxial theory, both with respect to the position of the optimum focal plane and

the maximum obtainable Strehl ratio. The focus offset with respect to the paraxial case

at the NA-value of 0.95 is seen to be approximately 20% of one focal depth (which corre-

sponds to ∆f = π/2). This deviation is significant with respect to the paraxial low-NA

prediction and has to be taken into account in the design and manufacturing of optical

systems. Even when no spherical aberration is present, the paraxially predicted focus

setting is not correct (see Fig. 4, third graph). This effect again has to be attributed

to the ’apparent’ spherical aberration term that is introduced by a defocusing at high

NA-value. The focus offset in the third graph also explains the unequal focus offset with

respect to ’paraxial’ in the two upper graphs of Fig. 4. The aberration-free optimum

focus is found well in between the two focus settings for focused beams with spherical

aberration of opposite sign. Although a strong defocus like in the first two graphs of Fig.

(4) will generally not be the final focus setting of a high-quality optical instrument, these
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settings are encountered during initial measurement and quality tuning of the instrument.

The convergence process to optimum quality is improved when the correct focus settings

at high-NA are taken into account instead of the paraxial predictions.

In Fig. 5 we show the focus offset that is found according to the three approaches

when the spherical aberration coefficient α4
0 is varied. The focus setting according to

the paraxial approximation, as it was to be expected, does not show any dependence

on the presence of spherical aberration and the focus setting is found at the fixed value

f = −2α2
0. In the lefthand graph of Fig. 5 we have shown the behaviour of f according

to our analytic treatment in the case that the amplitude nonuniformity according to

Eq.(5) was omitted from the analysis (dotted curve, labeled ’Eq.(22)’). The difference

with the exact, numerically obtained data that include the high-NA amplitude effects

(dashed curve, labeled ’numerical’) is still appreciable although there is a considerable

positive correlation with Eq.(22). The righthand figure applies to the same cases with the

exception that the amplitude nonuniformity now has been included in our analytic results

(dotted curve). The correspondence with the non-approximated numerical calculations

(dashed curved) becomes very satisfactory, showing the nonnegligible role played by the

amplitude nonuniformity in the evaluation of optimum focus for a high-numerical-aperture

beam.

A special case for the optimum focus setting f arises when the phase function Φ1 only

comprises a second order ’aberration’ term with coefficient α0
2 6= 0. Then Eq.(24) reduces

to

f = −
1
6
C0

2
∑∞

n=1
C0

2n
γ0

2n

2(2n+1)

α0
2 = −

1
6
C0

2
∫ 1
0 A0(ρ) {Ψ1(ρ)}2 ρdρ

α0
2. (28)

In the paraxial approximation, the constant in front of α0
2 in Eq.(28) equals −2. When

s0 = 0.95 and the amplitude effects are ignored (Al ≡ 1), this coefficient equals −2.0807,

and when the Al of Eq.(10) is used, this coefficient equals -2.0697. Finally, when we con-

sider the limiting case s0 ↑ 1, the coefficients equal −2 (paraxial), -12/5=-2.4 (Eq.(24),

Al ≡ 1), and -203/88=-2.3068 (Eq.(24), Al as in Eq.(10)), respectively.

In Fig. 6 we present the results for Strehl intensity as a function of focus setting in the

presence of lowest order astigmatism (α2
2 6= 0). The various curves again apply to the

paraxial approximation, the numerical evaluation of Eq.(5) and our analytic evaluation of

S according to Eq.(B.10). In Fig. 6 we have permanently included the high-NA amplitude

nonuniformity in our analytic calculations, the reason why the results for the numerical

and analytic results correspond very well. In the upper left graph, the astigmatic coef-

ficient α2
2 equals +π/4, leading to a lesser curved wavefront cross-section for the radial

section at θ = 0. As it was the case throughout this paper, the incident beam in the

entrance pupil was linearly polarized along the x-axis (θ = 0). Because of the smaller

amplitude in the exit pupil in this cross-section, the stronger curvature of the wavefront

in the radial section with θ = π/2 will dominate in determining the best focus, in this

case closer to the exit pupil than the paraxial best-focus. To optimise Strehl ratio, we now
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have to introduce a nonzero defocus value fa such that the dominant wavefont curvature

in the cross-section θ = π/2 is partly compensated according to fa + wα2
2 cos(π) = 0 with

w a weighting factor. From the Figure we see that fa ≈ +0.2, so that the w-value is close

to 0.25 at our NA-value of 0.95. The inverse effect is produced when the sign of α2
2 is

opposite (lower left graph). In the two righthand graphs we have added a focus offset

by making α0
2 = +π/4. The paraxially best focus is found at f = −π/2. In the upper

right graph with α2
2 = +π/4, an off-set is found for the high-NA calculations to a more

positive f -value, but less pronounced than in the upper left graph. This is caused by the

’apparent’ spherical aberration that is introduced by the focus offset and that counteracts

the offset introduced by astigmatism. A comparable effect is present in the lower right

figure (α2
2 = −π/4), but here we observe an addition of the f -shifts due to astigmatism

and spherical aberration.

