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1 Introduction

The subject of this chapter is the computation of the point-spread function
of optical imaging systems and the characterization of these systems by means
of the measured three-dimensional structure of the point-spread function. The
point-spread function, accessible in the optical domain only in terms of the
energy density or the energy flow, is a nonlinear function of the basic electro-
magnetic field components in the focal region. That is why the reconstruction
of the amplitude and phase of the optical far-field distribution that produced
a particular intensity point-spread function is a nonlinear procedure that does
not necessarily have a unique solution.

For a long time, a detailed measurement of the point-spread function was
not possible because of the lack of adequate intensity recording media. The
eye of a human subject, although close to perfection over the typical diameter
of its iris, is not capable of appreciating the small imperfections that may be
present in high-quality instruments for optical observation. In the seventeenth
and eighteenth century, telescopes and microscopes were still manufactured
in a craftmanship way, without the feedback from reliable and objective op-
tical measurement. Generally speaking, one could say that he modern epoch
of high-quality instrument making has started with the pioneering work by
Joseph von Fraunhofer who combined his gifts in optical design with a profes-
sional approach to optical measurement technology and manufacturing. In a
few decades, as of 1850, the trial-and-error methods from the past were ruled
out and scientific instrument making was gradually introduced. Nowadays, the
perfection of optical instruments has reached a level that was thought to be
impossible in the still recent past, see the statement in [Conrady (1929)]: ”it
is no use to acquire a microscope objective with a numerical aperture beyond
0.80 because a still larger cone of light will only contribute to light gathering
and not to improved imaging”. Especially since the 1970’s, the quality of opti-
cal imaging systems (telescopes, microscope objectives, high-quality projection
lenses for optical lithography, space observation cameras) has been pushed to
the extreme limits. At this level of perfection, a detailed analysis of the opti-
cal point-spread function is necessary to understand the image formation by
these instruments, especially when they operate at high numerical aperture.
In terms of the imaging defects, we are allowed to suppose that the wavefront
aberration of such instruments is not substantially larger than the wavelength
λ of the light. In most cases, the aberration even has to be reduced to a minute
fraction of the wavelength of the light to satisfy the extreme specifications of
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these imaging systems. In the following paragraphs we briefly present the past
work on point-spread function analysis and its application to the assessment
of imaging systems. We conclude this introduction with a brief outline of the
further contents of the chapter.

1.1 The optical point-spread function

A very comprehensive overview of the early history of point-spread function
analysis can be found in a review paper by [Wolf (1951)]; in this subsection
we mention the most important steps in the remote past that have led to our
present knowledge and then sketch in some more detail the recent develop-
ments since the 1950’s.

The early point-spread function analysis was based on ray optics and it fo-
cused on the influence of spherical aberration (see early work by Christiaan
Huygens, reported in [Korteweg, Huygens complete works (1941)]). Because of
the increasing quality of optical components at the beginning of the 19th cen-
tury and the refinement of, for instance, astronomical observations, a more so-
phisticated analysis of the optical point-spread function in focus was required.
This led to the expression given in [Airy (1835)] that is based on the wave the-
ory of light and takes into account the diffraction of light on its passage through
an aperture with limited extent. Point-spread function interaction when imag-
ing incoherent sources was studied by Rayleigh, see [Rayleigh (1879)], leading
to his still frequently used criterion for minimum star separation in astronomy.
An important step forward in the analysis of the point-spread function can
be found in [Lommel (1885)] who derived analytic expressions for the out-of-
focus region, thus for the first time systematically adding the axial dimension
in the analysis of diffraction images. An interesting criterion in quality assess-
ment of optical systems was introduced by Strehl, see his publication [Strehl
(1896)]. He defined the ratio of the maximum on-axis intensity of the point-
spread function of an actual imaging system and its theoretical value in the
absence of aberrations, given by Airy’s expression. This quantity was given the
name ’Definitionshelligkeit’, later called Strehl definition or Strehl ratio in the
English literature. Since then, various authors have focused on numerical eval-
uations ([Conrady (1919)]) and analytic expressions for the diffraction image
or its Strehl ratio in the presence of certain typical aberrations like spherical
aberration ([Steward (1925)]) and coma or astigmatism, see [Picht (1925)].
During this period, a continuous subject of research was the optimum distri-
bution or ’balancing’ of aberrations of various orders and types to optimize
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the quality of the point-spread function, see [Richter (1925)] for a discussion
of this topic. This subject was and still is of great practical importance for
the optical system designers who need useful rules-of-thumb in their laborious
optimization activity.

A break-through in point-spread function analysis and the study of aberra-
tions was brought about by the introduction of the circle polynomials in optical
diffraction problems, see [Zernike (1934)]). They were applied to the study of
weakly or moderately aberrated point-spread functions in references [Nijboer
(1942)] and [Zernike, Nijboer (1949)]). The orthogonality of the Zernike cir-
cle polynomials provided the optical system design community with a general
solution to the ’balancing’ problem of residual aberrations in well-corrected
imaging systems. The circle polynomials also proved their usefulness when
studying the allowable amount of aberration of an optical system to attain
a certain minimum on-axis intensity (Strehl intensity). According to a result
derived in [Maréchal (1947)], the deviation from unit Strehl ratio for small
aberrations is given by Var(Φ), the variance of the phase departure Φ of the
focusing wave over the exit pupil of the optical system. Applying the circle
polynomials to expand the phase function Φ leads to an expression for Var(Φ)
that is a simple weighted sum of squares of the Zernike expansion coefficients,
see [Born, Wolf (2002)]).

An important new development in the study of the point-spread function
of an imaging system is related to the extension of the light propagation from
the common scalar to the more intricate vector model. The complete set of
electric and magnetic field vectors has to be calculated in the focal region of
the optical system and, from these, the relevant electromagnetic quantities like
energy density and the flow components related to energy, impulse and angu-
lar momentum can be obtained. A first series of publications by [Ignatowsky
(1919)] on the vector field in focus passed relatively unnoticed by the com-
munity. Some qualitative considerations on the vector aspects of the field in
focus were put forward by Hopkins [Hopkins (1943)]. It finally was a set of
two papers, [Wolf (1959)] and [Richards, Wolf (1959)], that triggered the in-
terest for the rigorous study of high-quality imaging systems with a numerical
aperture higher than, say, 0.60. Nowadays, the vector diffraction theory pro-
posed in these papers is widely used, together with alternative representations
that will be equally discussed in this chapter. Fields of application are high-
resolution three-dimensional microscopy, high-density optical data storage and
high-resolution optical lithography.
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1.2 Quality assessment by inverse problem solving

It was mentioned above that the assessment of the quality of a highly speci-
fied optical system has to be done in the wavefront domain down to a fraction
of the wavelength of the light. Interferometric methods are mostly used for
this purpose. Although the achievable precision is very high, these methods
need refined and delicate optical set-ups and, in practice, special laser sources
to achieve sufficient signal-to-noise ratio. When a measurement at a specific
wavelength is needed for which an adequate source is not available, interpo-
lation from measurements at other wavelengths would be required and the
measurement accuracy can become a problem. For that reason, a direct mea-
surement of the point-spread function (or intensity impulse response) can be of
great practical interest if it is possible to derive from such an intensity distribu-
tion the relevant quality data of the optical system, in particular the wavefront
aberration. The strongly nonlinear relationship between the phase departure
in the exit pupil of the optical system and the detected intensity in the focal
plane leads to an ill-posed inversion problem. The first publications on this
type of inversion problems go back to [Gerchberg, Saxton (1971)], [Gerchberg,
Saxton (1972)]and [Frieden (1972)]. To improve the stability of the inversion
process, extra information from e.g. the pupil intensity distribution (optical far
field intensity) or from several image planes in the focal region is incorporated
like the ’phase diversity’ method proposed by [Gonsalves (1982)], or the multi-
ple images phase retrieval method in electron microscopy by [VanDijck, Coene
(1987)]). An early ’phase retrieval’ methods is found in [Fienup (1982)]; later
developments can be found in [Barakat, Sandler (1992)], [Frieden, Oh (1992)],
[Fienup, Marron, Schultz, Seldin (1993)], [Iglesias (1998)] and [Fienup (1999)].
The focus in this chapter will be on the assessment of optical systems using
the optical point-spread function, especially in the case of systems with very
high values of the numerical aperture in image space. The reconstruction of
complete objects, a much broader subject, is outside the scope of this chapter.
We will pay special attention to methods for representing the pupil function
of the optical system and the analytic or numerical steps that are needed to
obtain the point-spread function in the focal region. The stability of the vari-
ous pupil function representations in the inversion process is studied and the
range of wavefront aberration that can be retrieved is tested.

