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Abstract.

We consider scaling of pupils on the level of the Zernike coefficients of the
pupil function. We thus present formulas for the Zernike coefficients and
their first 2 derivatives as a function of the scaling factor ε ≤ 1, and we
apply this to the Strehl ratio and its derivatives of NA-scaled optical sys-
tems. The formulas for the Zernike coefficients of scaled optical systems are
also useful for the forward calculation and aberration retrieval within the ex-
tended Nijboer-Zernike (ENZ-) formalism for optical systems that have been
scaled or have a central obstruction. Thus, we retrieve a Gaussian, comatic
pupil function on an annular set from the intensity point-spread function in
the focal region under high-NA conditions.

Keywords:

NA-scaling, Zernike coefficients, Strehl ratio, central obstruction, aberration
retrieval, ENZ-theory.

1 Introduction and overview

In highly corrected optical systems that operate in or close to the diffraction-
limited regime, the residual aberrations are small and the optical design is
such that the distribution of aberration over the aperture of the imaging pen-
cils minimizes image degradation. Various criteria to assess image quality are
used. The maximum intensity of the point-spread function, the image of a
point source in the object plane, is a good measure for image quality. Nor-
malized to unity for the perfect imaging system, its value S for an aberrated
system yields useful information on the imaging performance that can be
expected. This quantity has been defined by Strehl in 1896 and is commonly
called Strehl ratio[1]. Another quality measure for imaging systems is the
root mean square value Wrms of the wavefront aberration in the exit pupil
of a system. For modest aberration values, smaller than the wavelength λ of
the light, a direct relationship can be established between the Strehl ratio S
and Wrms [2] according to

S = 1 − k2W 2
rms, (1)

with k = 2π
λ
. A well-corrected optical system should not produce a Strehl

value below 0.80 and the corresponding upper limit for root mean square
wavefront aberration equals Wrms ≤ 0.071λ. The well-corrected optical sys-
tems described above are meant to operate at a well-defined and fixed aper-
ture and any change in it compromises the balancing of aberrations that was
obtained in the design process. The change in aperture towards higher values
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generally is excluded because of mechanical constraints. A lower aperture is
possible but can lead to rather unexpected effects in, for instance, the root
mean square residual aberration or the Strehl ratio of the produced point-
spread function of the system. As an example of systems with a variable
aperture we quote lithographic projection systems. At some occasions they
are used below their maximum aperture value to optimize the imaging on the
wafer of a particular mask structure with less demanding features. Another
possible change in effective aperture is brought about by a central obstruc-
tion. This type of obstruction is found when extra beams of light have to
be transported through the imaging system with the aid of auxiliary mirrors
or, simply, because the system is meant to be catadioptric by design. Ex-
amples of these systems are also found in optical lithography and, of course,
in astronomical observation. Another class of optical systems with varying
aperture uses a so-called iris diaphragm. In most cases, the iris diaphragm
is found in imaging systems that are operating far away from the diffraction
limit, like in those for classical photography. However, with the advent of
short-focus, image-sensor based photographic lenses, these systems operate
close to the diffraction limit. On the other hand, in these modern devices
the action of the mechanical iris diaphragm has mostly been replaced by an
electronic shutter. One optical imaging system in which the (circular) iris
remains fully active is the eye of humans and humanoids. In ophthalmol-
ogy, the eye doctor carries out measurements on the optical eye with varying
iris diameter or at full aperture using an iris-freezing drug. When studying
visual perception or when obtaining images of the retina via the eye lens,
the aberrations as a function of iris diameter need to be well known and, if
necessary, they are scaled from the full diameter to the actual active diame-
ter. Important changes in aberration correction and Strehl intensity can be
expected in this case. Both the point-spread function and, for high-quality
systems, the Strehl ratio can be expressed in terms of the Zernike coefficients
of the pupil function. It is therefore of interest to quantify how the Zernike
coefficients vary when the aperture is reduced to a fraction ε < 1 of the
maximum aperture value.

To be more specific, we consider a pupil function

P (ρ, ϑ) = A(ρ, ϑ) eiΦ(ρ,ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (2)

on a unit disk with amplitude A ≥ 0 and real phase Φ, where we assume
that the normalizations are such that the maximum aperture value gives rise
to a pupil radius of unity. The pupil function P can be thought of as being
represented in the form of a Zernike series according to (polar coordinates)

P (ρ, ϑ) =
∑

n,m

βm
n Zm

n (ρ, ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π . (3)
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Here Zm
n (ρ, ϑ) denotes the Zernike function

Zm
n (ρ, ϑ) = Rm

n (ρ)

{
cos mϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (4a)

sin mϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (4b)

with integer n, m ≥ 0 such that n−m is even and ≥ 0, and Rm
n is the Zernike

polynomial of the azimuthal order m and of degree n, see [3], Appendix VII.
For simplicity, we shall only consider the cosine-option in (3), the treatment
for the sine-option in (3) being largely the same.

The through-focus complex-amplitude point-spread function U pertaining
to the optical system is expressed in terms of the pupil function P as the
diffraction integral

U(ρ, ϕ, f) =
1

π

1∫

0

2π∫

0

eifρ2

P (ρ, ϑ) e2πirρ cos(ϑ−ϕ) ρ dρ dϑ , (5)

where we have used polar coordinates r, ϕ in the image planes and f denotes
the focal variable. Also, the Strehl ratio of the optical system is defined as

S =

∣
∣
∣
∣
∣
∣

1

π

1∫

0

2π∫

0

P (ρ, ϑ) ρ dρ dϑ

∣
∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣
∣

1

π

1∫

0

2π∫

0

|P (ρ, ϑ)| ρ dρ dϑ

∣
∣
∣
∣
∣
∣

2 . (6)

Using the Zernike expansion (3) of P , the point-spread function U admits
the representation

U(r, ϕ, f) = 2
∑

n,m

im βm
n V m

n (r, f) cos mϕ , (7)

in which the V m
n are specific functions that have become available in tractable

form recently (Section 4 has details for this). Similarly, under a small-
aberration assumption, the Strehl ratio S can be approximated in terms
of the Zernike expansion coefficients α of the aberration phase Φ according
to

Φ(ρ, ϑ) =
∑

n,m

αm
n Zm

n (ρ, ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (8)

as

S ≈ S(α) := 1 −
∑

n,m

(αm
n )2

εm(n + 1)
(9)
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(real α’s; ε0 = 1, ε1 = ε2 = ... = 1, Neumann’s symbol). In the summation
in Eq. (9) the term with (n, m) = (0, 0) is omitted.

Now reducing the NA to a fraction ε ≤ 1 of its maximum value, means
that we set P (ρ, ϑ) = 0 outside the disk 0 ≤ ρ ≤ ε, 0 ≤ ϑ ≤ 2π, and leave
P as it is inside the disk. In order to obtain convenient forms for U and
S as in (7) and (9), it is, in principle, possible to expand the new P = Pε

as a Zernike series on the full disk 0 ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π. However, the
resulting series has poorly decaying coefficients, due to the discontinuity at
ρ = ε (Appendix C is explicit about this). Also, it is not clear what the new
phase Φ = Φε and its Zernike expansion are going to be, the amplitude being
0 outside the disk 0 ≤ ρ ≤ ε. We therefore choose for a different approach
in which we observe that the new U = Uε is obtained as

Uε(r, ϕ, f) =
1

π

ε∫

0

2π∫

0

eifρ2

P (ρ, ϑ) e2πirρ cos(ϑ−ϕ) ρ dρ dϑ =

=
ε2

π

1∫

0

2π∫

0

eifε2ρ2

P (ερ, ϑ) e2πirερ cos(ϑ−ϕ) ρ dρ dϑ (10)

in which the last expression in (10) has been obtained from the middle one
by changing the variable ρ, 0 ≤ ρ ≤ ε, into ερ, 0 ≤ ρ ≤ 1. By the same
variable transformation, we have that the new Strehl ratio S = Sε is given
by

S =

∣
∣
∣
∣
∣
∣

1

π

1∫

0

2π∫

0

P (ερ, ϑ) ρ dρ dϑ

∣
∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣
∣

1

π

1∫

0

2π∫

0

|P (ερ, ϑ)| ρ dρ dϑ

∣
∣
∣
∣
∣
∣

2 . (11)

Eqs. (10), (11) show that we are in the same position as in (7) and (9), when
we would have available the Zernike expansion of the scaled pupil P (ερ, ϑ),
0 ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π, and of the scaled phase Φ(ε, ρ, ϑ), 0 ≤ ρ ≤ 1,
0 ≤ ϑ ≤ 2π. Limiting ourselves here to P (the developments for Φ being the
same), we thus seek to find the Zernike expansion

P (ερ, ϑ) =
∑

n,m

βm
n (ε) Zm

n (ρ, ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (12)

in which the coefficients βm
n (ε) should be related to the βm

n in the Zernike
expansion of the unscaled P (ρ, ϑ), see (3).
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The problem of expressing Zernike coefficients of scaled pupil functions
into Zernike coefficients of unscaled pupil functions has been considered re-
cently, see [4], [5], [6], [7], [8], [9]. The developments in [4], [5], [6], [7]
eventually led to an explicit series expansion for the matrix elements Mm

nn′(ε)
required to compute βm

n (ε) from βm
n′ according to

1

2(n + 1)
βm

n (ε) =
∑

n′

Mm
nn′(ε) βm

n′ , n = m, m + 2, ... , (13)

see [7], Eq. (19) (Dai’s formula) and Appendix A where we give a new proof
for it. We note here that the computation scheme decouples per azimuthal
order m due to azimuthal orthogonality of the Zm

n (ρ, ϑ). The factor 1/2(n +

1) in front of βm
n (ε) in (13) is due to the normalization

1∫

0

(Rm
n (ρ))2 ρ dρ =

1/2(n+1) of the Zernike polynomials. The matrix elements Mm
nn′(ε) take by

orthogonality of the Rm
n the form

Mm
nn′(ε) =

1∫

0

Rm
n′(ερ) Rm

n (ρ) ρ dρ , n, n′ = m, m + 2, ... . (14)