Regarding the approximated Strehl ratios according to our second-order analysis and the

exact numerically obtained values in all the examples, these remain very close as long

as we stay in the range S ≥ 0.8. The small difference in maximum value stems from

the approximation to second order of the exponential phase function in the integrand of

Eq.(2). The maximum Strehl ratio is either higher or lower than the one following from

the low-NA expression, see Fig. 4. This effect can again be attributed to the influence

of defocusing on spherical aberration in the high-NA case. A defocusing is accompanied

by wavefront deformation of orders 2n with a significant contribution at 2n = 4. This

contribution can enhance the already existing spherical aberration and lower the Strehl

ratio like in Fig. 4-a or produce the opposite effect like in Fig. 4-b, depending on the

sign of the coefficient α0
4. Accordingly, the approximation quality of the analytic formula,

which has been devised neglecting higher orders, is affected in a similar fashion. Figure 4

also shows that at high-NA values the decrease in Strehl ratio with defocusing according

to the exact formula is less pronounced than in the approximated expressions, both for

high and low (paraxial) numerical aperture. This effect can again be attributed to the

expansion of the phase function Φ up to only second order and the neglect of the higher

orders.

4 Conclusion

We have evaluated the Strehl ratio for high-numerical-aperture imaging systems. Maxi-

mum Strehl ratio is an important criterion in the design and experimental optimization of

an optical system. Its simple relationship with minimum quadratic wavefront deviation

is not maintained in the high numerical aperture case. For finding the focus setting with

maximum Strehl ratio, it is essential to use the rigorous expression for defocusing in a

high-NA system instead of the paraxial quadratic approximation. Apart from using the

correct expression for the phase departure of the pupil function, it is also needed to take

into account the apparent amplitude nonuniformity due to the vector effects in high-NA

11



image formation. Our analysis shows that the focal setting that is commonly derived from

a Zernike expansion of the aberration function needs to be adapted at high NA values to

find the image plane with the highest possible Strehl ratio. The amplitude nonuniformity

in the exit pupil that is inherent to high-NA imaging has a non-negligible influence in

determining this optimum focus setting and calculating the maximum Strehl ratio. The

Zernike coefficients of the optical system are only correct when they are determined in

the best-focus position.

A Analytic results for the various Zernike expansion coefficients

In this Appendix we present the various Zernike expansions of the amplitude and phase

functions that are encountered in the high-NA Strehl ratio analysis. The derivations are

based on the evaluation of inner products with the radial Zernike polynomials. Only

the results are given, the intricate derivations that were regularly encountered have been

omitted.

We first present some basic quantities, related to high-NA imaging and then produce the

expressions for the Zernike coefficients of the relevant aperture functions. At the end

of the Appendix, numerical values of coefficients are listed pertaining to an NA-value of

0.95. These numerical values are useful in evaluating the relative importance of terms

contributing to the Strehl intensity and they support the reasoning why some of these

terms have been deleted from the analysis.

• Definition of some constants

c0 = (1 − s2
0)

1/2, d0 =
(

1 − c0

s0

)2

(A.1)

• Expansion coefficients of (1 − s2
0ρ

2)α

(1 − s2
0ρ

2)α =
∞
∑

n=0

D0
2n(α)R0

2n(ρ) , n = 0, 1, ... (A.2)

D0
2n(α) =

2n + 1

n + 1

∞
∑

k=n

(−1)k
(

α
k

)(

k
n

)

(

n+k+1
k

) s2k
0 , n = 0, 1, ... (A.3)

• Expansion coefficients of 1 − (1 − s2
0ρ

2)α

1 − (1 − s2
0ρ

2)α =
∞
∑

n=1

G2
2n(α)R2

2n(ρ) , n = 1, 2, ... (A.4)

G2
2n(α) = −

2n + 1

n

∞
∑

k=n

(−1)k
(

α
k

)(

k−1
n−1

)

(

n+k+1
k+1

) s2k
0 , n = 1, 2, ... (A.5)
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• Expansion coefficients of Ψ(ρ)