The organization of the chapter is as follows. We first present in Section 2
the calculation method in the forward direction to arrive from the complex
amplitude in the exit pupil of an optical system to the amplitude in the focal
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region in image space. Various levels of approximation in solving the pertinent
diffraction integral are addressed, leading to the Rayleigh and Debye integral
expressions and the so-called paraxial approximation; both the scalar and the
vector diffraction formalism are discussed. One of the important subjects in
this section is the efficient and stable representation of the exit pupil distri-
bution or far field by means of Zernike polynomials. Section 3 uses the results
from the previous section to develop analytic expressions for the energy density
and the Poynting vector components in the focal region, this in the presence
of a general exit pupil function characterized by its complex Zernike expan-
sion coefficients. In Section 4 we address the general inverse problem in optical
imaging and the various methods that have been devised so far for solving
this problem. In Section 5, the emphasis is on the application of the extended
Nijboer-Zernike diffraction theory to the optical inverse problem. By using the
information from through-focus point-source images we describe a method to
assess the quality of the optical system regarding its optical aberrations, trans-
mission defects and birefringence. In this section, both the scalar and vector
diffraction theory will be applied to the solution of the optical inverse problem.
The final short section presents the conclusions and an outlook to further re-
search in this field. Several appendices give detailed derivations of results that
were needed in the main body of the text.
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2 Theory of point-spread function formation

In this section we describe the optical model that is used for calculating
the point-spread function of optical systems that suffer from relatively small
wavefront aberrations. Analytic or semi-analytic expressions for both the in-
focus and the out-of-focus point-spread function are given, based on the work
by [Lommel (1885)] and [Nijboer (1942)]. Recent extensions apply to the de-
scription of through-focus point-spread functions in the presence of aberrations
while these are crucial when solving the inverse problem. As the basis for our
point-spread function calculation we will use the Debye diffraction integral. Its
derivation from more general diffraction integrals and its limits of applicability
are discussed in some detail. The optical model is first based on the common
scalar approximation and is then extended to include vector diffraction effects.

2.1 Field representations and the diffraction integral

In representing a field distribution on a surface and its propagated and/or
diffracted version elsewhere, it is possible to use either the basic principle
of Huygens’ spherical wavelets or the more recently developed plane wave
expansion and the concept of Fourier transformation associated with it. In the
latter case, the field distribution is described in terms of the complex spectrum
of spatial frequencies, each spatial frequency set kx, ky, kz corresponding to a
plane wave with wave vector k = (kx, ky, kz). The time dependence of the
monochromatic field components is given by exp{−iωt} and will be generally
omitted when using the complex representation of time-harmonic fields. The
result of the dispersion relation at frequency ω yields the relationship k2

x +
k2

y + k2
z = n2k2

0 = k2 with n the (complex) refractive index of the medium. We
now define the two-dimensional forward and inverse Fourier transforms of the
complex field E(r) according to (see Fig. 2.1 for the geometry of the problem)

Ẽ(z
′

; kx, ky)=
+∞
∫

−∞

∫

E(x′, y′, z′) exp{−i[kxx
′ + kyy

′]}dx′dy′, (2.1)

E(x′, y′, z′)=
1

(2π)2

+∞
∫

−∞

∫

Ẽ(z
′

; kx, ky) exp{i[kxx
′ + kyy

′]}dkxdky . (2.2)
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Fig. 2.1. The field distribution E(r
′

) and its two-dimensional spatial Fourier transform Ẽ(z′; kx, ky)
are given in the plane z = z

′

. The field has to be calculated in an arbitrary point P , given by the
general position vector r.

Using the Fourier transform Ẽ(z
′

; kx, ky) in the plane z = z′, the field in a
general point P with position vector r is given by

E(x, y, z; z′)=
1

(2π)2

+∞
∫

−∞

∫

Ẽ(z
′

; kx, ky) ×

exp{i[kxx+ kyy + kz(z − z
′

)]}dkxdky , (2.3)

where the value of kz equals
√

k2 − k2
x − k2

y for k2
x+k

2
y ≤ k2 and +i

√

k2
x + k2

y − k2

for k2
x + k2

y > k2.
The relationship between the propagation method using a Fourier-based plane
wave expansion and the physically more intuitive Huygens’ spherical wavelet
model can be established by using Weyl’s result [Weyl (1919)] for the plane
wave expansion of a spherical wave,

exp(ikr)

r
=

i

2π

+∞
∫

−∞

∫ exp{i[kxx+ kyy + kzz]}
kz

dkxdky , (2.4)

where r = (x2 + y2 + z2)1/2. A proof of Weyl’s result is given in Appendix A.
The dual approach to wave propagation has been more systematically de-
scribed in well-known textbooks like [Born, Wolf (2002)] and [Stamnes (1986)],
especially in the context of focused fields. To illustrate the connection between
both approaches we follow the arguments in [Stamnes (1986)] and study the
propagated field in the case that not the field itself is given in the plane z = z′

but its derivative with respect to z, ∂E(x, y, z; z′)/∂z. Using Eq.(2.3), taking
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the z-derivative and then putting z = z′, we find

∂E(x, y, z′; z′)

∂z
=

1

(2π)2

+∞
∫

−∞

∫

ikzẼ(z
′

; kx, ky) exp{i[kxx+ kyy]}dkxdky . (2.5)

Taking the Fourier transform of this quantity we find after some manipulation
the following relationship

FT





∂E(x, y, z′; z′)

∂z



 = Ẽd(z
′; kx, ky) = ikzẼ(z

′

; kx, ky) , (2.6)

where the subscript d indicates that we have taken the Fourier transform of
the z-derivative of the field. The propagated field according to Eq.(2.3) is now
alternatively written as

E(x, y, z; z′)=
1

(2π)2

+∞
∫

−∞

∫

Ẽd(z
′

; kx, ky) ×

exp{i[kxx+ kyy + kz(z − z
′

)]}
ikz

dkxdky . (2.7)

Following [Sherman (1967)], the above expression is interpreted as a the Fourier
transform of the product of two functions that can be put equal to the convo-
lution of their transforms

f(x, y)=
1

(2π)2

+∞
∫

−∞

∫

F1(kx, ky)F2(kx, ky) exp{i[kxx+ kyy]}dkxdky

=
+∞
∫

−∞

∫

f1(x
′, y′)f2(x− x′, y − y′)dx′dy′ , (2.8)

where the lower case functions are the inverse Fourier transforms of the corre-
sponding capital functions.

By putting F1 = Ẽd(z
′

; kx, ky) and F2 = exp{ikz(z − z′)}/(ikz) and using
the result of Eq.(2.4) we find after some arrangement the expression

Ed(x, y, z; z
′)=

−1

2π

+∞
∫

−∞

∫ ∂E(x, y, z′; z′)

∂z
×

exp{ik[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2}
[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2

dx′dy′ . (2.9)
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Like before, the subscript d indicates that the field has been obtained using
the z-derivative values in the plane z = z′ as single-sided boundary conditions
which means that we neglect any counter-propagating wave components.

It can be shown similarly that a comparable expression can be obtained
when using the field values in the plane z = z′ as starting condition and this
leads to the expression

Ef(x, y, z; z
′)=

−1

2π

+∞
∫

−∞

∫

E(x′, y′, z′; z′) ×

∂

∂z





exp{ik[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2}
[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2



 dx′dy′ . (2.10)

Ef(x, y, z; z
′) and Ed(x, y, z; z

′) are generally referred to as, respectively, the
Rayleigh-I and Rayleigh-II diffraction integrals, based on the propagation of
spherical waves or their z-derivatives. An equally weighted sum of both solu-
tions leads to a third integral expression, the well-known Kirchhoff diffraction
formula [Stamnes (1986)]. This relationship between the Rayleigh and Kirch-
hoff integrals is only valid if the assumption holds that there are no counter-
propagating wave components.