Indeed, since by (3)

P (ερ, ϑ) =
∑

n′,m

βm
n′ Rm

n′(ερ) cos mϑ , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (15)

we need to find the Zernike m expansion of Rm
n′(ερ):

Rm
n′(ερ) =

∑

n

2(n + 1) Mm
nn′ Rm

n (ρ) , 0 ≤ ρ ≤ 1 . (16)

A more general matrix approach for scaling, rotating and displacing pupils
was considered in [8]; this yields, however, not the explicit type of results for
Mm

nn′ that we are interested in here.
In [9] it is shown that

Mm
nn′(ε) =

Rn
n′(ε) − Rn+2

n′ (ε)

2(n + 1)
, n, n′ = m, m + 2, ... , (17)

where it is understood that Rk
l ≡ 0 when k, l are integers ≥ 0 such that

l − k is even and < 0. A number of consequences of Eq. (17) was noted in
[9]. Among these is the formula

βm
n (ε) =

∑

n′

(Rn
n′(ε) − Rn+2

n′ (ε)) βm
n′ , n = m, m + 2, ... , (18)
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where the summation is over n′ = m, m + 2, ..., n. Furthermore, in [9] an
expression for the derivative of αm

n (ε) and for S(α(ε)), see Eqs. (8), (9), at
ε = 1 is given, showing large sensitivity of aberration coefficients and Strehl
ratios for values of ε near the maximum 1.

In this paper we expand on the investigations in [9] which was only a
brief letter aimed at the lithographic community. Thus we present formulas
for the first 2 derivatives of βm

n (ε) and S(α(ε)) at general ε ∈ [0, 1], and we
consider these results in the context of the semigroup structure governing
scaling operations. We also present examples of pupil functions for which
d
dε

S(α(ε)) and
(

d
dε

)2
S(α(ε)) at ε = 1 can have all 4 combinations of signs.

These examples are somewhat counterintuitive, the common opinion being
that Strehl ratios of scaled pupils should decrease when NA is increased.
We furthermore show how the in recent years developed extended Nijboer-
Zernike (ENZ-) formalism, see the ENZ-website [10] or [11], [12], [13], [14],
[15], [16], for the computation of through-focus optical point-spread functions
and the retrieval of optical aberrations from through-focus intensities, has to
be modified so as to apply to scaled optical systems and to systems with a
central obstruction. As an example, we show a retrieval result for a Gaussian,
comatic pupil function on an annular set under high-NA conditions. The
proofs of our results are collected in the three appendices.

2 Mathematical results

In this section we present our results in a mathematical form; the application
of these results are to be found in the subsequent sections. All proofs are
contained in Appendix A.

2.1 Basic results

We start by repeating the basic result (17), extended as

Mm
nn′(ε) =

Rn
n′(ε) − Rn+2

n′ (ε)

2(n + 1)
=

Rn+1
n′+1(ε) − Rn+1

n′−1(ε)

2ε(n′ + 1)
, n, n′ = m, m+2, ... ,

(19)
that we discuss and prove in full in Appendix A. Since we have by convention
that Rk

l = 0 when l − k < 0, we see that

Mm
nn′(ε) = 0 , n outside {m, m + 2, ..., n′} . (20)

Furthermore, Mm
nn′(ε) does not depend on m; however, note that in Eq. (18)

both indices n, n′ are restricted to m, m+2, ... . Evidently, we also have from
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the two identities in Eq. (19) that

βm
n (ε) =

∑

n′

n + 1

(n′ + 1) ε
(Rn+1

n′+1(ε)−Rn+1
n′−1(ε)) βm

n′ , n = m, m+2, ... . (21)

As a consequence of the second identity in Eq. (19) we show in Ap-
pendix A that for n, n′ = m, m + 2, ...

Mm
nn(ε) =

εn

2(n + 1)
, (22a)

Mm
nn′(ε) =

−1

2k
(1 − ε2) εn P

(1,n+1)
k−1 (2ε2 − 1) , k = 1

2
(n′ − n) = 1, 2, ... , (22b)

where P
(α,β)
l denotes the Jacobi polynomial with parameters α, β and of

degree l, see [17], Ch. 22. These formulas can be used to show that Mm
nn′(ε)

has appropriate behaviour as ε ↓ 0 or ε ↑ 1. Indeed,

Mm
nn′(ε = 0) = 0 all allowed m, n, n′ , (m, n) 6= (0, 0) . (23)

Therefore, βm
n (0) 6= 0 for m = n = 0 only: for ε = 0 the scaled pupil

function reduces to a constant. Furthermore, since P
(1,n+1)
k−1 (1) = k, see [17],

item 22.4.1 in Table 22.4 on p. 777, we have that

Mm
nn(ε) =

1

2(n + 1)
−

n

2(n + 1)
(1 − ε) + ... , (24a)

Mm
nn′(ε) = −(1 − ε) + ... ,

n′ − n

2
= 1, 2, ... (24b)

when ε ↑ 1. The case ε = 1 corresponds to the full (unscaled) pupil, and
thus the formulas (22a,b) for ε = 1 correctly show the orthogonality and
normalization properties of the Rm

n (ρ), 0 ≤ ρ ≤ 1.
As a consequence of the first identity in (19), the orthogonality and the

normalization properties of the Rm
n (ρ), 0 ≤ ρ ≤ 1, and the definition of

Mm
nn′(ε) in (14), we have that

Rm
n′(ερ) =

∑

n

(Rn
n′(ε) − Rn+2

n′ (ε)) Rm
n (ρ) , n′ = m, m + 2, ... , (25)

where the summation is over n = m, m + 2, ..., n′. There is a variety of other
identities of type (25) that can be obtained by interchanging ε and ρ and/or
by reorganizing the series expression at the right-hand side, and/or by using
the second identity in Eq. (19). We may also observe that all equations
presented up to now are valid for all complex values of ε, ρ (not necessarily
restricted to [0, 1]).

8



2.2 Results on derivatives

2.2.1 Expressions for derivatives of βm
n

There holds for m = 0, 1, ... and n = m, m + 2, ...

d

dε
(βm

n (ε)) =
1

ε

∑

n′

(n Rn
n′(ε) + (n + 2) Rn+2

n′ (ε)) βm
n′ , (26)

where the summation is over n′ = n, n + 2, ... . The particular case ε = 1,

(βm
n )′(1) = n βm

n + 2(n + 1) [βm
n+2 + βm

n+4 + ...] =

= n βm
n + 2(n + 1)

∞∑

k=1

βm
n+2k (27)

was already presented in [9]. Furthermore, we have

( d

dε

)2

(βm
n (ε)) =

=
∑

n′

{( n(n − 1)

ε2(1 − ε2)
+

3n − n′(n′ + 2)

1 − ε2

)

Rn
n′(ε) +

+
(

−
(n + 2)(n + 3)

ε2(1 − ε2)
+

3(n + 2) + n′(n′ + 2)

1 − ε2

)

Rn+2
n′ (ε)

}

βm
n′ ,

(28)

which shows that compact results for higher derivatives than the first one
should not be expected to exist. The explicit result for the case ε = 1,

(βm
n )′′(1) = n(n − 1) βm

n + 4(n + 1)
∞∑

k=1

[k(n + k + 1) − 3
2
] βm

n+2k (29)

is, however, still reasonably tidy.

2.2.2 Expressions for derivatives of S(α(ε))

We consider pure-phase aberrations P = exp(iΦ) in which the real phase
function Φ has the Zernike expansion

Φ(ρ, ϑ) =
∑

n,m

αm
n Zm

n (ρ, ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (30)
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with real, reasonably small expansion coefficients α. We shall generalize the
notion of Strehl ratio by defining it as

S̃ = max
V

|U |2 , (31)

where U is the point-spread function given in Eq. (5), and V denotes a subset
of the focal volume such as

(i) the single point best-focus, on axis,

(ii) the x-axis at best-focus,

(iii) the optical axis (f -axis),

(iv) the whole (x, f)-plane.

Note that |P | = 1 so that the normalization as in Eq. (6) disappears in
Eq. (31). Furthermore, since we have restricted consideration to the cosine-
option in (3), we have in (ii) and (iv) only the x-axis, rather than the whole
image plane (x, y).