Ψ(ρ) =
1 −

√

1 − s2
0ρ

2

1 − c0

=
∞
∑

n=0

γ0
2nR0

2n(ρ) ; Ψ1(ρ) = Ψ(ρ) − γ0
0 (A.6)

γ0
0 =

1 + 2c0

3(1 + c0)
, γ0

2n =
1

2

(

dn−1
0

2n − 1
−

dn+1
0

2n + 3

)

, n = 1, 2, ... (A.7)

• Expansion coefficients of A0(ρ)

A0(ρ) =
1 +

√

1 − s2
0ρ

2

2(1 − s2
0ρ

2)1/4
=

∞
∑

n=0

a0
2nR0

2n(ρ) ; (A.8)

a0
2n =

1

2

(

D0
2n(−1/4) + D0

2n(1/4)
)

, n = 0, 1, ... (A.9)

• Expansion coefficients of A2(ρ)

A2(ρ) =
1 −

√

1 − s2
0ρ

2

2(1 − s2
0ρ

2)1/4
=

∞
∑

n=0

a2
2nR2

2n(ρ) ; (A.10)

a2
2n =

1

2

(

G2
2n(1/4) − G2

2n(−1/4)
)

, n = 1, 2, ... (A.11)

• Expansion coefficients of A0(ρ)Ψ1(ρ)

A0(ρ)Ψ1(ρ) =
1 +

√

1 − s2
0ρ

2

2(1 − s2
0ρ

2)1/4





1 −
√

1 − s2
0ρ

2

1 − c0
− γ0

0



 =
∞
∑

n=0

C0
2nR0

2n(ρ) ; (A.12)

C0
2n =

1

2(1 − c0)

[

{1 − γ0
0(1 − c0)}D

0
2n(−1/4)

− γ0
0(1 − c0)D

0
2n(1/4) − D0

2n(3/4)
]

, n = 0, 1, ... (A.13)

• Expansion coefficients of A2(ρ)Ψ1(ρ)

A2(ρ)Ψ1(ρ) =
1 −

√

1 − s2
0ρ

2

2(1 − s2
0ρ

2)1/4





1 −
√

1 − s2
0ρ

2

1 − c0

− γ0
0



 =
∞
∑

n=1

E2
2nR2

2n(ρ) ; (A.14)

E2
2n =

−1

2(1 − c0)

[

{1 − γ0
0(1 − c0)}G

2
2n(−1/4)

− {2 − γ0
0(1 − c0)}G

2
2n(1/4) + G2

2n(3/4)
]

, n = 1, 2, ... (A.15)

To conclude this Appendix, we give the numerical values of the most important coefficients

that are encountered in the Strehl ratio analysis (s0 = 0.95).

c0 = 0.312250, d0 = 0.524100
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a0
2n = 1.028866, 0.056333, 0.042380, 0.022633, 0.011679, 0.005987, n = 0, 1, ..., 5

γ0
2n = 0.412650, 0.472532, 0.077067, 0.023276, 0.008485, 0.003395, n = 0, 1, ..., 5

C0
2n = 0.009615, 0.496726, 0.103650, 0.042274, 0.019268, 0.009182, n = 0, 1, ..., 5

a2
2n = 0.413719, 0.115181, 0.046428, 0.020838, 0.009813, n = 1, 2, ..., 5

E2
2n = 0.121137, 0.135165, 0.056529, 0.025408, 0.011910, n = 1, 2, ..., 5

B Analytic results for Strehl intensity for some specific aberra-

tion types

B.1 Introduction of wavefront tilt to obtain off-axis intensity values

In this subsection we introduce a wavefront tilt and calculate the corresponding on-axis

Strehl intensity. We thus obtain information on the off-axis intensity distribution of the

non-tilted focused beam. We demonstrate this method for a beam that is affected by cir-

cularly symmetric aberration. A wavefront comprising a circularly symmetric component

plus a wavefront tilt is represented by

Φ1(ρ, θ) = α1
1ρ cos(θ − φ) + Φ0

1(ρ), (B.1)

where α1
1 is the wavefront tilt expressed in radians, φ determines the azimuth of the

wavefront tilt and Φ0
1(ρ) is the circularly symmetric aberration term. The substitution

of this particular wavefront aberration in the first six integral terms occurring in Eq.(15)

leads to the following results. The first integral yields two contributions according to

−
a0

0

π

∫ 2π

0

∫ 1

0
A0(ρ) {Φ1(ρ, θ)}2 ρdρdθ

= −
a0

0

π

∫ 2π

0

∫ 1

0
A0(ρ)

[

(

α1
1

)2
ρ2 cos2(θ − φ) + 2α1

1ρ cos(θ − φ)Φ0
1(ρ) +

{

Φ0
1(ρ)