These three equivalent representations of the propagated field remain di-
rectly applicable when the effective source area is limited by an aperture A,
see Fig. 2.2. The effect of this aperture is either included in the integration

y

x

A

Q

P
r

zz=z’

y’

x’

Fig. 2.2. The field propagated to a general point P in the presence of an obstructing aperture A in
the plane z = z′ where the incident field is given. A portion of a secondary spherical wave, emanating
from a general point Q in the aperture, has been schematically indicated.

range or it is accounted for by adding a multiplying ’aperture’ function in the
integrand of the diffraction integrals. If necessary, this aperture function is
complex to account for possible phase changes introduced on the passage of
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the radiation through the aperture.

2.2 The Debye integral for focused fields

When calculating a point-spread function, the field in the aperture is ba-
sically a spherical wave converging to the focal point F . Especially for high-
numerical-aperture focused beams, it is customary to use the plane wave ex-
pansion based integral of Eq.(2.3) to calculate the focal field distribution. The
focusing incident wave passes through the diaphragm A and produces a diffrac-
tion image in the focal region near F , see Fig. 2.3. We now temporarily restrict

y

x

A

Q

P

F

r

zz=z’

y’

x’
Ω

Fig. 2.3. The incident field is a spherical wave focused at the point F (xf , yf , zf ) with the incident
field in a general point Q given by Eq.(2.11). The diffracted field in a point P is calculated by means
of an integration over the solid angle Ω that is determined by the lines joining the rim of the aperture
A and the focal point F .

ourselves to a scalar wave phenomenon, characterized by a single quantity E
to describe the field. We suppose that the field in the aperture is given by

EA(x′, y′, z′) = E0(x
′, y′)

exp{−ikRQF}
RQF

, (2.11)

with RQF given by the distance from a general point Q in the aperture with
coordinates (x′, y′, z′) to the focal point F (xf , yf , zf). The function E0(x

′, y′)
(dimension is field strength times meter) accounts for any perturbations of the
incident spherical wave in amplitude or phase; for a perfectly spherical wave
we have E0(x

′, y′) ≡ 1. The minus sign in the exponential for a converging
wave stems from the choice of the phase reference point that is commonly the
focal point F .

The angular spectrum of the field in the aperture is given by
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Ẽ(z′; kx, ky)=
∫∫

A
E0(x

′, y′)
exp{−ikRQF}

RQF
exp{−i[kxx

′ + kyy
′]}dx′dy′,

(2.12)

where possible aberrations or aperture transmission variations can be incorpo-
rated in the function E0(x

′, y′). The field limitation by the aperture boundary
is geometrically ’sharp’, not taking into account possibly more smooth elec-
tromagnetic boundary conditions. This so-called ’hard’ Kirchhoff boundary
condition is adequate when the typical dimension of the aperture is many
wavelengths large, a condition satisfied in most practical optical imaging sys-
tems.

The angular spectrum of the function Ẽ(z
′

; kx, ky) basically extends to in-
finity, among others because of the hard Kirchhoff boundary condition. This
is a serious complication when carrying out the integration of Eq.(2.3). A fre-
quently used approximation for Ẽ(z

′

; kx, ky), originally proposed by [Debye
(1909)], is

Ẽ(z
′

; kx, ky)=



































(

2π
ikz

)

E0{xf − kx

kz
(zf − z′), yf − ky

kz
(zf − z′)} ×

exp{−i[kxxf + kyyf + kz(zf − z′)]}, inside Ω

0, outside Ω

(2.13)

where rf = (xf , yf , zf) is the position vector of the focal point F and Ω denotes
the solid angle that the aperture subtends at F . The solid angle Ω equals the
solid angle of the cone of light created by the incident spherical wave after
truncation by the aperture following the laws of geometrical optics.

The expression of Eq.(2.13) can be obtained by an asymptotic expansion
of Eq.(2.12) for the aberration-free case by finding the stationary points of
the phase function [Stamnes (1986)]. In Appendix B we give the expression
for Ẽ(z

′

; kx, ky) in the presence of an aberrated incident wave. The diffraction
integral of Eq.(2.3) now becomes

E(x, y, z; z′)=
−i
2π

∫∫

Ω

E0{(xf − kx

kz
(zf − z′), yf − ky

kz
(zf − z′)}

kz
×

exp{i[kx(x− xf) + ky(y − yf) + kz(z − zf ]}dkxdky. (2.14)

14



In most cases, the coordinate z′ will be that of the center of the aperture plane
and then equals zero.

The Debye approximation thus is equivalent to the introduction of a sharp
boundary in the plane wave spectrum following from geometrical optics argu-
ments. It has been shown by [Stamnes (1986)] that the Debye approximation
is equivalent to an asymptotic value of the integral of Eq.(2.3) where only the
interior stationary point has been kept. The conditions of applicability of the
Debye approximation have been examined in [Wolf, Li (1981)]. The result of
their analysis is that the Debye integral is a sufficient approximation to the
field values in the focal region if the condition zf − z′ ≫ π/{k sin2(αm/2)}
is fulfilled with sinαm = s0 equal to the numerical aperture of the focusing
wave divided by the refractive index of the medium (see also fig. 2.4 for the
definition of numerical aperture and s0).

2.3 The Rayleigh-I integral for focused fields

In this Subsection, we will focus on the first version of the Rayleigh diffrac-
tion integrals, the so-called Rayleigh-I intgeral. For an incident focused field,
this intgeral is obtained by the substitution of Eq.(2.11) in Eq.(2.10) and,
including the aberration phase Φ(x′, y′) introduced in Appendix B, we get

Ef(x, y, z; z
′)=

−i
λ

∫∫

A

z − z′

R2
QPRQF

E0(x
′, y′) exp{iΦ(x′, y′)} ×

exp{ik(RQP −RQF )}dx′dy′, (2.15)

where Q(x′, y′, z′) again is the general point in the diffracting aperture A and
(z − z′)/RQF can be recognized as an obliquity factor for the strength of the
emitted secondary waves. The integral expression above neglects the diffracted
near-field contribution, but for kRQP >> 1, it is sufficiently accurate if the
Kirchhoff boundary conditions apply.

A direct comparison of the Rayleigh and Debye integral expressions can be
carried out by transforming the Debye integral of Eq.(2.14) from an integration
over the (kx, ky)-domain back to the (x′, y′)-domain in the planar diffracting
aperture A. With the focal point F located on the z-axis, the relation between
the coordinates (x′, y′) and the wave vector components (kx, ky) is given by,
see Fig. 2.4,

kx =
kz

zf − z′x
′

= − k

RQF
x

′

, ky =
kz

zf − z′ y
′

= − k

RQF
y

′

, (2.16)
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F

x

y

z=z’

Q

Q’

P

Q’0

R

α

a

z

Q

A

Fig. 2.4. Schematic drawing of the aperture A limiting the incident wave with its focus in the axial
point F . The possible amplitude and phase variation over the beam cross-section in A are preferably
measured or calculated on the exit pupil sphere with radius R, centered in F and intersecting the
z-axis in the point Q

′

0. In the figure, the aperture cross-section is chosen to be circular but a more
general shape can also be accommodated.

with R2
QF=x

′2 + y
′2 + (zf − z

′

)2. The Jacobian of the transformation yields

dkxdky=dx
′

dy
′

k2(zf −z
′

)2/R4
QF and, with kz = k cosαQ = k(zf −z

′

)/RQF and
after some rearrangement, we find the transformed Debye integral according
to

E(x, y, z; z′)=
−i
λ

∫∫

A

zf − z
′

R3
QF

E0(x
′

, y
′

) exp{iΦ(x
′

, y
′

)} ×

exp{ik · (rQP − rQF )}dx′

dy
′

, (2.17)

with the aberration function Φ of the incident wave explicitly included in the
integral and the components of the vector k defined by Eq.(2.16).