In this more general situation, the Strehl ratio has the approximation

S(α) = 1 −
1

π

1∫

0

2π∫

0

∣
∣
∣
∣
∣

∼∑

n,m

αm
n Zm

n (ρ, ϑ)

∣
∣
∣
∣
∣

2

ρ dρ dϑ =

= 1 −
∼∑

n,m

(αm
n )2

εm(n + 1)
, (32)

where the ∼ on top of the summation signs means to indicate that in the
summation a set of the form

{(n, m) | m = 0, 1, ... ; n = m, m + 2, ..., n(m) − 2} , (33)

with integer n(m) ≥ m having the same parity as m, has been deleted. In
the above 4 cases the appropriate choice for the set in (33) is

(i) n(0) = 2 ; n(m) = m, m = 1, 2, ... ,

(ii) n(0) = 2, n(1) = 3 ; n(m) = m, m = 2, 3, ... ,

(iii) n(0) = 4 ; n(m) = m, m = 1, 2, ... ,

(iv) n(0) = 4, n(1) = 3 ; n(m) = m, m = 2, 3, ... .
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We then have the following results. We let

Φ̃(ρ, ϑ, ε) =
∼∑

n,m

αm
n (ε) Zm

n (ρ, ϑ) (34)

be the ∼-reduced aberration phase of the scaled pupil. Then

d

dε
S(α(ε)) =

2

πε

1∫

0

2π∫

0

|Φ̃(ρ, ϑ, ε)|2 ρ dρ dϑ −
1

πε

2π∫

0

|Φ̃(1, ϑ, ε)|2 dϑ (35)

and
( d

dε

)2

S(α(ε)) =

=
−6

ε2




1

π

1∫

0

2π∫

0

|Φ̃(ρ, ϑ, ε)|2 ρ dρ dϑ −
1

2π

2π∫

0

|Φ̃(1, ϑ, ε)|2 dϑ



 +

−
1

πε

2π∫

0

∂

∂ε
|Φ̃(ρ, ϑ, ε)|2 dϑ . (36)

These formulas can be written succinctly as

S(α(ε)) = 1 − |Φ̃(ε)|2disk , (37)

d

dε
(S(α(ε))) =

2

ε

(

|Φ̃(ε)|2disk − |Φ̃(ε)|2rim

)

, (38)

( d

dε

)2

(S(α(ε))) =
−6

ε2

(

|Φ̃(ε)|2disk − |Φ̃(ε)|2rim

)

+

−
2

ε

∂

∂ε
|Φ̃(ε)|2rim , (39)

where the two types of averaging refer to the whole disk 0 ≤ ρ ≤ 1 and the
rim ρ = 1, respectively. The formulas (38), (39) give a clue as to how to
choose Φ such that the first and second derivative of S(α(ε)) at ε = 1 exhibit
a desired sign combination (also see Sec. 3).

The first 2 derivatives of S(α(ε)) can also be expressed solely in terms of
α(ε). There holds

d

dε
(S(α(ε))) =

2

ε

∼∑

n,m

(αm
n (ε))2

εm(n + 1)
−

2

ε

∑

m

1

εm

(
∼∑

n

αm
n (ε)

)2

, (40)
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and

( d

dε

)2

(S(α(ε))) =
−6

ε2

[
∼∑

n,m

(αm
n (ε))2

εm(n + 1)
−
∑

m

1

εm

(
∼∑

n

αm
n (ε)

)]

+

−
4

ε

∑

m

1

εm

(
∼∑

n

αm
n (ε)

) (
∼∑

n

(αm
n )′(ε)

)

, (41)

where the ∼ on top of the
∑

n means to indicate summation over n =
n(m), n(m) + 2, ... .

The case that ε = 1 deserves special attention since often the NA is
reduced only a small fraction below its maximum value. We have αm

n (ε =
1) = αm

n and Φ̃(ε = 1) = Φ̃ is the ∼-reduced aberration phase of the unscaled
pupil. Then we get, for instance,

d

dε
(S(α(ε)))

∣
∣
∣
ε=1

= 2
(

|Φ̃|2disk − |Φ̃|2rim

)

=

= 2
∼∑

n,m

(αm
n )2

εm(n + 1)
− 2

∑

m

1

εm

(
∼∑

n

αm
n

)2

, (42)

and

( d

dε

)2

S(α(ε))
∣
∣
∣
ε=1

=

= − 6





∼∑

n,m

(αm
n )2

εm(n + 1)
−
∑

m

1

εm

(
∼∑

n

αm
n

)2


 +

− 4
∑

m

1

εm

(
∼∑

n

αm
n

) (
∼∑

n

αm
n [n + 1

2
(n2 − n2(m))]

)

. (43)

2.2.3 Semigroup structure of the scaling operation

We set for 0 ≤ ε ≤ 1 and m = 0, 1, ...

βm = (βm
n )n=m,m+2,... , βm(ε) = (βm

n (ε))n=m,m+2,... , (44)

and

Nm(ε) = (Nm
nn′(ε))n,n′=m,m+2,... = (Rn

n′(ε) − Rn+2
n′ (ε))n,n′=m,m+2,... . (45)
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Thus Nm
nn′(ε) denotes the matrix element of Nm(ε) with row index n and

column index n′. From Eq. (18) we have for m = 0, 1, ...

βm(ε) = Nm(ε) βm . (46)

We shall below omit superscripts m by which we mean to say that we are
considering the whole aggregate of coefficients and matrices in (44)–(45) with
m = 0, 1, ... .

The property that scaling the pupil function by factors ε1 and subse-
quently ε2 is the same as scaling by the factor ε1ε2 = ε2ε1 is reflected in
terms of β’s and N ’s as

β(ε2ε1) = N(ε2) β(ε1) = N(ε2) N(ε1) β =

= β(ε1ε2) = N(ε1) β(ε2) = N(ε1) N(ε2) β =

= N(ε2ε1) β = N(ε1ε2) β . (47)

Hence, the (N(ε))0≤ε≤1 have a commutative semigroup structure (for a group
structure we would also need the existence of inverses). Note that

N(ε = 1) = I (identity matrix) . (48)

The semigroup property

N(ε2ε1) = N(ε2) N(ε1) = N(ε1) N(ε2) (49)

can also be verified directly from Eq. (25). Indeed, using (25) for Rn′′

n (ερ)
and Rn′′+2

n (ερ), we get for any m = 0, 1, ... , m = n′′, n′′ − 2, ... from Eq. (45)
that

Nm
n′′n(ερ) = Rn′′

n (ερ) − Rn′′+2
n (ερ) =

=
∑

n′

(Rn′

n (ε) − Rn′+2
n (ε)) (Rn′′

n′ (ρ) − Rn′′+2
n′ (ρ)) =

=
∑

n′

Nm
n′n(ε) Nm

n′′n′(ρ) = (Nm(ρ) Nm(ε))n′′n . (50)

The infinitesimal generator B of the semigroup (N(ε))0≤ε≤1 is defined as

B =
d

dε
N(ε)

∣
∣
∣
ε=1

. (51)
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By Eq. (46) we have for m = 0, 1, ...

(βm)′(1) = (Nm)′(1) βm = B βm . (52)

Hence from Eq. (27) we see that the row of Bm with index n = m, m + 2, ...
is given by

0 0 ... 0
︸ ︷︷ ︸

n − m

2

n 2(n + 1) 2(n + 1) ... . (53)

The infinitesimal generator is useful for compact representation of results of
computations. This is based on the formula

N(ε) = eB ln ε =
∞∑

k=0

(ln ε)k

k!
Bk . (54)

For instance, we have for l = 0, 1, ...

( d

dε

)l

β(ε) =
(( d

dε

)l

eB ln ε
)

β . (55)

For l = 1 this yields

β ′(ε) =
1

ε
B N(ε) β , (56)

and this gives (26) when using (53) and (45). Similarly,

d

dε
[S(α(ε))] = (∇S)(α(ε)) · α′(ε) =

1

ε
(∇S)(α(ε)) · B α(ε) . (57)

This shows how the general results (38) and (40) follow from the ε = 1-result
in (42).

3 Quality assessment of scaled systems by

Strehl ratios

We consider in this section pure-phase aberrations so that the pupil function
P is given as exp(iΦ) with Φ having the Zernike expansion (8) with real
and sufficiently small α’s. We can then replace the Strehl ratio in (6) by
the quantity S(α) in (9) where the summation over (n, m) omits the term
(n, m) = (0, 0). Thus in the general setting of Subsection 2.2.2 we have the
case

(i) n(0) = 2 ; n(m) = m, m = 1, 2, ... .

14
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Figure 1: Scaling an aberrated pupil with α1
3 = α1

5 = 0.1 to relative size
ε ≤ 1. In Figure 1a we show α1

3(ε) as a function of ε, see (58), where the
tangent line at ε = 1 has slope given in accordance with (62). In Figure 1b
we do the same for α1

5(ε).