}2
]

ρdρdθ

= −a0
0

(

α1
1

)2
∫ 1

0
A0(ρ)ρ2ρdρ + 2a0

0

∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ

= −
1

4
a0

0

(

α1
1

)2
(

1

3
a0

2 + a0
0

)

+ 2a0
0

∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ. (B.2)

The second and third integral of Eq.(15) are unaffected by the wavefront tilt. The sub-

stitution of (B.1) in the fourth integral yields as only nonzero contribution

a0
0

π

∫ 2π

0

∫ 1

0
A2(ρ)

(

α1
1

)2
ρ2
{

1

2
+

1

2
cos(2θ − 2φ)

}

cos 2θρdρdθ

=
a0

0

2

(

α1
1

)2
cos 2φ

∫ 1

0
A2(ρ)ρ2 ρdρ =

1

12
a0

0a
2
2

(

α1
1

)2
cos 2φ. (B.3)

The fifth and sixth integral are zero in the circularly symmetric case and the substitution

of the above results in Eq.(15) then yields the expression of Eq.(26) where we have used
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the relationship α1
1/2π = r with r the normalized radial image plane coordinate. In the

special case that Φ0
1(ρ) = α0

2R
0
2(ρ), the only remaining integral, see Eq.(B.2), can be

evaluated as
∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ =

(

α0
2

)2
(

1

6
a0

0 +
1

15
a0

4

)

. (B.4)

B.2 Spherical aberration

For some other basic aberration types, analytic results for the Strehl ratio can be obtained.

In the case of circularly symmetric aberration terms, the expression for the Strehl ratio

of Eq.(27) can be evaluated and at the optimum f -value this yields

Sopt = 1 −
1

a0
0






2
∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ −

(

∑∞
n=1

C0

2n
α0

2n

2n+1

)2

∑∞
n=1

C0

2n
c0
2n

2n+1






. (B.5)

The integral occurring in Eq.(27) and Eq.(B.5) can be written as

I = 2
∫ 1

0
A0(ρ)

{

Φ0
1(ρ)

}2
ρdρ =

∞
∑

n=0

a0
2n

CR0

2n

[

(Φ0
1)

2
]

2n + 1
, (B.6)

where we have indicated between brackets that the coefficients C are those of the Zernike

polynomial R0
2n in the expansion of (Φ0

1)
2
. The evaluation of the Strehl intensity in the

special case that only α0
2 and α0

4 (lowest order ’spherical’) are nonzero leads to the following

value of the integral above

I = a0
0

[

(α0
2)

2

3
+

(α0
4)

2

5

]

+
4

15
a0

2α
0
2α

0
4 +

a0
4

5

[

2(α0
2)

2

3
+

2(α0
4)

2

7

]

+
6

35
a0

6α
0
2α

0
4 +

2

35
a0

8(α
0
4)

2. (B.7)

B.3 Second order astigmatism and defocus

The wavefront aberration is given by

Φ1(ρ, θ) = α0
2R

0
2(ρ) + α2

2R
2
2(ρ) cos 2θ, (B.8)

where α2
2 now is the astigmatic coefficient with the principal curvatures of the astigmatic

wavefront oriented along the x- and y-axes (φ = 0). A somewhat longer derivation is

needed here to calculate the on-axis intenstity I and the Strehl ratio using the best focus

setting fopt, but the analysis basically proceeds along the same lines as in (B.1). We

present below the analytic results for the six relevant integrals of Eq.(15) when setting

Φ0
1(ρ) = α0

2R
0
2(ρ) and Φ2

1(ρ) = α2
2R

2
2(ρ). We have

∫ 2π

0

∫ 1

0
A0(ρ) {Φ1(ρ, θ)}2 ρdρdθ

= π
(

α0
2

)2
[

2

15
a0

4 +
1

3
a0

0

]

+
1

2
π
(

α2
2

)2
[

1

30
a0

4 +
1

6
a0

2 +
1

3
a0

0

]

,
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∫ 1

0
A0(ρ)Ψ1(ρ)Φ0

1(ρ)ρdρ =
1

6
C0

2α
0
2,

∫ 1

0
A0(ρ) {Ψ1(ρ)}2 ρdρ =

∞
∑

n=0

C0
2nγ0

2n

2(2n + 1)
,

∫ 2π

0

∫ 1

0
A2(ρ) {Φ1(ρ, θ)}2 cos 2θρdρdθ =

1

2
πα0

2α
2
2

(

1

3
a2

2 +
1

5
a2

4

)

