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Abstract.
The conventional representation of Zernike polynomials R)'(p) gives unac-

ceptable results for large values of the degree n. We present an algorithm for
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the computation of Zernike polynomials of arbitrary degree n. The algorithm
has the form of a discrete cosine transform which comes with advantages over
other methods in terms of computation time, accuracy and transparancy. As
an application we consider the effect of NA-scaling on the lower-order aber-

rations of an optical system in the presence of a very high order aberration.
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scaling.



1 Introduction

The Zernike radial polynomials R (p) are widely used in the representation of
the aberrations of optical systems and in the computation of the diffraction
integral defining the point-spread function of these systems.!'™ When we
are dealing with smooth exit pupil functions, it is, in general, sufficient to
consider the R for modest values of the degree n and azimuthal order m.

For such pupil functions, the conventional polynomial representation®

(’fl — 8)' (_1)8 n—2s

)= 2 (";m_s)!(";m_s)!slp |

(n—m)/2

0<p<1, (1)

can be used to calculate the Zernike polynomials. Some low order Zernike
polynomials are shown in the table below. In the case that the exit pupil
function contains discontinuities, or is roughly behaved in a more general
sense, it is necessary to consider Zernike polynomials of much higher degree
and order. For instance, when the pupil function has a central obstruction,
the coefficient of B9 (p) in the Zernike expansion of the pupil function decays
only like 7='/2. Then Eq.(1) becomes cumbersome because of the high-order
factorials that are required. Also, for m = 0, it can be shown that the largest
coefficient of p"~2% occurring in the series in Eq. (1) behaves like (1 + v/2)".
Accordingly, when computing with d decimal places, Eq. (1) produces errors
of the order of unity or larger from n = d/log(1++/2) onwards. Hence, for the
commonly used 15 decimal places precision, one has serious problems from
n = 40 onwards. An alternative to compute Zernike polynomials is to use

recursions for them such as those found in Ref. [6]. These recursion schemes
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are, however, computationally more expensive and less transparent than a
direct formula like Eq.(1), while their accuracy due to error propagation is
an issue.

In this letter, we present a new computation scheme in which there is
virtually no restriction to the degree or order of the Zernike polynomial.
This new algorithm is of the discrete-cosine transform (DCT) type, and is
direct and transparent. Furthermore, the computation can be done using the

FFT-algorithm which comes with the following advantages”®:

e Very favorable and well-established accuracy

e Simultaneous computation of all Zernike polynomials of the same de-

gree n in as few as O(nlogn) operations

As an application we consider the effect of NA-scaling on the lower-order
aberrations of an optical system in the presence of a very high order aberra-
tion. For this we use a recently found formula,® entirely in terms of Zernike

polynomials, for the Zernike coefficients of scaled pupils.

2 DCT formula for Zernike polynomials

In Appendix A we show that

mk

N-1
1 k

Rzl(p)zﬁ g Un<pcos27rﬁ)cos27rw , 0<p<1, (2)

k=

where N is any integer > n +m. In Eq. (2) we have integer n, m > 0 with

n —m even and > 0 (as usual), and U, is the Chebyshev polynomial of the
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second kind and of degree n. No matter how large n is, the evaluation of

Un(x) is no problem since we have

Un(z) = sin(n + v , T = COS V. (3)

sinv

Equation (2) gives R™(p) as the m'" component of the DCT of the se-
quence (U,(pcos2mk/N))k—o1,.. n-1, whence we get all R (p), with m > 0
and m = n,n — 2,..., using O(Nlog N) operations. Since m < n, it is
sufficient to take NV any integer > 2n.

In Fig. 1, top, we show R™(p) as a function of p, 0 < p < 1, computed
according to Eq. (1) and Eq. (2), using 16 decimal places, for m = 17, n = 39
and for m = 0, n = 50. We see that Eq. (1) gives unacceptable results for
the case m = 0, n = 50 from p = 0.8 onwards. In Fig. 2, bottom, we show
R™

n

(p), computed according to Eq. (2), with m = 0 and n = 10.000 and p
very close to 1. We see that R'(p = 1) = 1 which is in agreement with the

theory.!

3 High-order aberrations and scaling

In lithographic imaging systems, the numerical aperture (NA) is varied in-
tentionally below its maximum value so as to optimize the performance for
the particular object to be imaged. In Ref. [9] the effect of NA-scaling on
the Zernike coefficients describing the optical system has been concisely ex-

pressed in terms of Zernike polynomials. Thus we consider a pupil function

Pp,J) =exp{i®(p,¥)}, 0<p<1, 0<J<2rm, (4)



in polar coordinates with real phase ®, and we assume that ® is expanded

as a Zernike series according to
(p,0) = 3 ol R (p) cosmo . (5)

Scaling to a pupil with relative size ¢ = NA/NA .« < 1 requires computation
of the Zernike coefficients o(¢) of the scaled phase function ®(ep, ). For

m = 0,1, ... the a/"(¢) are given in terms of the o' as
ap(e) =Y ap[Ru(e) = RLP(E)],  n=mm+2,., (6)

where the summation is over n’ = n,n + 2,... (R""? = 0). In case of a
non-smooth phase function ®, one should expect significant values of o for
very high degrees n’. Also, scaling is normally done using values of ¢ close
to its maximum 1. Thus, formula (6) is not practicable in these cases when
Eq. (1) is used to evaluate the R""*(s), but becomes so when Eq. (2) is
used instead.