Figure 1 shows an example where we scale an aberrated pupil with α1
3 =

0.1 and α1
5 = 0.1 while all other αm

n = 0. We have in this case by Eq. (18)

α1
3(ε) = α1

3 R3
3(ε) + α1

5(R
3
5(ε) − R5

5(ε)) = ε3 α1
3 + (4ε5 − 4ε3) α1

5 , (58)

α1
5(ε) = α1

5 R5
5(ε) = ε5 α1

5 . (59)

Furthermore, in agreement with Eqs. (26), (28)

(α1
3)

′(ε) = 3ε2α1
3 + (20ε4 − 12ε2) α1

5 , (α1
5)

′(ε) = 5ε4α1
5 , (60)

and

(α1
3)

′′(ε) = 6ε α1
3 + (80ε3 − 24ε) α1

5 , (α1
5)

′′(ε) = 20ε3α1
5 . (61)

In the case ε = 1 we then find α1
3(1) = α1

3, α1
5(1) = α1

5, and, in agreement
with (27), (29)

(α1
3)

′(1) = 3α1
3 + 8α1

5 , (α1
5)

′(1) = 5α1
5 , (62)

and
(α1

3)
′′(1) = 6α1

3 + 56α1
5 , (α1

5)
′′(1) = 20α1

5 . (63)

We note from these formulas that the relative sensitivity (αm
n )−1 d αm

n /dε
increases sharply when ε approaches 1. In the case of Figure 1 we have

1

α1
3

(α1
3)

′(1) = 11 ,
1

α1
5

(α1
5)

′(1) = 5 . (64)
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We next consider the Strehl ratio for two pupils containing a variety
of aberrations (low-to-medium-high order spherical, coma, astigmatism and
trefoil). In the first example, see Figure 2, the Strehl ratio as a function of the
scaling parameter ε behaves as one expects: it decreases with increasing NA,
and it does so faster at higher NA. A somewhat more complicated behaviour
of the Strehl ratio as a function of NA occurs in the second example, see
Figure 3. For this second example, we have displayed in Figure 4 the plots
of eight functions αm

n (ε) with scaling parameter ε between 0 and 1.
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1
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S
(
ε

)

 

 

Eq.(18, 32)

Eq.(42)

Figure 2: Strehl ratio S(α(ε)) as a function of ε for a pupil containing the
following cocktail of non-zero aberrations: α0

2 = 0.1, α0
4 = 0.03, α0

6 = 0.01
(spherical); α1

1 = 0.1, α1
3 = 0.03, α1

5 = 0.01 (coma); α2
2 = 0.1, α2

4 = 0.03,
α2

6 = 0.01 (astigmatism); α3
3 = 0.1, α3

5 = 0.03 (trefoil). The drawn line shows
S(α(ε)), see (18), (32) with α’s instead of β’s, and the tangent line at ε = 1
has slope given in accordance with (42).

The example in Figure 3 allready shows that the behaviour of the Strehl
ratio as a function of NA can be more complicated then one is inclined to
expect. The next example illustrates how complicated things can get, even
in the simple case that only two spherical aberration terms are present. In
Figure 5 we have plotted

S(α(ε)) = 1 −
∑

(n,m)6=(0,0)

(αm
n (ε))2

εm(n + 1)
(65)

for the case of the radially symmetric aberration phase

Φ(ρ, ϑ) = Φ(ρ) = α0
4 R0

4(ρ) + α0
6 R0

6(ρ) (66)

16



0 0.2 0.4 0.6 0.8 1
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

ε

S
(
ε

)

 

 

Eq.(18, 32)

Eq.(42)

Figure 3: Same caption as in Figure 2, with a different cocktail of aberrations:
α0

2 = 0.1, α0
4 = −0.075, α0

6 = 0.05 (spherical); α1
1 = 0.1, α1

3 = 0.05, α1
5 =

−0.025 (coma); α2
2 = 0.05, α2

4 = 0.1, α2
6 = −0.05 (astigmatism); α3

3 = 0.05,
α3

5 = 0.05 (trefoil).

with α0
4 = −α0

6 = 0.04π. We see that S(α(ε)) exhibits the expected behaviour
only to ε = 0.6, after which α(ε) increases.

Let us examine what happens at ε = 1 in the case that S(α(ε)) and Φ
are as in (65)–(66) with general α0

4 and α0
6. We get from formulas (42)–(43)

in this case

d

dε
(S(α(ε)))

∣
∣
∣
ε=1

= 2(1
7
(α0

6)
2 + 1

5
(α0

4)
2) − 2(α0

6 + α0
4)

2 , (67)

and
( d

dε

)2

(S(α(ε)))
∣
∣
∣
ε=1

=

= −6(1
7
(α0

6)
2 + 1

5
(α0

4)
2 − (α0

6 + α0
4)

2) − 4(α0
6 + α0

4)(22α0
6 + 10α0

4) .

(68)

We set t = α0
6/α

0
4, and we consider the quadratics

Q1(t) = (α0
4)

2 d

dε
(S(α(ε)))

∣
∣
∣
ε=1

= 2(1
7
t2 + 1

5
) − 2(t + 1)2 , (69)

Q2(t) = (α0
4)

2
( d

dε

)2

(S(α(ε)))
∣
∣
∣
ε=1

=

= −6(1
7
t2 + 1

5
− (t + 1)2) − 4(t + 1)(22t + 10) . (70)
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Figure 4: Scaling the aberrated pupil of Figure 3 to relative size ε ≤ 1. The
drawn lines in the separate figures show αm

n (ε), as indicated along the vertical
axis, according to (18) with α’s instead of β’s. The tangent lines at ε = 1
have slope given in accordance with (27) with α’s instead of β’s.
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Figure 5: Strehl ratio S(α(ε)) as a function of ε for a pupil with two non-zero
aberration coefficients, α0

4 = −α0
6 = 0.04π. The drawn line shows S(α(ε)) as

given by (65) while the tangent line at ε = 1 has slope given in accordance
with (67).

There holds

Q1(t) = − 12
7

(t2 + 7
3
t + 14

15
) = − 12

7
(t − t1,+)(t − t1,−) , (71)

Q2(t) = − 580
7

(t2 + 7
5
t + 308

725
) = − 580

7
(t − t2,+)(t − t2,−) , (72)

where

t1,+ = − 7
6

+
√

77
180

= −0.512619438 , t1,− = − 7
6
−
√

77
180

= −1.820713896 ,

(73)

t2,+ = − 7
10

+
√

189
2900

= −0.444711117 , t2,− = − 7
10
−
√

189
2900

= −0.955288883 .

(74)
Since t1,− < t2,− < t1,+ < t2,+ it is seen that all sign combinations for the
first and second derivative of S(α(ε)) at ε = 1 occur. Also see Figure 6.

4 ENZ-theory for scaled optical systems and

for systems with a central obstruction

In the so-called extended Nijboer-Zernike (ENZ-) theory of diffraction, a
general pupil function P , defined on the full disk 0 ≤ ρ ≤ 1, is expanded as
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Figure 6: Sign of S ′, S ′′ = d
dε

[S(α(ε))], ( d
dε

)2[S(α(ε))] at ε = 1 for the case
that the aberrations are given in (66) and t = α0

4/α
0
6. The special points t1,±

and t2,± are given in (73-74).

a Zernike series as in (3), and the complex-amplitude point-spread function
is obtained as

U(r, ϕ, f) =
1

π

1∫

0

2π∫

0

eifρ2

P (ρ, ϑ) e2πiρr cos(ϑ−ϕ) ρ dρ dϑ =

= 2
∑

n,m

im βm
n V m

n (r, f) cosmϕ . (75)

In (75) we have normalized polar coordinates r, ϕ in the image planes, and f
is the normalized focal variable (under low-to-medium-high NA conditions it
is permitted to represent the defocus factor by exp (ifρ2)). The V m

n in (75)
are given in integral form as

V m
n (r, f) =

1∫

0

eifρ2

Rm
n (ρ) Jm(2πrρ) ρ dρ , (76)

where Jm is the Bessel function of the first kind and of order m. The V m
n

can be computed in the form of a well-convergent power-Bessel series for
all values of r and values of |f | up to 20, or, alternatively, in the form of
a somewhat more complicated Bessel-Bessel series that converges virtually
without loss-of-digits for all values of r and f , see [11], [15]. For basic ENZ-
theory, we refer to [11], [12]; for retrieval of aberrations from intensity point-
spread functions in the focal region under low-to-medium-high NA conditions
within the ENZ-framework, we refer to [14], [16]; for point-spread function
computation under high-NA conditions (including vector diffraction theory
and polarization), we refer to [13]; for aberration and birefringence retrieval
under high-NA conditions, we refer to [18], [19].
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4.1 ENZ point-spread function calculation for scaled

pupils

We shall first consider the scaling issue in the basic ENZ-setting as presented
above. So assume that we have a smooth pupil function P (ρ, ϑ), 0 ≤ ρ ≤ 1,
0 ≤ ϑ ≤ 2π. Setting the NA-value to a fraction ε ≤ 1 of its maximum
amounts to hard-thresholding of P (ρ, ϑ) to the value 0 for ε ≤ ρ ≤ 1. A
direct use of the ENZ-formalism, in which the thresholded pupil function is
developed as a Zernike series on the full pupil 0 ≤ ρ ≤ 1, is cumbersome since
an unacceptable number of terms in such a series is required for a reasonable
accuracy. In Appendix C we show that for the case that P (ρ, ϑ) = 1, 0 ≤ ρ ≤
1, 0 ≤ ϑ ≤ 2π, the thresholded pupil has Zernike coefficients β0

2n that decay
as slow as n−1/2. Instead, we proceed as in (10), where the point-spread
function of the NA-reduced optical system is written in the form

Uε(r, ϕ, f) =
ε2

π

1∫

0

2π∫

0

eifε2ρ2

P (ερ, ϑ) e2πirερ cos(ϑ−ϕ) ρ dρ dϑ . (77)

From the Zernike expansion

P (ερ, ϑ) =
∑

n,m

βm
n (ε) Zm

n (ρ, ϑ) (78)

of the scaled pupil function, with βm
n (ε) given by Eq. (18), we then get

Uε(r, ϕ, f) = 2ε2
∑

n,m

im βm
n (ε) V m

n (εr, ε2f) cos mϕ . (79)

An alternative approach, leading to the same computation scheme for
Uε, is to insert the Zernike expansion (3) of P into the first double-integral
expression in Eq. (10). Using Zm

n (ρ, ϑ) = Rm
n (ρ) cos mϑ, this leads to

Uε(r, ϕ, f) = 2
∑

n,m

im βm
n V m

n (r, f ; ε) cosmϕ , (80)

where

V m
n (r, f ; ε) =

ε∫

0

eifρ2

Rm
n (ρ) Jm(2πrρ) ρ dρ . (81)

With the substitution ρ = ερ1, 0 ≤ ρ1 ≤ 1, in the latter integral and using
Eqs. (25) to write Rm

n (ερ1) as linear combination of the Rm
n (ρ1), we get from

Eq. (76)

V m
n (r, f ; ε) = ε2

∑

n′

(Rn′

n (ε) − Rn′+2
n (ε)) V m

n′ (rε, fε2) . (82)
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The advantage of (80), (82) over (79) is that (80) is directly in terms of
the Zernike coefficients of the unscaled pupil function and that the scaling
operation is completely represented by the modification of V m

n -functions as
in (82).