Discrepancies between the Rayleigh-I and the Debye integral are found in the
amplitude or obliquity factor where the difference between RQP and RQF and
the difference between z and zf is neglected in the Debye expression. Another
important difference is found in the pathlength exponential. The pathlength
difference RQP −RQF of the Rayleigh-I integral is approximated by the scalar
product s · (rQP − rQF ) with s the unit vector in the propagation direction.
Like for the obliquity factor above, the expressions are sufficiently accurate
when P and F are close and R is very large with respect to λ. The pathlength
expression in the Debye integral is exact if R → ∞ and it then corresponds
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to the pathlength definition along a geometrical ray given by Hamilton in
the framework of his eikonal functions [Born, Wolf (2002)]. The evaluation of
the function E0(x

′

, y
′

) exp{iΦ(x
′

, y
′

)} can be carried out in the plane of the
aperture A by measuring in A the amplitude and phase differences between
the actual wave and the ideal spherical wave. The function E0 exp(iΦ) carries
the information about the amplitude and phase of the bundles of rays that
have been traced through the optical system. These quantities are preferably
defined on the exit pupil sphere of the optical system, the sphere with radius
R, centered on F in Fig. 2.4 and truncated by the physical aperture A.

2.4 Comparison of the various diffraction integrals

A comparison of the various diffraction integrals for focused fields leads to
the following order in terms of accuracy and degree of approximation

• Rayleigh-I integral
The Rayleigh-I integral according to Eq.(2.15) is the most accurate one,
within the framework of scalar diffraction theory. The integral is related to
the amplitude distribution in a plane. A comparable accurate integral can
be obtained from Eq.(2.9), the so-called Rayleigh-II integral.

• Debye integral
The Debye integral, Eq.(2.14), yields accurate results once the distance from
pupil to focal point is large (Q

′

0F = R → ∞) and the aperture of the cone of
plane waves is sufficiently large. The angular spectrum is truncated according
to the geometrical optics approximation, but this truncation has less and
less influence when R increases (see [Wolf, Li (1981)] for the residual error
of this integral). The functions E0, see Eq.(2.14), accounts for a non-uniform
(complex) amplitude of the incident spherical wave.

A numerical comparison of the axial intensity in the focal region according
to the Rayleigh-I and the Debye integral is given in Fig. 2.5. The graphs in the
upper, middle and lower row apply to increasing aperture diameters of 10λ,
100λ and 105λ, respectively. In the left column of the graphs, the numerical
aperture s0 = sinαm of the focused beam in free space is 0.25, in the right
column 0.50. The plotted intensity patterns, in arbitrary units, have been nor-
malized with respect to the most accurate result following from the Rayleigh-I
integral (solid lines). The curve following from the Debye approximation of the
diffraction integral is the dotted one. The variable plotted along the horizontal
axis is the defocusing (z − zf) in units of λ. The two upper graphs show that
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Fig. 2.5. The axial intensity in the focal region calculated according to the Rayleigh-I (solid lines) and
the Debye integral expression (dotted lines). Upper row: aperture diameter 2a is 10 λ. In the middle
row, the aperture diameter has been increased to 100 λ, in the lower row we have taken 2a = 105λ.
In the graphs on the left, the numerical aperture s0 of the focusing beam in free space is 0.25, in
the graphs on the right the value is 0.50. The intensity in arbitrary units has been normalized to the
result of the Rayleigh-I integral. The defocusing z − zf has been plotted along the horizontal axis in
units of the wavelength λ of the light.

for a very small aperture diameter the difference between the Rayleigh-I and
Debye integral is large. The Rayleigh-I integral result leads to a strong asym-
metry with respect to the nominal focus position and the highest intensity is
at an axial position closer to the aperture than the nominal focal point F .
These effects are relaxed by an increase of the numerical aperture as shown by
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the upper right graph. The strong intensity oscillations at the negative defocus
values −20 ≤ z − zf ≤ −10 in the upper left graph correspond to axial points
that are very close to the diffracting aperture itself. They can be explained by
the interference effect between the wave diffracted from the circular rim of the
aperture and the undiffracted focused wave, both having comparable ampli-
tudes close to the aperture. The axial range beyond the intensity maximum
and the focal point F does not show these deep oscillations because in this
region the direct undiffracted spherical wave has, by far, the largest amplitude
on axis. The effect of a higher numerical aperture is a less pronounced focus
off-set of the Rayleigh-I integral; one also observes an increased fidelity of the
Debye integral result regarding maximum intensity. An increase of the aper-
ture diameter to 100λ makes the focus offset almost disappear, especially in
the graph on the right with s0 = 0.50. The asymmetry around focus in the
position of the relative maxima is still visible, but the Debye approximation
has strongly improved with respect to the upper row of graphs, also regard-
ing its prediction of maximum intensity. The correspondence between both
representations is increasingly better and beyond the value 2a = 500λ hardly
any difference is noticeable. This is illustrated in the lower row of graphs that
applies to the very large apertures encountered in practical optical systems,
for instance 2a = 5 mm with λ = 0.5 µm. Here, we have plotted the De-
bye approximation results as dots and these coincide extremely well with the
Rayleigh-I integral results in the range of numerical apertures that are of in-
terest for high-resolution applications. It is for imaging systems in this domain
that the quality assessment using point-spread functions will be carried out.
The lower graphs show that in this case it is fully justified to resort to the
analytically more accessible Debye integral.

• Paraxial approximation of the Debye integral
The paraxial approximation to the Debye integral is allowed if the aperture
shape is such that k2

z ≫ (k2
x + k2

y) within the cone of integration Ω, see
Eq.(2.14). The kz-factor in the nominator of the integrand is put equal to
k. The variables (kx, ky) are transformed according to kx = −k(x′

s/R) and
ky = −k(y′

s/R) with (x
′

s, y
′

s) cartesian coordinates on the exit pupil sphere
through Q

′

0 with radius R that has its midpoint in the focal point F , located
on the z-axis, see Fig. 2.4. After some manipulation and expanding the
square root for kz in the pathlength exponential up to the first power we
obtain

Ef(x, y, z; z
′)≈ −i

λR2
exp{ik(z − zf)} exp







ik
(x2 + y2)

2R







×
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∫∫

A
exp







−ik(z − zf)
(x

′2
s + y

′2
s )

2R2







Es(x
′

s, y
′

s) ×

exp{iΦs(x
′

s, y
′

s)} exp







−ikxx
′

s + yy
′

s

R







dx
′

sdy
′

s.

(2.18)

The amplitude function Es(x
′

s, y
′

s) and phase function exp{iΦs(x
′

s, y
′

s)}, de-
scribing the departure of the complex amplitude of the focusing wave from
that of a uniform spherical wave, are now defined on the exit pupil sphere
where they can easily be calculated or measured.

The paraxial approximation of Eq.(2.18) is often modified to allow the
use of dimensionless coordinates. The aperture coordinates are normalized
with respect to the lateral dimension a of the aperture. The lateral field co-
ordinates of the image point P are normalized with respect to the quantity
λR/a or λ/s0, the diffraction unit in the focal region (s0 = sinαmax = a/R

is the numerical aperture of the focusing beam). The axial coordinate z is
normalized with respect to the axial diffraction unit, λ/(πs2

0). With these
transformations we find

Ef(xn, yn, zn)≈
−is2

0

λ
exp







i2(zn − zn,f)

s2
0







exp

{

i
πλ

Rs2
0

(x2
n + y2

n)

}

×
∫∫

An

exp
{

−i(zn − zn,f)(x
′2
n + y

′2
n )
}

E(x
′

n, y
′

n) ×

exp{iΦ(x
′

n, y
′

n)} exp
{

−i2π(xnx
′

n + yny
′

n)
}

dx
′

ndy
′

n.

(2.19)

Using normalized polar coordinates (ρ, θ) in the aperture and cylindrical
coordinates (r, φ, f) in the focal region (origin of the normalized axial coor-
dinate f is in F ) yields the expression

Ef(r, φ, f)≈−is2
0

λ
exp

{

i2f

s2
0

}

exp







i
πλr2

Rs2
0







×
∫∫

An

exp
{

−ifρ2
}

E(ρ, θ) exp{iΦ(ρ, θ)} ×

exp {−i2πrρ cos(θ − φ)} ρdρdθ, (2.20)

where the amplitude and aberration functions in cartesian coordinates now
have been replaced by their analoga in polar coordinates.
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2.5 The amplitude of the point-spread function produced by an optical system

The intensity distribution in the point-spread function strongly depends on
the departure of the incident focusing wave from its reference shape, that of a
spherical wave with a uniform amplitude. In this subsection we discuss, espe-
cially for the high-numerical-aperture case, the various factors that influence
the complex amplitude distribution of the focusing wave, measured in the exit
pupil of the imaging system. We also discuss the various methods for repre-
senting the wavefront aberration on the exit pupil sphere.