As an example, we consider the effect of a single high order aberration
term o on the totality of o' with n = m,m + 2,...,n’ while scaling to

relative size . We take o/ = 0 for n # n’ and o/ = 1, and get from Eq.(6)

al(e) = [Rl(e) — Ri2(e)], n=m,m+2,..,0n/, (7)

while a/*(¢) = 0 when n > n’. The numbers R"""*(¢) required in Eq. (7),
with n’ fixed and n = m,m+2,...,n", can be computed simultaneously using
O(n'logn’) operations by employing Eq. (2) in its DCT-mode. Figure 2
shows the result for m = 0 and n’ = 100, n = 0,2,---,100, a?(g) with

e =0.50 and € = 0.98.



Appendix A: Proof of the main result

We write for integer n, m > 0 with n — m even and > 0
zn (v, 1) = Z;'(p, ) = Ry'(p) cosm (8)

in which the Cartesian coordinates v, p and polar coordinates p, ¥ are re-
lated according to v = pcos?d, p = psinY and 0 < p < 1, 0 < ¥ < 27,

Furthermore, we let

V112

mon 1
fn(’/)—m /

20 (v, ) dp —1<v<l1. (9)
Vi

According to the formula for the Radon transform of Z* we have, see
Ref. [10], Eq. (8.13.17),

1

frw) = —=

Un(v) , -1<v<1. (10)
We consider next the Zernike expansion of f*(v),

= B A v (11)

n’,m’

in which the 3’s are given, due to the orthogonality® of the z’s, by

o = L ) ) v (12)

v24pu2<1

In (12) we have that m’, m/, n, n’ all have the same parity and n’ > m/,
and ¢/, = 1 for m' = 0 and ¢/, = 2 for m' = 1,2,... (Neumann’s symbol).

According to Eq. (10) we have

( , 1) 1 V1-v2

m,m’ n + Em/

o =t fuo | [ e oy
—1 —/1-12



Then using Egs. (9), (10) with n’, m’ instead of n, m, we find

1

mm! _ 2Eny on1/2 g
B _—W(n—l—l) /Un(y)Un/(y)(l V)2 dy =

1

Em/

n+1

Onn! s (14)

where ¢ denotes Kronecker’s delta, and where we have used the orthogonality
of the U’s, see Ref. [11], 22.2.5 on p. 774.

We conclude from Egs. (10), (11), (14) that

Un(v) = 3 e 2 (1) (15)

i.e., that

Un(pcos?d) = Z e R™ (p) cosm’®) (16)

By orthogonality of the cosm/d, ¥ € [0, 2x], it follows that

2

R (p) = — / Un(pcosd) cosmi) dv . (17)

0

Finally, U, (pcosd)cosmd is a trigonometric polynomial of degree n + m.
Therefore, the integral in Eq. (17) can be evaluated using the sample values
of the integrand at the points 27k/N, k = 0,1,...., N — 1 when N > n + m.

This yields Eq. (2).

Note. Equation(17) can also be used to get accurate asymptotic approx-
imations to R™(p) when n gets large. These can, for instance, be used to

explain the various phenomena that can be observed in Fig. 2.
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Table

Degree n R™(p)

0 1

1 p

P 2% — 1

2 p?

4 6pt — 6p% + 1
3 3p% —2p

3 P>
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Captions

Figure [1]
Top: R]'(p) as a function of p, 0 < p < 1, computed according to Eq. (1)
and Eq. (2), using 16 decimal places, for m = 17, n = 39 and for m = 0 ,
n = 50. Bottom: R™(p), computed according to Eq. (2), with m = 0 and

n = 10.000 and p very close to 1

Figure [2]
The disturbance a?(g) of the aberration of order n = 0,2,---,100, due to

the presence of an aberration of amplitude 1 and of the order n’ = 100 when

the system is scaled to relative size ¢ = 0.50 (left) and e = 0.98 (right).
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Figures [1] and [2]

Figure [1]

n =50, m=0
1
0 Eqf1)
— Ea.(2)
0.5 o
o
0
-0.5 o
-1 -1&
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.8 1
p p
n = 10000, m=0
1 T T T T T T T T T
05 i
0 —
-0.5F —
_1 1 1 1 1 1 1 1 1 1
-5 -4.5 -4 -35 -3 -25 -2 -1.5 -1 -0.5 0
p-1 x10°

13



Figure [2]
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