In a similar fashion we can compute point-spread functions pertaining to
a pupil function P that vanishes for 0 ≤ ρ < ε and that admits in ε ≤ ρ ≤ 1
a Zernike expansion

P (ρ, ϑ) =
∑

n,m

γm
n Zm

n (ρ, ϑ) , ε ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π . (83)

In Appendix B we shall address the problem of how to obtain a feasible
Zernike approximation as in (83) for a well-behaved P in an annulus ε ≤ ρ ≤
1. Now the point-spread function U corresponding to this P is given by

U(r, ϕ, f) = 2
∑

n,m

im γm
n W m

n (r, f ; ε) cosmϕ , (84)

where

W m
n (r, f ; ε) =

1∫

ε

eifρ2

Rm
n (ρ) Jm(2πrρ) ρ dρ =

= V m
n (r, f) − V m

n (r, f ; ε) , (85)

with V m
n (r, f) and V m

n (r, f ; ε) given in (76) and (82), respectively.

A related result concerns the computation of point-spread functions for
certain multi-ring systems. Assume we have a pupil function P (ρ, ϑ), 0 ≤
ρ ≤ 1, 0 ≤ ϑ ≤ 2π, with a Zernike expansion as in (3), and numbers

0 = ε0 < ε1 < ... < εJ = 1 ; a1, a2, ..., aJ ∈ C , (86)

and consider as pupil function

P̃ (ρ, ϑ) = aj P (ρ, ϑ) , εj−1 ≤ ρ < εj , 0 ≤ ϑ ≤ 2π , (87)

with j running from 1 to J . Compare [20] where the case P = 1 is considered.
Then the point-spread function Ũ corresponding to P̃ is given by

Ũ(r, ϕ, f) = 2
∑

n,m

im βm
n Ṽ m

n (r, f) cosmϕ (88)
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in which

Ṽ m
n (r, f) =

J∑

j=1

aj

εj∫

εj−1

eifρ2

Rm
n (ρ) Jm(2πrρ) ρ dρ =

=

J∑

j=1

aj [V m
n (r, f ; εj) − V m

n (r, f ; εj−1)] (89)

with V m
n (r, f ; ε) given in(82).

4.2 ENZ aberration retrieval for optical systems with

a central obstruction

Assume that we have an optical system with an unknown pupil function
P (ρ, ϑ), 0 ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π. In [14], [16] it has been shown how
one can estimate P from the through-focus intensity point-spread function
I = |U |2 of the optical system. The key step is to choose the unknown Zernike
coefficients βm

n of P such that the match between the recorded intensity I
and the theoretical intensity

|U(r, ϕ, f)|2 =

∣
∣
∣
∣
∣
2
∑

n,m

im βm
n V m

n (r, f) cos mϕ

∣
∣
∣
∣
∣

2

(90)

is maximal. This procedure, and sophisticated variants of it, is remarkable
accurate in estimating pupil functions with aberrations as large as twice the
diffraction limit.

In the case that the pupil function is known to be obstructed in the region
0 ≤ ρ ≤ ε, aberration retrieval can be still practized with the above sketched
approach by appropriately modifying the V m

n -functions involved in it. We
thus propose P of the form

P (ρ, ϑ) =
∑

n,m

γm
n Zm

n (ρ, ϑ) , ε ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (91)

in which the γm
n are unknowns that are to be found by matching the recorded

intensity and the theoretical intensity. This theoretical intensity is given in
this case, see (84), as

I(r, ϕ, f) = |U(r, ϕ, f)|2 =

∣
∣
∣
∣
∣
2
∑

n,m

im γm
n W m

n (r, f ; ε) cosmϕ

∣
∣
∣
∣
∣

2

, (92)
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with W m
n given in (85). In Subsection 4.3 we shall illustrate this procedure

with an example (Gaussian, comatic pupil function obstructed in the disk
0 ≤ ρ ≤ 1

2
= ε), with the extra complication that the optical system has a

high NA.

4.3 Extension to high-NA systems

In [13] the extension to high-NA optical systems of the ENZ-approach to the
calculation of optical point-spread functions has been given, and in [18], [19]
the retrieval procedure has been extended to high-NA systems. These exten-
sions, though involved, are still based on the availability of computational
schemes for certain basic integrals. We consider now for integer n, m, with
n − |m| ≥ 0 and even, and for integer j the integral

V m
n,j(r, f, s0) =

1∫

0

ρ|j|(1 +
√

1 − s2
0ρ

2)−|j|+1

(1 − s2
0ρ

2)1/4
×

× exp
[ if

u0
(1 −

√

1 − s2
0ρ

2)
]

R|m|
n (ρ) Jm+j(2πrρ) ρ dρ

(93)

in which

s0 is NA-value ∈ [0, 1] , u0 = 1 −
√

1 − s2
0 . (94)

In the case that the pupil function is thresholded to 0 in a set ε ≤ ρ < 1,
the integration ranges of the integrals in (93) have to be changed from [0, 1]
to [0, ε], yielding the high-NA versions of the V m

n (r, f ; ε) in (82). As in (81)
the substitution ρ = ερ, 0 ≤ ρ1 ≤ 1, combined with the result of Eq. (25)
works wonders, and we get

V m
n,j(r, f, s0 ; ε) =

∑

n′

ε|j|+2(Rn′

n (ε)−Rn′+2
n (ε)) V m

n′,j

(

rε, f
u0(ε)

u0
, s0ε

)

, (95)

in which u0(ε) = 1 −
√

1 − (s0ε)2. Hence, the calculation of point-spread
functions and aberration retrieval for high-NA systems with thresholded
pupil functions can still be done on the level of the Zernike coefficients of
the pupil function. Also, in the case of a pupil function obstructed in the
disk 0 ≤ ρ < ε as in (83), we can do ENZ computation and retrieval under
high-NA conditions by replacing the W m

n in (85) by

W m
n,j(r, f, s0 ; ε) = V m

n,j(r, f, s0) − V m
n,j(r, f, s0 ; ε) . (96)
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As an example, we consider retrieval of the Gaussian, comatic pupil func-
tion (with s0 = 0.95)

P (ρ, ϑ) = exp [−γρ2 + i α R1
3(ρ) cos ϑ] , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (97)

which is obstructed in the disk 0 ≤ ρ < ε = 1
2

and we take α = γ = 0.1. For
this we apply the procedures as given in [18], [19] in which the V m

n,j of (93)
are to be replaced throughout by the W m

n,j of (96). Since this example can at
the present stage only be considered in a simulation environment, we should
generate the “recorded” intensity in the focal region in simulation. This we
do as follows. In [16], (A19) on p. 1726, the Zernike expansion of P on the
full disk 0 ≤ ρ ≤ 1,

P (ρ, ϑ) =
∞∑

m=0

∞∑

p=0

βm
m+2p Zm

m+2p(ρ, ϑ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (98)

has been given explicitly with β’s in the form of a triple series with good
convergence properties when γ and α in (97) are of order unity. The repre-
sentation (98) holds naturally also on the annular set ε ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π,
and thus the point-spread function computation scheme of [18], [19], using
this representation of P and with W m

n,j instead of V m
n,j as described above, can

be applied. In theory, when infinite series in (98) are used, the coefficients
retrieved with this procedure are not identical to the β’s used in (98); see Ap-
pendix B for more details. However, in the experiment we input and retrieve
only β’s with 0 ≤ m, n ≤ 10, and thereby avoid this non-uniqueness prob-
lem. For this finite set of aberration coefficients, we use the iterative version
(predictor-corrector approach) of the ENZ-retrieval method as described in
[18], Section 4.1 and [21], Appendix A. In Figure 7a we show modulus and
phase of Panalytic − Pbeta where Panalytic is the P of (97) and Pbeta is the
P of (98) in which the summations have been restricted to the terms m, p
with 0 ≤ m, m + 2p ≤ 10. In Figure 7b we show modulus and phase of
Pbeta − Pretrieved. Here Pbeta is the same as in Figure 7a, and Pretrieved is the
pupil function resulting from taking the same linear combination of Zernike
terms that constitute Pbeta but now with β’s that are obtained by applying
60 iterations of the predictor-corrector procedure using |Ubeta|

2 as “recorded”
intensity in the focal region. Note that the error levels in Figure 7a are well
below those in Figure 7b, whence a Figure 7c, showing modulus and phase of
Panalytic−Pretrieved, would practically coincide with Figure 7a and is therefore
omitted.
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Figure 7: Modulus and phase of (a) Panalytic − Pbeta and (b) Pbeta − Pretrieved

of two perpendicular cross-sections on the annular set ε = 1
2
≤ ρ ≤ 1. Here

Panalytic is given in (97) with α = γ = 0.1 and Pbeta is given by (98) in which
the summations are restricted to m, p with 0 ≤ m, m + 2p ≤ 10. Finally,
Pretrieved is obtained as the linear combination of Zernike terms Zm

m+2p, with
m, p such that 0 ≤ m, m+2p ≤ 10, where the coefficients β are obtained by
applying 60 iterations of the high-NA (s0 = 0.95), predictor-corrector version
of the ENZ-retrieval method with |Ubeta|2 as “recorded” intensity in the focal
region.