,
∫ 1

0
A2(ρ)Ψ1(ρ)Φ2

1(ρ)ρdρ =
1

6
E2

2α
2
2,

∫ 1

0
A2(ρ)Φ2

1(ρ)ρdρ =
1

6
a2

2α
2
2 . (B.9)

With the analytically obtained integral values, the optimum focus setting is obtained from

Eq.(22). Finally, the expression for the Strehl ratio as a function of f is given by

S ≈ 1 −
(α0

2)
2

a0
0

[

2

15
a0

4 +
1

3
a0

0

]

−
(α2

2)
2

a0
0

[

1

60
a0

4 +
1

12
a0

2 +
1

6
a0

0

]

−f

[

2C0
2α

0
2 − E2

2α
2
2

3a0
0

]

− f 2 1

a0
0

∞
∑

n=0

C0
2nγ0

2n

2n + 1

+
α0

2α
2
2

a0
0

[

1

6
a2

2 +
1

10
a2

4

]

+
(a2

2)
2(α2

2)
2

36(a0
0)

2
. (B.10)
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Figure Captions

Figure 1

The propagation of the incident wave from the entrance pupil S0 through the optical sys-

tem towards the exit pupil S1 and the focal region at the image plane PI . The orthogonal

unit vectors for the field components and the wave vector are indicated in object and

image space by (~e0, ~g0, ~s0) and (~e1, ~g1, ~s1), respectively. A point on the exit pupil sphere

is defined by means of the polar coordinates (ρ, θ). The aperture (NA) of the imaging

pencil is given by s0 = sin αmax.

Figure 2

Plot of the amplitude function Al(ρ, θ) as a function of ρ, see Eq.(5), for two cross-sections:

θ = 0 with Al ≤ 0 and θ = π/2 (Al ≥ 0). The values of the numerical aperture s0 are 0.0,

0.50, 0.85 and 0.95, respectively.

Figure 3

Analytic calculation of the Strehl ratio as a function of the defocus parameter f with a

uniform amplitude distribution on the exit pupil sphere. The aberration is lowest order

spherical aberration with a focus off-set (NA=0.95; α0
2 = π/4, α0

4 = ±0.85). The drawn

line represents the low-NA approximation (paraxial), the dotted curve is obtained with

the aid of Eq.(27) including the uniform amplitude function. Finally, the dashed curve,

denoted by ’numerical’, follows from Eq.(8) where the correct amplitude function at high-

NA is taken into account. Lefthand figure: α0
4 = +0.85, righthand figure: α0

4 = −0.85.

The respective maximum points of the three curves are indicated with a corresponding

vertical line.

Figure 4

Legend as in Figure 3, but now the analytic calculations have included the amplitude

nonuniformity. The amplitude function Al(ρ, θ) is given by Eq.(5) with AE ≡ 1. Upper

lefthand figure: α0
4 = +0.85, upper righthand figure: α0

4 = −0.85). An extra figure has

been added where α0
4 = 0. The vertical lines for the optimum focus setting now virtu-

ally coincide for the analytic and numerical calculation. We remark that, even in the

aberration-free case (lower figure), a focus off-set is observed with respect to the paraxial

prediction.

Figure 5

Best-focus setting f as a function of the Zernike coefficient of spherical aberration α0
4 in

three different cases: paraxial approximation, numerical evaluation and our analysis of
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best focus setting according to Eq.(22). The initial defocusing coefficient α0
2 is π/4. The

paraxial approximation predicts a constant best focus setting at f = −π/2, the numerical

evaluation shows a deviation from this value, even when α0
4 = 0. In both graphs, we

have also presented the focus setting according to Eq.(27), in the lefthand graph without

taking into account the high-NA amplitude nonuniformity, in the righthand graph this

effect has been included.

Figure 6

Strehl ratio as a function of focus setting in the presence of astigmatic aberration with

coefficient α2
2 6= 0. The paraxially obtained curve (’Paraxial’, s0 → 0) and the numerically

calculated curve using the exact integral expression (’numerical’) are given together with

the result of our analytic treatment, see Eq.(B.10). In the lefthand graphs, the coefficient

α2
2 is +π/4 (upper left graph) and −π/4 (lower left graph). The defocus coefficient α0

2

equals zero in both cases. In the righthand graphs, the same astigmatic coefficients are

used for the upper and lower graphs, but now combined with a focus offset of one paraxial

focal depth (α0
2 = π/4.
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