2.5.1 Amplitude distribution in the exit pupil

For the calculation of the amplitude in the focal region of an optical imaging
system we need the complex amplitude distribution on the exit pupil sphere
of the system. In most practical case, we are able to specify the complex
amplitude distribution on the entrance pupil sphere or on the entrance pupil
plane in the frequently occurring case that the object conjugate of the system
is at infinity. The transfer of complex amplitude from entrance to exit pupil
depends on numerous factors like diaphragm shape, reflection losses at the
intermediate optical surfaces, light absorption in the lens materials, etc. These
effects, particular for each optical system, can be accounted for in the complex
transmission function E(ρ, θ) exp{iΦ(ρ, θ)}. A more general aspect is the pupil
imaging telling us how the complex amplitude distribution in object space is
mapped to the exit pupil sphere in image space. In Fig. 2.6 we show the
geometry that is relevant for this mapping process from object to image space.
Several options may occur in practical systems. To study these options, we
consider the intensities in an annular region of the entrance pupil and the
corresponding annulus on the exit pupil sphere. The more general situation
with a finite object distance and a spherical entrance pupil surface does not
basically change the result. Supposing loss-free light propagation, the relation
between the power flow through the annular regions of entrance pupil and exit
pupil is given by

2πI0 r0dr0 = 2πp(α)I1R
2 sinαdα, (2.21)

where r0 =
√

x2
0 + y2

0 is a function of α that determines the mapping effect and
the ratio I1/I0 = (fL/R)2 follows from the paraxial magnification between the
exit pupil and entrance pupil (fL is the focal distance of the imaging system).

21



Optical 
system

Entrance
pupil

Exit pupil

S0

1
S

P(r,φ)

z

αmaxQ’

Q’(ρ,θ)

F

Rx

y
0

0 x

y

x’

y’

a

0

Fig. 2.6. An incident wave is described by its complex amplitude on the entrance pupil sphere S0

(flat in this picture with the object point at infinity) and propagates from the entrance pupil through
the optical system towards the exit pupil sphere S1 and to the focal region with its center in F .
The co-ordinates in object and image space are referred to by (x0, y0, z0) and (x, y, z), respectively,
with respect to the origins in object and image space. The general point Q′ on the exit pupil sphere
is defined by means of its polar coordinates (ρ, θ) with respect to the z-axis. The aperture of the
imaging pencil (diameter 2a) is given by s0 = sinαmax. The distance from Q

′

0 to F is denoted by R
with the origin for the z′-coordinate on the exit pupil sphere chosen in Q

′

0.

The function p(α) is unity on axis but can deviate from this value for α 6= 0 to
account for non-paraxial behaviour of finite rays in the imaging system. The
integration of Eq.(2.21) from 0 to a general aperture value given by sinα yields

r2
0 = f 2

L

α
∫

0

p(α) sinαdα. (2.22)

We consider two options

• p(α) = 1, yielding

r0 = 2fL sin(α/2) Herschel’s condition (2.23)

• p(α) = cosα, yielding

r0 = fL sinα Abbe’s sine-condition (2.24)

The two pupil imaging conditions applying to non-paraxial rays have already
been proposed in the nineteenth century. They emerge as special cases in the
framework of general isoplanatic imaging conditions, see [Welford (1986)]. Out-
side the paraxial imaging regime, the Herschel condition favors the imaging of
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axial points in front and beyond F ; the Abbe sine-condition has been designed
to guarantee good imaging for image points in the focal image plane through
F . The vast majority of optical systems obeys the Abbe sine condition and for
this reason, in the following, we will adhere to the condition p(α) = cos(α).
The function p(α) pertains to the ratio of intensities. In the case of a uniform
amplitude distribution in the entrance pupil, we will thus apply the rule, with
cos2 α = (1 − s2

0ρ
2), that the amplitude function on the exit pupils sphere,

E(ρ, θ), contains a factor (1− s2
0ρ

2)1/4. This amplitude factor is often referred
to as the radiometric effect. As defined before, ρ is the normalized radial co-
ordinate on the exit pupil sphere.

2.5.2 Phase distribution in the exit pupil

The aberration function Φ(ρ, θ) originates from the possible aberration that
is already present in the incident beam and from the aberration imparted to the
beam on its traversal of the optical system. It is common practice to effectively
project back the effect on the aberration of all optical surfaces and media in
the system onto the exit pupil sphere, yielding the global aberration function
Φ(ρ, θ) of the system. For sufficiently small aberrations, typically Φ ≤ 2π, this
method is allowed.

The representation of the aberration function has its particular history. From
the start of modern aberration theory by Seidel, see [Welford (1986)], based on
a power series expansion of optical pathlength differences in an optical system,
it was common practice to represent Φ as

Φ(ρ, θ) =
∑

aklρ
k cosl(θ). (2.25)

Certain combinations of k and l yield a characteristic aberration. This is more
or less true for the lowest order aberration types that occur in an optical system
with rotational symmetry when k + l = 4. But for higher order aberration
terms, the expression of Eq.(2.25) becomes rather confusing because of the non-
orthogonality of the expansion in both ρ and θ. A breakthrough in aberration
theory is due to advent of the Zernike circle polynomials, see references [Zernike
(1934)]-[Nijboer (1942)], and the expansion for Φ now reads

Φ(ρ, θ) =
∑

nm
Rm

n (ρ)
{

αm
n,c cosmθ + αm

n,s sinmθ
}

, (2.26)
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where Rm
n (ρ) is the radial Zernike polynomial of radial order n and azimuthal

order m with n,m ≥ 0 and n−m even. An alternative representation is

Φ(ρ, θ) =
∑

nm
αm

n R|m|
n (ρ) exp{imθ}, (2.27)

where n ≥ 0, (n − |m|) even, and m now also assumes negative values. This
latter expansion will be used and, more generally, we will also allow complex
coefficients αm

n so that a complex function Φ(ρ, θ) can be expanded. The re-
lationship between the now equally complex coefficients αm

n,c/s and the αm
n is

then given by

ℜ(αm
n,c)=ℜ(αm

n + α−m
n )

ℑ(αm
n,c)=ℑ(αm

n + α−m
n )

ℜ(αm
n,s)=−ℑ(αm

n − α−m
n )

ℑ(αm
n,s)=ℜ(αm

n − α−m
n ). (2.28)

Other representations of the complex amplitude on the exit pupil sphere
have been proposed. We mention the expansion of the far-field using ’multi-
pole waves’, see [Sheppard, Török (1997)]. As a function of the azimuthal and
elevation angles on the exit pupil sphere, the far-field is described with the aid
of spherical harmonics. The coefficients that yield the optimum far-field match
are then used to propagate the multipole waves towards and beyond the focal
point. The propagation as a function of the distance r is described in terms of
well-behaving spherical Bessel functions of various orders. So far, the analysis
has been restricted to circularly symmetric geometries with amplitude (trans-
mission) variation on the exit pupil and to an infinitely distant exit pupil.
But the method can be extended to more general geometries and to aberrated
waves. The method is applicable not only to scalar diffraction problems but
equally well to high numerical aperture systems requiring a vector diffraction
treatment and can be extended to birefringent media, see [Stallinga (2004-1)].

Another representation uses the so-called Gauss-Laguerre polynomials that
are orthogonal on the interval [−∞ < r < +∞] and emerge as eigenfunctions
of the solution of the paraxial wave equation according to [Siegman (1986)].
They have been further studied in [Barnett, Allen (1994)] to make them suit-
able for the non-paraxial case . We will not further consider this type of am-
plitude and aberration representation because its Gaussian shape is not well
suited for the hard-limited aperture functions that are mostly encountered in
optical imaging systems. But the Gauss-Laguerre elementary solutions with
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azimuthal order number m 6= 0 are well suited to represent a phase departure
of the pupil function that shows a so-called helical phase profile with a phase
jump of 2mπ. This is interesting when discussing optical beams with orbital
angular momentum, see for instance [Beijersbergen, Coerwinkel, Kristensen,
Woerdman (1994)]. However, using the Zernike polynomial representation of
Eq.(2.27) with the exponential azimuthal dependence, it is equally well possible
to represent helical phase profiles by selecting a single nonzero αm

n -coefficient
instead of an automatic combination of αm

n and α−m
n .