5 Conclusion

In this paper we discussed applications of a recently derived mathematical
result for obtaining the modified Zernike aberration coefficients of a scaled
pupil function that comprises both the transmission variation and wavefront
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aberration of the optical system. The formulae that lead to the Zernike co-
efficients of the scaled pupil function have been further developed to yield
also the derivatives of the separate Zernike coefficients with respect to the
scaling ratio. Using our general scaling results we were able to evaluate the
behaviour of a typical quality factor of an optical system like the Strehl ratio
under radial scaling. Surprisingly enough, the first and second derivatives of
the Strehl ratio with respect to the radial scaling parameter do not always
assume the values that follow from a simple intuitive picture, for instance a
decrease in Strehl ratio with increasing aperture. Both negative and positive
values are possible for the first and second derivatives. This means that the
initial Zernike coefficients of the full pupil could be tailored in such a way
that desired derivative values are realized under radial scaling.

The mathematical method for obtaining the Zernike coefficients of a ra-
dially scaled pupil can be implemented in the semi-analytic expression that
was previously developed by us to evaluate the diffraction integral when us-
ing the Zernike coefficients of the pupil function. With the modified Zernike
coefficients of the scaled pupil function, we easily obtain its intensity point-
spread function in the focal region. We have also shown that it is possible
to accommodate other modified pupil functions, for instance a centrally ob-
structed pupil function that is common for catadioptric imaging systems.
Using the analytic tools available for the forward diffraction calculation from
exit pupil to focal region, we have also addressed the inverse problem, viz.
the reconstruction of the amplitude and phase of the pupil function of the
optical system. We have demonstrated that the pupil function can be re-
constructed in a wide range of amplitude and phase defects by using the
information from several defocused intensity distributions; this method re-
mains applicable for radially scaled pupil functions and pupil functions with
a central obstruction. It is sufficient to adapt the forwardly calculated am-
plitude distributions in the focal region, that are associated with a typical
Zernike aberration term, to the modified pupil shape. It was also shown in
this paper that not only the scalar diffraction formalism can be handled, but
also the complete vector diffraction case which is needed at high values of
the numerical aperture of the imaging system. With the mathematical tools
that have been made available in this paper, we have extended the range of
application of our previous methods (analytic forward calculation and inverse
aberration retrieval) to more general pupil shapes. These more general shapes
like radially down-scaled pupils and apertures with a central obstruction are
frequently encountered in astronomical imaging, ophthalmologic metrology
and in instrumentation for eye surgery.
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A Proof of the mathematical properties in

Section 2

A.1 Proof of and comments on the basic results

We start by showing the result in Eq. (19). To that end we recall the repre-
sentation (14),

Mm
nn′(ε) =

1∫

0

Rm
n′(ερ) Rm

n (ρ) ρ dρ , n, n′ = m, m + 2, ... , (A.1)

and use the result

Rk
l (ρ) = (−1)

l−k
2

∞∫

0

Jl+1(r) Jk(ρr) dr , 0 ≤ ρ < 1 , (A.2)

that we shall discuss in more detail below. For now it is relevant to note that
(A.2) holds for integer k, l ≥ 0 with same parity, with the right-hand side of
(A.2) vanishing when l < k. Using (A.2) in (A.1) with k = m, l = n′ and ερ
instead of ρ, we get by interchanging integrals

Mm
nn′(ε) = (−1)

n′
−m
2

1∫

0

Rm
n (ρ)





∞∫

0

Jn′+1(r) Jm(ερr) dr



 ρ dρ =

= (−1)
n′

−m
2

∞∫

0

Jn′+1(r)





1∫

0

Rm
n (ρ) Jm(ρεr) ρ dρ



 dr . (A.3)

We next use the basic result

1∫

0

Rm
n (ρ) Jm(ρv) ρ dρ = (−1)

n−m
2

Jn+1(v)

v
(A.4)

from the classical Nijboer-Zernike theory, see [3], formula (39) on p. 910.
There results

Mm
nn′(ε) = (−1)

n′
+n−2m

2

∞∫

0

Jn′+1(r) Jn+1(εr)

εr
dr . (A.5)
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We then apply the result

Jν(z)

z
=

1

2ν
(Jν−1(z) + Jν+1(z)) , (A.6)

see [17], 9.1.27 on p. 361, to rewrite Jn+1(εr)/εr and Jn′+1(r)/r for either
instance of Eq. (19). Thus Mm

nn′(ε) is written in two ways as a sum containing
two terms of the type that occurs at the right-hand side of (A.2) (with ε
instead of ρ). This then yields both statements in Eq. (19).

We make some comments on the result (A.2). It is often attributed to
Noll, see [21], formula (9) on p. 207, but it can already be found in Nijboer’s
thesis [22], formula (2.22) on p. 26, where it is discussed in connection with
the proof of the basic result (A.4), see [22], (2.20) on p. 25. The right-hand
side of (A.2) vanishes when l−k < 0, which is consistent with the convention
that Rk

l (ρ) ≡ 0 in that case. The result (A.2) is in fact a special case of the
Weber-Schafheitlin formula, see [17], 11.4.33 on p. 487, for the integral

∞∫

0

Jµ(at) Jν(bt)

tλ
dt , 0 ≤ b < a , (A.7)

that is expressed in terms of the hypergeometric function 2F1. In the case of
formula (A.2) we have

µ = l + 1 , ν = k , a = 1 , b = ε , λ = 0 , (A.8)

and the 2F1 reduces to a terminating series (polynomial in ε2). This series can
then be expressed, by [17], 15.4.6 on p. 561, in terms of Jacobi polynomials
(α = 0, β = k, degree = 1

2
(l − k) and thus vanishing when l − k < 0,

argument 2ε2 − 1), and then one obtains the result (A.2) by the relation

Rk
l (ρ) = ρk P

(0,k)
l−k
2

(2ρ2 − 1) . (A.9)

As a consequence of Eq. (19) we have that

ρ Rm
n (ρ) − ρ Rm+2

n (ρ) =
m + 1

n + 1
(Rm+1

n−1 (ρ) − Rm+1
n+1 (ρ)) (A.10a)

which is reminiscent of Noll’s result, see [21], formula (13) on p. 208,

(Rm+1
n+1 )′(ρ) − (Rm+1

n−1 )′(ρ) = (n + 1)(Rm
n (ρ) + Rm+2

n (ρ)) (A.10b)

that we shall use in the sequel.
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We furthermore see that m has disappeared altogether from the two right-
hand side members of Eq. (19). As a consequence we have for all integer
n, n′, m ≥ 0 of same parity and such that n′ ≥ n ≥ m that

Mm
nn′(ε) =

1∫

0

ρn Rn
n′(ερ) ρ dρ . (A.11)

We shall next show Dai’s formula

Mm
nn′(ε) =







0 , n′ − n < 0 , (A.12a)

1
2
εn

i∑

j=0

(−1)i−j(n + i − j)! ε2j

(n + j + 1)! (i − j)! j!
, i =

n′ − n

2
≥ 0 , (A.12b)

when the integers n, n′, m ≥ 0, of same parity and n ≥ m, n′ ≥ m. This
result was given in [7], formula (19), but the proof given in [7] is some-
what cumbersome. Of course, (A.12) follows directly from either instance of
Eq. (19) and the explicit expression

Rm
n (ρ) =

n−m
2∑

s=0

(n − s)! (−1)s ρn−2s

(n − m

2
− s
)

!
(n + m

2
− s
)

!
(A.13)

for the Zernike polynomials. An alternative proof of Eq. (A.12) is based
upon the representation (A.1) of Mm

nn′(ε), the explicit formula (A.13) used
with Rm

n′(ερ) instead of Rm
n (ρ), the result

1∫

0

ρα Rm
n (ρ) ρ dρ = (−1)

n−m
2

(m − α)(m − α + 2) ... (n − α − 2)

(m + α + 2)(m + α + 4) ... (n + α + 2)
(A.14)

and some administration involving factorials. The result (A.14) was pre-
sented and proved in [13], Appendix A; it also occurs implicitly in Nijboer’s
thesis [22], p. 25, where it is used to prove the basic result (A.4).

We next show the results (20a,b). The result in (20a) follows immediately
from the first identity in Eq. (19) and the fact that Rn

n(ε) = εn, Rn+2
n (ε) = 0.

To show the result (20b), we start from (A.9) and we consider the second
identity in Eq. (19). Now using the contiguity property, see [17], 22.7.15 on
p. 782,

P
(0,β)
l (x) − P

(0,β)
l+1 (x) = 1

2
(1 − x)(2l + β + 1) P

(1,β)
l (x) , (A.15)
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we obtain (20b).
The other properties noted in Subsec. 2.1 are immediate consequences of

the orthogonality relation

1∫

0

Rm
n (ρ) Rm

n′(ρ) ρ dρ =
δnn′

2(n + 1)
, (A.16)

where δnn′ is Kronecker’s delta.