Using the appropriate expressions for the amplitude and aberration function
on the exit pupil sphere we are now able to evaluate Eq.(2.20) and to obtain the
amplitude of the scalar point-spread function in the paraxial approximation.
It is possible to extend the scalar integral of Eq.(2.20) beyond the paraxial
domain by incorporating the defocus exponential of Eq.(2.14) according to

exp{ikz(z − zf)} = exp{ik
√

√

√

√1 − k2
x + k2

y

k2
(z − zf)}. (2.29)

With the same coordinate transformation as used in deriving Eq.(2.18) and
switching to the normalized polar coordinates (ρ, θ) on the exit pupil sphere,
we obtain

exp{ikz(z − zf)} = exp{ik
√

1 − s2
0ρ

2 (z − zf)}. (2.30)

The axial coordinate z − zf is normalized in the high numerical aperture case
according to

z − zf = − f

ku0
, (2.31)

with u0 = 1 −
√

1 − s2
0 and one then finds the final expression for the high-

numerical-aperture defocus exponential, viz.

exp{ikz(z − zf)} = exp

[

−i f
u0

]

exp

{

i
f

u0

[

1 −
√

1 − s2
0ρ

2
]

}

. (2.32)

The scalar integral for high-numerical-aperture then reads

Ef(r, φ, f)≈−is2
0

λ
exp

{−if
u0

}

exp







i
πλr2

Rs2
0







×
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∫∫

An

exp











if







1 −
√

1 − s2
0ρ

2

u0

















E(ρ, θ) exp{iΦ(ρ, θ)} ×

exp {−i2πrρ cos(θ − φ)} ρdρdθ, (2.33)

where the complex amplitude angular spectrum function E(ρ, θ) exp{iΦ(ρ, θ)}
is again evaluated on the exit pupil sphere using the data from ray tracing or
other propagation methods of the wave through the optical system. In several
instances in the literature, the minus sign in the exponential with the factor
cos(θ − φ) in Eq.(2.33) has also been suppressed. This means that the results
apply to an azimuth shift of π for the axis φ = 0 in image space. In Section 3
and further of this chapter, we will adhere to this latter sign convention. The
integral above is an improvement with respect to the paraxial approximation,
beyond an aperture of 0.60, at the condition that polarization effects are not
dominating. In practice, this might be the case when the optical system is
illuminated with effectively unpolarized or ’natural’ light.

2.5.3 The high-numerical-aperture vector point-spread function

The extension of the point-spread function analysis to the vector compo-
nents of the electrical and magnetic fields was first carried out in [Ignatowsky
(1919)]. In a series of three papers he analyzed the electromagnetic field in
the focus of a parabolic mirror and in the focus of a general imaging system.
He also analyzed the amplitude conversion from entrance to exit pupil fol-
lowing from the various pupil imaging conditions, see Eqs.(2.23)-(2.24). The
subject was reformulated and cast in the form of a generalized Debye integral
by [Wolf (1959)] and [Richards, Wolf (1959)], applied to an optical system that
is illuminated by a parallel beam from infinity with the optimum focus of the
point-spread function in the geometrical focal point F . The Debye integral is
used to solve the diffraction problem for each cartesian vector component of
the fields. The vector components of the fields on the exit pupil sphere are
obtained using the condition of Abbe for the mapping of the field components
from the entrance pupil to the exit pupil (aplanatic imaging). From the geom-
etry of the problem, see Fig. 2.7, one easily derives the required unit vectors
in image space that are associated with the s- and p-polarization components
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to describe the components of the electromagnetic field vectors in the image space. The azimuthal
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and the unit propagation vector

νp =



















cos θ cosα

sin θ cosα

sinα
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− cos θ
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− cos θ sinα

− sin θ sinα
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. (2.34)

The incident field is specified in terms of the linearly polarized electric compo-
nents along the x0- and y0-axis in the entrance pupil according to E = a0x̂+b0ŷ,
with a0 and b0 complex numbers to allow for an arbitrary state of polarization
of the incident beam. The p- and s-polarization components of the field on the
exit pupil sphere are now given by

Ep∝{a0 cos θ + b0 sin θ}



















cos θ cosα

sin θ cosα

sinα



















,
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Es∝{a0 sin θ − b0 cos θ}



















sin θ

− cos θ

0



















. (2.35)

The x-, y- and z-components of the field on the exit pupil sphere is obtained by
evaluating the scalar products with the cartesian unit vectors and this yields

Es,x =
fLk

1/2
z

2Rk1/2

[

a0

{

1 +
kz

k
− cos 2θ

(

1 − kz

k

)}

− b0 sin 2θ

(

1 − kz

k

)]

Es,y =
fLk

1/2
z

2Rk1/2

[

−a0 sin 2θ

(

1 − kz

k

)

+ b0

{

1 +
kz

k
+ cos 2θ

(

1 − kz

k

)}]

Es,z =
fLkrk

1/2
z

Rk3/2
(a0 cos θ + b0 sin θ) , (2.36)

with kr = k
√

1 − k2
z/k

2 and where we have included the amplitude mapping
factor from the entrance to the exit pupil (see Subsection 2.5.1). The unit
vector that points in the direction of the magnetic field is given by ĥ=k̂ × ê,
yielding ĥp = (cosα cos θ, cosα sin θ, sinα) and ĥs = (− sin θ, cos θ, 0). The
cartesian components of the magnetic induction are then given by

Bs,x =
nrfLk

1/2
z

2cRk1/2

[

−a0 sin 2θ

(

1 − kz

k

)

− b0

{

1 +
kz

k
− cos 2θ

(

1 − kz

k

)}]

Bs,y =
nrfLk

1/2
z

2cRk1/2

[

a0

{

1 +
kz

k
+ cos 2θ

(

1 − kz

k

)}

+ b0 sin 2θ

(

1 − kz

k

)]

Bs,z =
nrfLkrk

1/2
z

cRk3/2
(a0 sin θ − b0 cos θ) , (2.37)

with nr the refractive index of the image space.
With the expressions for the electric and magnetic field components in terms

of the wave vector components kx and ky, the Debye integral of Eq.(2.14), with
xf = yf = 0, yields for the field components in the focal region near F

E(x, y, z)=
−i
2π

∫∫

Ω

Es(−kx,−ky)

kz
exp{i[kxx+ kyy + kz(z − zf)]}dkxdky

B(x, y, z)=
−i
2π

∫∫

Ω

Bs(−kx,−ky)

kz
exp{i[kxx+ kyy + kz(z − zf)]}dkxdky,

(2.38)
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with P (x, y, z) the coordinates of the considered point in the focal region.
Using the more appropriate normalized cylindrical coordinates (ρ, θ) on the
exit pupil sphere and (r, φ) in the focal region, we obtain

E(r, φ, f)=
−is2

0

λ
exp

(−if
u0

)

∫∫

C

Es(ρ, θ + π)

(1 − s2
0ρ

2)1/2
×

exp

{

if

u0

[

1 − (1 − s2
0ρ

2)1/2
]

}

exp{i2πrρ cos(θ − φ)}ρdρdθ,
(2.39)

with C the scaled integration area on the exit pupil sphere (in a standard
situation equal to the unit circle); a comparable expression holds for the B-
field components. In arriving at Eq.(2.39), we used Eq.(2.31) and the following
coordinate transformations and normalizations,

kx =kr cos θ = ρkr,max cos θ, kr,max = ks0,

ky =ρkr,max sin θ,

kz =(k2 − k2
x − k2

y)
1/2 = k(1 − s2

0ρ
2)1/2,

r=
ks0

2π
(x2 + y2)1/2, (2.40)

with the field strength function Es, originally defined as a function of the wave
vector components (kx, ky), now to be measured as a function of the normalized
radial aperture coordinate ρ on the exit pupil sphere and the azimuthal coor-
dinate θ+ π. The position on the exit pupil sphere is obtained from Eq.(2.13)
using x = xf − (kx/k)R, y = yf − (ky/k)R, leading to real space coordinates
of (x = −ρa cos θ, y = −ρa sin θ), in normalized polar coordinates (ρ, θ + π);
note that this latter phase off-set of π is missing in [Wolf (1959)].