A.2 Proof of the results on derivatives

A.2.1 Derivatives of Zernike coefficients

We shall first show the result (26) on (βm
n )′. To that end we start with

Eq. (21) so that

βm
n (ε) =

∑

n′

n + 1

n′ + 1

1

ε
(Rn+1

n′+1(ε) − Rn+1
n′−1(ε)) βm

n′ . (A.17)

Now

(1

ε
(Rn+1

n′+1(ε) − Rn+1
n′−1(ε))

)′

=

=
−1

ε2
(Rn+1

n′+1(ε) − Rn+1
n′−1(ε)) +

1

ε
((Rn+1

n′+1)
′(ε) − (Rn+1

n′−1)
′(ε)) =

=
−1

ε

n′ + 1

n + 1
(Rn

n′(ε) − Rn+2
n′ (ε)) +

1

ε
((Rn+1

n′+1)
′(ε) − (Rn+1

n′−1)
′(ε)) ,

(A.18)

where the second identity in Eq. (19) has been used. We next use Noll’s
result in (A.10b), and we get

(1

ε
(Rn+1

n′+1(ε) − Rn+1
n′−1(ε))

)′

=

=
−1

ε

n′ + 1

n + 1
(Rn

n′(ε) − Rn+2
n′ (ε)) +

1

ε
(n′ + 1)(Rn

n′(ε) + Rn+2
n′ (ε)) =

=
1

ε

n′ + 1

n + 1
(n Rn

n′(ε) + (n + 2) Rn+2
n′ (ε)) . (A.19)

Inserting the latter result into (A.17) we get Eq. (26).
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The Eq. (27) is an immediate consequence from Eq. (26) and the fact
that Rn+2

n (1) = 0, Rn
n′(1) = Rn+2

n′ (1) = 1, n′ = n + 2, n + 4, ... .
We next show Eq. (28). To that end we start with Eq. (18),

βm
n (ε) =

∑

n′

(Rn
n′(ε) − Rn+2

n′ (ε)) βm
n′ , (A.20)

and we use [22], formula (2.11) on p. 21,

ρ(1−ρ2)(Rm
n )′′(ρ)+(1−3ρ2)(Rm

n )′(ρ)+
(

n(n+2)−
m2

ρ

)

Rm
n (ρ) = 0 . (A.21)

Thus we get

ε(1 − ε2) [(Rn
n′)′′(ε) − (Rn+2

n′ )′′(ε)] = (3ε2 − 1) [(Rn
n′)′(ε) − (Rn+2

n′ )′(ε)] +

+
(n2

ε
− n′(n′ + 2) ε

)

Rn
n′(ε) −

((n + 2)2

ε
− n′(n′ + 2) Rn+2

n′ (ε)
)

.

(A.22)

Now by (A.10a) and (A.22)

(Rn
n′)′(ε) − (Rn+2

n′ )′(ε) =
n + 1

n′ + 1

(1

ε
(Rn+1

n′−1(ε) − Rn+1
n′+1(ε))

)′

=

=
1

ε
(n Rn

n′(ε) + (n + 2) Rn+2
n′ (ε)) . (A.23)

This then yields

ε(1 − ε2) [(Rn
n′)′′(ε) − (Rn+2

n′ )′′(ε)] =

=
1

ε
(n(n − 1) Rn

n′(ε) − (n + 2)(n + 3) Rn+2
n′ (ε)) +

+ ε((3n − n′(n′ + 2)) Rn
n′(ε) + (3(n + 2) + n′(n′ + 2)) Rn+2

n′ (ε)) ,

(A.24)

and from this Eq. (28) follows.
We finally verify Eq. (29). To that end we use Eq. (26) which we differ-

entiate once more and obtain

(βm
n )′′(ε) =

(n

ε
βm

n Rn
n(ε) +

1

ε

∑

n′

(n Rn
n(ε) + (n + 2) Rn+2

n′ (ε)) βm
n′

)′

, (A.25)
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where the summation is over n′ = n + 2, n + 4, ... . Carrying through the
differentiation in (A.25) while using, see (A.21),

Rm
n (1) = 1 , (Rm

n )′(1) = 1
2
(n(n + 2) − m2) , (A.26)

we get

(βm
n )′′(1) = n(n − 1) βm

n +
∑

n′

[−(2n + 2) + 1
2
(n′(n′ + 2) − n2) +

+ 1
2
(n + 2)(n′(n′ + 2) − (n + 2)2)] βm

n′ =

= n(n − 1) βm
n +

∑

n′

(n + 1) [n′(n′ + 2) − n(n + 2) − 6] βm
n′ ,

(A.27)

where the summations are over n′ = n+2, n+4, ... . Now writing n′ = n+2k,
k = 1, 2, ... in the last member of (A.27) we get Eq. (29).

A.2.2 Derivatives of Strehl ratios

We consider the approximating S(α) as given in Eq. (32),

S(α) = 1 −
1

π

1∫

0

2π∫

0

∣
∣
∣

∼∑

n,m

αm
n Zm

n (ρ, ϑ)
∣
∣
∣

2

ρ dρ dϑ =

= 1 −
∼∑

n,m

(αm
n )2

εm(n + 1)
, (A.28)

where the ∼ on top of the summation signs refers to deletion of the terms in
a set

{(n, m) | m = 0, 1, ... ; n = m, m + 2, ... , n(m) − 2} , (A.29)

with integers n(m) ≥ m of same parity as m. We shall also write
∑∗

n,m to

indicate summation over the set in (A.29). Thus ˜∑
n,m =

∑

n,m −
∑∗

n,m, etc.
With these conventions we have

Φ(ερ, ϑ) =
∑

n,m

αm
n (ε) Zm

n (ρ, ϑ) =

=
∼∑

n,m

αm
n (ε) Zm

n (ρ, ϑ) +
∑

n,m

∗
αm

n (ε) Zm
n (ρ, ϑ) . (A.30)
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The first term in the last member of (A.30) is what we have abbreviated in
Eq. (A.32) as Φ̃(ρ, ϑ, ε).

We shall now prove Eq. (35). We have from (A.28) and (A.30)

S(α(ε)) = 1 −
1

π

1∫

0

2π∫

0

∣
∣
∣Φ(ερ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρ, ϑ)

∣
∣
∣

2

ρ dρ dϑ =

= 1 −
1

πε2

ε∫

0

2π∫

0

∣
∣
∣Φ(ρ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρε−1, ϑ)

∣
∣
∣

2

ρ dρ dϑ .

(A.31)

Then we get upon differentiating

d

dε
(S(α(ε))) =

=
2

πε3

ε∫

0

2π∫

0

∣
∣
∣Φ(ρ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρε−1, ϑ)

∣
∣
∣

2

ρ dρ dϑ +

−
1

πε2

d

dε





ε∫

0

2π∫

0

∣
∣
∣Φ(ρ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρε−1, ϑ)

∣
∣
∣

2

ρ dρ dϑ



 .

(A.32)

The first term in the second member of (A.32) equals, see (A.31),

2

πε

1∫

0

2π∫

0

∣
∣
∣Φ(ερ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρ, ϑ)

∣
∣
∣

2

ρ dρ dϑ =
2

ε
(1 − S(α(ε))) ,

(A.33)
and so, see Eq. (34) and (A.30), there only remains to be considered the
second term in the second member of (A.32). For this second term we use
the result

d

dy





y∫

0

f(x, y) dx



 = f(y, y) +

y∫

0

∂f

∂y
(x, y) dx , (A.34)
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and we get

d

dε





ε∫

0

2π∫

0

∣
∣
∣Φ(ρ, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (ρε−1, ϑ)

∣
∣
∣

2

ρ dρ dϑ



 =

= ε

2π∫

0

∣
∣
∣Φ(ε, ϑ) −

∑

n,m

∗
αm

n (ε) Zm
n (1, ϑ)

∣
∣
∣

2

dϑ +

− 2

ε∫

0

2π∫

0

(

Φ(ρ, ϑ) −
∑

n,m

∗
αm

n (ε) Zm
n (ρε−1, ϑ)

)

·

·
∑

n,m

∗ d

dε
[αm

n (ε) Zm
n (ρε−1, ϑ)] ρ dρ dϑ . (A.35)

From (A.30) and Eq. (34) it is seen that the first term in the second member
of (A.35) yields the second term in the second member of (35) when inserted
into (A.32). Thus it is enough to show that the second term in the second
member of (A.35) vanishes altogether. To that end we compute first

d

dε
[αm

n (ε) Zm
n (ρε−1, ϑ)] =

= (αm
n )′(ε) Zm

n (ρε−1, ϑ) − ε−2 αm
n (ε) ρ

( ∂

∂ρ
Zm

n

)

(ρε−1, ϑ) , (A.36)

insert this into the term under consideration, change variables in which ρ is
replaced by ερ and use (A.30) to get

−2

1∫

0

2π∫

0

∼∑

n,m

αm
n (ε) Zm

n (ρ, ϑ) ·

·
∑

n,m

∗ [
ε2(αm

n )′(ε) Zm
n (ρ, ϑ) − ε αm

n (ε) ρ
( ∂

∂ρ
Zm

n

)

(ρ, ϑ)
]

ρ dρ dϑ

(A.37)

for this term in (A.35). We now note that for each (n, m) in the set (A.29)

ε2(αm
n )′(ε) Zm

n (ρ, ϑ) − ε αm
n (ε) ρ

( ∂

∂ρ
Zm

n

)

(ρ, ϑ) (A.38)
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is a linear combination of Zernike functions Zm
n′ (ρ, ϑ) with n′ = m, m +

2, ..., n(m) − 2. Indeed, since Zm
n (ρ, ϑ) = Rm

n (ρ) cos mϑ, we can write (A.38)
as a polynomial in ρ with terms ρm, ρm+2, ..., ρn times cos mϑ. Now n ≤
n(m) − 2, and the Rm

n′(ρ), n′ = m, m + 2, ..., n(m) − 2, span the space of
linear combinations of ρm, ρm+2, ..., ρn(m)−2, from which the claim follows.
Therefore, all terms occurring in the

∑∗ in (A.37) are orthogonal to all

terms in the ˜∑, and thus (A.37) vanishes. This yields the result (35) that
can also be written in the form

d

dε
(S(α(ε))) = 2

ε
(1 − S(α(ε))) −

1

πε

2π∫

0

|Φ̃(1, ϑ, ε)|2 dϑ . (A.39)

The result (36) is an immediate consequence of (A.39) and (34), (A.30),
(A.33).