2.6 Analytic expressions for the point-spread function in the focal region (scalar case)

The first analytic solution of the aberration-free point-spread function inte-
gral of Eq.(2.20) goes back to [Lommel (1885)] and is treated in detail in [Born,
Wolf (2002)]. The solution for the aberrated case has been studied by vari-
ous authors, see [Conrady (1919)], [Steward (1925)], [Picht (1925)], [Richter
(1925)]. A more systematic analysis of the influence of aberrations on the
point-spread function became possible after the introduction of the Zernike
polynomials to describe the wavefront aberration, see [Zernike (1934)], [Ni-
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jboer (1942)], [Zernike, Nijboer (1949)]. Considering the integral of Eq.(2.20)
for a circular aperture (unit circle), we first substitute the Zernike expansion
for the aberration function and use the approximation exp(iΦ) ≈ 1 + iΦ for
small values of Φ, typically Φ ≤ 1. We thus obtain

Ef(r, φ, f)≈
2π
∫

0

1
∫

0

exp
{

ifρ2
}

E(ρ, θ){1 + i
∑

nm
αm

n R
|m|
n (ρ) exp(imθ)} ×

exp {i2πrρ cos(θ − φ)} ρdρdθ. (2.41)

Carrying out the integration over θ and using the property

2π
∫

0

exp(imθ) exp {i2πrρ cos(θ − φ)} dθ = 2πimJm(2πrρ) exp(imφ), (2.42)

we get the expression originally derived by Nijboer in his thesis [Nijboer
(1942)],

Ef(r, φ, f)≈2πi
1
∫

0

exp
{

ifρ2
}

E(ρ, θ) ×
{

[(1 + α0
0)J0(2πrρ)] +

∑

nm
im+1αm

n R
|m|
n (ρ)Jm(2πrρ) exp(imφ)

}

ρdρ, (2.43)

where the summation now has to be carried out over all possible (n,m)-values
with the exception of m = n = 0. As usual, the function Jm(x) denotes the
Bessel function of the first kind of order m. We remark here that, instead of
expanding the function Φ itself using the α-coefficients, it is also possible to
expand the complete pupil function E(ρ, θ) exp{iΦ(ρ, θ)} in terms of Zernike
polynomials, as it was first proposed in [Kintner, Sillitto (1976)].

A basic result from aberration theory, initially derived by Nijboer, is the
following

1
∫

0

R|m|
n (ρ)Jm(2πrρ)ρdρ = (−1)

n−|m|
2

Jn+1(2πr)

2πr
. (2.44)

In the perfectly focused case and for E(ρ, θ) ≡ 1, the integral above is sufficient
to analytically calculate the amplitude Ef with zn = 0 in Eq.(2.43). However,
in the defocused case, the analysis becomes more complicated and Bauer’s
formula has been used by Nijboer to obtain a workable expression [Nijboer
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(1942)],

exp(ifρ2) = exp(if/2)
∞
∑

n=0

(2n+ 1)in jn

(

f

2

)

R0
2n(ρ). (2.45)

The spherical Bessel function jk(x) of the first kind is defined by

jk(x) =

√

π

2x
Jk+ 1

2

(x) , k = 0, 1, ... , (2.46)

see [Born, Wolf (2002)], Ch. 9, and [Abramowitz (1970)], Ch. 10. The extra
radial Zernike polynomials that result from the expansion of the quadratic
defocus exponential can be treated by formulae that express the product of two
Zernike polynomials into a series of Zernike polynomials with differing upper
or lower indices. This approach has been discussed by Nijboer. In practice,
his solution allows to solve the problem of the defocused aberrated point-
spread function for modest defocus values, for instance |f | < π/2. When trying
to reconstruct aberrations from defocused intensity distributions, numerically
reliable expressions for the intensity of the out-of-focus point-spread function
are required over a larger range of f -values. The work described in Nijboer’s
thesis does not yet provide such results. It should be added that, even if these
results would have been available, the lack of advanced computational means
would have prohibited any further activity in this direction at that time.

2.6.1 Analytic solution for the general defocused case

A semi-analytic solution of the aberrated diffraction integral in the defocused
case was presented in [Janssen (2002)] and its application and convergence
domain was studied in [Braat, Dirksen, Janssen (2002)]. The basic integral
occurring in, for instance, Eq.(2.43) reads

V m
n (r, f) =

1
∫

0

exp
{

ifρ2
}

R|m|
n (ρ)Jm(2πrρ)ρdρ , (2.47)

and its solution is found to be an infinite Bessel function series according to

V m
n (r, f) = ǫm exp [if ]

∞
∑

l=1

(−2if)l−1
p
∑

j=0

vlj
J|m|+l+2j(2πr)

l(2πr)l
. (2.48)
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In Eq.(2.48) we have to choose ǫm = −1 for odd m < 0 and ǫm = 1 otherwise.
The function V m

n (r, f) provides us with the analytic solution of the integrals
that occur in the general expression of Ef in Eq.(2.43) and they are associated
with a typical Zernike aberration of radial order n and azimuthal order m. To
obtain the total expression for Ef , it is just required to insert the appropriate
azimuthal dependence. Denoting

p =
n− |m|

2
, q =

n+ |m|
2

, (2.49)

the coefficients vlj in Eq.(2.48) are given as

vlj =(−1)p(|m| + l + 2j) ×




|m| + j + l − 1

l − 1









j + l − 1

l − 1









l − 1

p− j





/





q + l + j

l



, (2.50)

for l = 1, 2, . . . , j = 0, 1, . . . , p. The binomial coefficients are defined by




n

m



 =
n(n− 1) · · · (n−m+ 1)

m!
(2.51)

with the remark that any binomial with n < m is put equal to zero. To
illustrate the accuracy of the series expansion, it can be shown that an absolute
accuracy of 10−6 requires a number lmax of terms in the summation that is
given by lmax = |3f | + 5. With this number of terms and a range |f | ≤ 2π,
the amplitude in the focal region of interest of well-corrected optical imaging
systems can be calculated with ample precision.

Some special cases for the scalar amplitude Ef of Eq.(2.43) can be directly
derived using the results of Eqs.(2.48)-(2.51).

• Nijboer’s in-focus result of Eq.(2.44) is obtained for the special case of
Eq.(2.48) with f=0, where the summation over l is now restricted to the
term with l = 1 and the coefficient v1j is identical (−1)(n−|m|)/2, regardless
the value of j.

• The special case withm = n = 0 corresponds to the aberration-free situation
that should yield the result originally obtained by Lommel. Referring to
Eq.(2.47), Lommel’s solution reads, see [Born, Wolf (2002)],

V 0
0 (r, f) =

1
∫

0

exp
{

ifρ2
}

J0(2πrρ)ρdρ =
C(r, 2f) + iS(r, 2f)

2
, (2.52)
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with the functions C and S given by

C(r, f)=
cos(f/2)

f/2
U1(r, f) +

sin(f/2)

f/2
U2(r, f) ,

S(r, f)=
sin(f/2)

f/2
U1(r, f) − cos(f/2)

f/2
U2(r, f), (2.53)

with the general Lommel-function Un(r, f) defined by

Un(r, f) =
∞
∑

s=0

(−i)2s
(

f

2πr

)2s+n

J2s+n(2πr) . (2.54)

The substitution of Lommel’s results in Eq.(2.52) leads, after some rear-
rangement, to the expression

V 0
0 (r, f) = exp(if)

∞
∑

l=1

(−2if)l−1Jl(2πr)

(2πr)l
. (2.55)

It is seen that this compact expression of Lommel’s result is equivalent to
the special case with n = m = 0 of Eq.(2.48) once we have substituted the
value vl0 = l.