We shall now establish the results (40) and (41). The proof of (40) simply
consists of using (A.28) with αm

n (ε) instead of αm
n in (A.41) together with

the fact that

Zm
n (1, ϑ) = cos mϑ , m = 0, 1, ... , n = m, m + 2, ... (A.40)

and Parseval’s theorem. As to the result (41), we find in a similar fashion
from Eq. (36) that

( d

dε

)2

(S(α(ε))) =

= −
6

ε2

[ ∼∑

n,m

(αm
n (ε))2

εm(n + 1)
−
∑

m

1

εm

( ∼∑

n

αm
n (ε)

)]

+

−
2

πε

2π∫

0

( ∼∑

n,m

αm
n (ε) cos mϑ

)( ∼∑

n,m

(αm
n )′(ε) cos mϑ

)

dϑ , (A.41)

and the last expression of the second member in (A.41) can easily be seen
to be the same as the last expression of the second member in Eq. (41) by
Parseval’s theorem.

The special cases ε = 1 in Eqs. (42), (43) follow from αm
n (1) = αm

n and
from, see Eq. (27),

(αm
n )′(1) = n αm

n + 2(n + 1) [αm
n+2 + αm

n+4 + ...] , (A.42)

and some administration required to rewrite
∑

n

(αm
n )′(1) as

∑

n

αm
n [n + 1

2
(n2 − n2(m))] . (A.43)
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B Zernike expansion of pupil functions on an

annulus

Assume that we have a smooth pupil function P (ρ, ϑ) defined on an annulus
ε ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π. Such a P can be represented on the annulus as
an infinite Zernike series in many ways. Indeed, we can interpolate P into
the disk 0 ≤ ρ < ε, 0 ≤ ϑ ≤ 2π, in one way or another, and expand the
completed P as a Zernike series using that the Zm

n form a complete orthogonal
system for functions defined on the unit disk. Thus, the linear independence
of the infinite set of Zm

n ’s restricted to the annulus is an issue. However, any
finite set of these Zm

n ’s is linearly independent on ε ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π.
Hence, for any finite index set I of (n, m), there are unique coefficients βm

n ,
(n, m) ∈ I, such that

1∫

ε

2π∫

0

∣
∣
∣P (ρ, ϑ) −

∑

(n,m)∈I

βm
n Zm

n (ρ, ϑ)
∣
∣
∣

2

ρ dρ dϑ (B.1)

is minimal.
We shall describe the actual computation of the optimal βm

n in (B.1) for
the case that the index set I is of the form

I = {(n, m) | m = 0, 1, ..., M ; n = m, m + 2, ..., N(m)} , (B.2)

where the N(m) are integers ≥ m having the same parity as m. Let m =
0, 1, ... , and set

P m(ρ) =
1

2π

2π∫

0

P (ρ, ϑ) cosmϑdϑ , ε ≤ ρ ≤ 1 , (B.3)

the mth azimuthal average of P . Thus we have

P (ρ, ϑ) =

∞∑

m=0

εm P m(ρ) cos mϑ , ε ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π . (B.4)

Recall that Zm
n (ρ, ϑ) = Rm

n (ρ) cos mϑ. Hence, for fixed m = 0, 1, ..., M , the
optimal βm

n , n = m, m + 2, ..., N(m), minimize

1∫

ε

∣
∣
∣εm P m(ρ) −

∑

n

βm
n Rm

n (ρ)
∣
∣
∣

2

ρ dρ , (B.5)
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where the summation is over n = m, m + 2, ..., N(m). The minimum is
assumed by

[βm
m , βm

m+2, ..., β
m
N(m)]

T = εm(Mm(ε))−1 pm(ε) , (B.6)

where pm(ε) = [pm
m(ε), pm

m+2(ε), ..., p
m
N(m)]

T and

pm
n′(ε) =

1∫

ε

P m(ρ) Rm
n′(ρ) ρ dρ , n′ = m, m + 2, ..., N(m) , (B.7)

and

Mm(ε) =





1∫

ε

Rm
n (ρ) Rm

n′(ρ) ρ dρ





n,n′=m,m+2,...,N(m)

. (B.8)

It is a consequence of our results on scaled Zernike expansions that the
matrix elements Mm

nn′(ε) can be found explicitly. We have by (A.16) that

Mm
nn′(ε) =

δnn′

2(n + 1)
−

ε∫

0

Rm
n (ρ) Rm

n′(ρ ρ dρ =

=
δnn′

2(n + 1)
− ε2

1∫

0

Rm
n (ερ) Rm

n′(ερ) ρ dρ =

=
δnn′

2(n + 1)
− ε2

∑

n′′

(Rn′′

n (ε) − Rn′′+2
n (ε))(Rn′′

n′ (ε) − Rn′′+2
n′ (ε))

2(n′′ + 1)
.

(B.9)

For the last identity in (B.9) we have used Eq. (25), that gives the Zernikem-
expansions of Rm

n (ερ) and Rm
n′(ερ), and (A.16) once more. Note that the

summation in the series in the last member of (B.9) is over n′′ = m, m +
2, ..., min(n, n′). Observe also that m has disappeared. This latter fact has
advantages in the case that all N(m) = M are equal, so that all Mm(ε) are
bordered or extended versions of one another, allowing recursive computation
of (Mm(ε))−1, m = M, M − 2, ... and m = M − 1, M − 3, ... . The matrices
Mm(ε) also occur when performing Gram-Schmidt orthogonalization of the
Zernike polynomials Rm

n (ρ), n = m, m + 2, ... on [ε, 1] with weight ρ dρ, see
[23], that lead to the orthogonal annulus polynomials of Tatian, see [24].
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We have to address the issue of well-conditionedness of the matrices
Mm(ε) that have to be inverted per Eq. (B.6). To that end we consider
the normalized system

Nm
n (ρ) := Rm

n (ρ)/‖Rm
n ‖ε , n = m, m + 2, ..., N(m) , (B.10)

where ‖Rm
n ‖ε =

(
1∫

ε

|Rm
n (ρ)|2 ρ dρ

)1/2

. A preliminary experiment, with ε =

1
2
, m = 0 and N(0) = 24, has shown that for any a0, a2, ..., a24 we have

∥
∥
∥

∑

n

an N
0
n(ρ)

∥
∥
∥

ε
≥ c
(∑

n

|an|
2
)1/2

, (B.11)

where c is of the order 0.01. Since the maximum value of the lower index n
in Zernike expansions rarely exceed 10, it appears that the inversion of the
Mm(ε) in the relevant cases present no problems.

C Zernike expansion of hard-thresholded pupil

We consider the Zernike expansion of the pupil function P ≡ 1, hard-
thresholded on the annulus ε ≤ ρ < 1 to 0, so that

Pε(ρ, ϑ) =

{
1 , 0 ≤ ρ < ε , 0 ≤ ϑ ≤ 2π , (C.1a)

0 , ε ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π . (C.1b)

There holds

Pε(ρ, ϑ) =

∞∑

n=0

β0
2n,ε R0

2n(ρ) , 0 ≤ ρ ≤ 1 , 0 ≤ ϑ ≤ 2π , (C.2)

where β0
0,ε = ε2, and, for n = 1, 2, ... ,

β0
2n,ε = 2(2n + 1)

ε∫

0

R0
2n(ρ) ρ dρ = 1

2
(R0

2n+2(ε) − R0
2n−2(ε)) . (C.3)

Here [25], item (10.10) on p. 190 has been used. Now, with ε = cos x and
x ∈ (0, π/2), and Pp the Legendre polynomials, we have

R0
2p(ε) = Pp(2ε

2 − 1) = Pp(cos 2x) =

=
( 2

πp sin 2x

)1/2

cos((2p + 1) x − 1
4
π) + O(p−3/2) , p → ∞ ,

(C.4)
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where we have used [25], item (10.22) on p. 194. Then it follows from (C.3)
and (C.4) that

β0
2n,ε = −2

(sin 2x

2πn

)1/2

sin((2n + 1) x− 1
4
π) + O(n−3/2) , n → ∞ . (C.5)
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[2] A. Maréchal, Rev. Opt. (théor. instrum.) 26, 257–277 (1947) and J. Opt.
Soc. Am. 37, 982–982 (1947).

[3] M. Born and E. Wolf, Principles of Optics (7th edition, Cambridge,
Cambridge UK, 2002).

[4] K.A. Goldberg and K. Geary, “Wave-front measurement errors from
restricted concentric subdomains,” J. Opt. Soc. Am. A18, 2146–2152
(2001).

[5] J. Schwiegerling, “Scaling Zernike expansion coefficients to different
pupil sizes,” J. Opt. Soc. Am. A19, 1937–1945 (2002).

[6] C.E. Campbell, “Matrix method to find a new set of Zernike coefficients
from an original set when the aperture radius is changed,” J. Opt. Soc.
Am. A20, 209–217 (2003).

[7] G.-m. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes:
a simpler formula,” J. Opt. Soc. Am. A23, 539–543 (2006).
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