• The on-axis amplitude distribution is obtained from Eq.(2.43) with r = 0. If
we limit ourselves to circularly symmetric aberrations with m = 0 and use
Bauer’s formula of Eq.(2.45) for the defocus exponential, the integral over
ρ is easily evaluated with the aid of the properties of the inner products of
the radial Zernike polynomials and we find

Ef(0, 0, f) ≈ iπ exp(if/2)







j0(f/2) +
∞
∑

n=0

inα0
2njn(f/2)







. (2.56)

In the aberration-free case, the axial dependence is given by the spherical
Bessel function of zero order. With the identity j0(x) = sin(x)/x, we find
the Lommel result above.

Another analytic result from [Janssen (2002)] is related to diffraction inte-
grals of the type

Tm
n (r, f) =

1
∫

0

exp
{

ifρ2
}

ρnJm(2πrρ)ρdρ . (2.57)

These integrals with a ρ-monomial in the integrand can be considered to be
the building blocks for more general integrals containing a polynomial like
a Zernike polynomial. Of course, they are also useful in the context of the
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aberration representation according to Seidel. The Bessel series solution of
this type of integral is given by

Tm
n (r, f) = ǫm exp [if ]

∞
∑

l=1

(−2if)l−1
p
∑

j=0

slj
J|m|+l+2j(2πr)

(2πr)l
. (2.58)

In Eq.(2.58) we again choose ǫm = −1 for odd m < 0 and ǫm = 1 otherwise.
The coefficients slj are given by

slj = (−1)j |m| + l + 2j

q + 1





p

j









|m| + j + l − 1

l − 1





/





q + l + j

q + 1



, (2.59)

for the same ranges as in the case of vlj: l = 1, 2, . . . , j = 0, 1, . . . , p.
In the case of circularly symmetric aberrations a different expansion of the

diffraction integral has been proposed in [Cao (2003)] and it produces analytic
expressions for the functions T 0

2p(r, f) defined above. The exponential factor
exp(ifρ2) is written as a Taylor series in f and this gives rise to the appearance
of the so-called Jinc-functions with index n according to

Jincn(r) =
1

(2πr)2n+2

2πr
∫

0

x2n+1 J0(x) dx, (2.60)

for which Bessel series expansions are given. A convergence problem is present
with respect to the power series expansion in f and the condition |f | ≤ 15
should be respected to obtain an accuracy of 10−3 in amplitude, 10−6 in inten-
sity.

The analytic expressions for the general functions V m
n (r, f) and Tm

n (r, f) are
composed of a Bessel function expansion with the argument 2πr and a power
series expansion with respect to f . The latter series expansion, especially for
the V -functions, gives rise to numerical convergence problems once the value
of |f | is larger than, say, 5π and an accuracy of 10−8 in amplitude can not
be achieved for larger f -values. A drastic improvement in accuracy is obtained
once the power series expansion in f can somehow be replaced by a more stable
expression. To this goal, we use Bauer’s expansion and write the exponential
exp(ifρ2) according to Eq.(2.45). Using this in the expression for V m

n (r, f), we
find

V m
n (r, f)=exp(

1

2
if)

∞
∑

k=0

(2k + 1) ik jk(f/2) ×
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1
∫

0

R0
2k(ρ)R

|m|
n (ρ) Jm(2πrρ) ρ dρ . (2.61)

To proceed further, a general expression is needed that writes the product of a
radially symmetric Zernike polynomial R0

2k(ρ) and a general polynomial Rm
n (ρ)

as a series of Zernike polynomials according to

R0
2k R

|m|
|m|+2p =

∑

l

wklR
|m|
|m|+2l . (2.62)

In [Janssen, Braat, Dirksen (2004)], explicit expressions have been given for
the coefficients wkl and the range of the summation index l (see also Appendix
C). A numerical implementation of these results has shown that |f |-values as
large as 1000 can be dealt with. To illustrate the kind of intensity distributions
that can be numerically handled by the analysis according to Eqs.(2.61)-(2.62),
we show in Fig. 2.8 cross-sections of strongly defocused intensity distributions.
In the left figure, a contour map is shown of an axial cross-section of a focal
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Fig. 2.8. Axial cross-section of a defocused intensity distribution (f=23) caused by the presence of
a Fresnel zone plate in the plane z=0. The beam shows some circularly symmetric aberration that
becomes visible in the figure on the right in which the axial intensity has been plotted. The numerical
aperture is 0.60, the wavelength amounts to λ=248 nm.

intensity distribution that is off-set by approximately 15 focal depths from its
nominal focal setting. The intensity distribution has been produced by means
of a Fresnel zone lens and is affected by spherical aberration. In the right fig-
ure, we show the axial intensity distribution that shows an asymmetry around
focus due to this residual aberration of the focusing beam. Figure 2.9 produces
a picture of the measured intensity distribution in a strongly defocused image
plane (f ≈ 75). A typical Fresnel diffraction pattern is observed. Some spuri-
ous structure is visible due to light scattering at imperfections on the optical
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Fig. 2.9. Measured intensity distribution in a strongly defocused image plane. The value of f is
approximately 75. Note that the axial intensity corresponds to a minimum due to the presence of an
even number of Fresnel zones in the aperture as seen from the defocused position.
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Fig. 2.10. Comparison of a measured intensity distribution and the best-fit calculated intensity dis-
tribution. In this case the value of f is 75 radians. The measured intensity shows a less pronounced
modulation than the calculated distribution which may be attributed to some scattered background
light and to a diaphragm rim that is not perfectly spherical.

surfaces in the experimental set-up. The number of luminous rings NF in the
Fresnel diffraction pattern is approximately given by NF = (f − π)/2π.

In Fig. 2.10 we show a radial cross-section of such a defocused intensity
distribution, from the central position on axis up to the geometrical shadow
region. It is interesting to note that part of the fine structure in the fringes,
predicted by the calculations, is also visible in the measured distribution, de-
spite the high sensitivity of the measured intensity to spurious coherent light
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scattered in the set-up. The calculated distribution was fit to the measured
one by varying the f -parameter; the optimum value for these measured data
was f=75.

When comparing the semi-analytic methods based on the out-of-focus ex-
tension of the Nijboer-Zernike diffraction theory and the numerical methods
of the Fast Fourier Transform (FFT) type for solving the various diffraction
integrals, we conclude the following. The analytic method has a clear advan-
tage regarding the accuracy and monitored convergence of the solutions. In
practice, the numerical effort is a linear function of the defocus parameter and
machine-precision is the limiting factor when ultimate accuracy is sought for.
Typical aliasing problems like in an FFT-calculation are of no concern. The
aberration value can basically be increased to large values with respect to the
wavelength of the light, although the number of Zernike aberration terms might
become unwieldy. The calculation of the Zernike coefficients of the aberrated
wavefront is a numerical investment that has to be carried out beforehand.
Once the coefficients have been obtained, the actual calculation of the scalar
amplitude or the field components in the focal region is extremely fast. The
analytic decomposition in (r, f)- and φ-dependent functions produces an im-
portant economic advantage regarding computation time. At this moment we
can state that the numerical effort to produce the amplitude in a single image
plane using the analytic approach is comparable to the Fast Fourier Transform
case. However, the equal numerical effort situation for both methods is limited
to relatively coarse calculations. As soon as an accuracy better than, say, 10−4

is required, the FFT calculation time has to be strongly increased. The main
reason for this is the intrinsic discontinuous nature of the pupil function which
asks for high sample rates. For the calculation of the amplitude distribution in
a large number of defocused planes, the semi-analytic method offers a very dis-
tinct advantage because the incremental numerical effort is small when going
from one defocused plane to another, the only difference being the calculation
of the V (r, f)-functions at another f -setting.

2.7 Analytic expressions for the point-spread function in the vector diffraction case

In the case of a non-uniform and aberrated amplitude distribution at the
exit of the optical system, we have to further specify the expressions for the
field components in Eqs.(2.36)-(2.37) by inserting a complex amplitude trans-
mission function. Because of the vector nature of the diffraction problem, the
transmission function possibly depends on the state of polarization. A general
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field distribution that can be encountered in the entrance or exit pupil of an
optical system is described in [Stallinga (2001)]. The general coherent field is
written as the superposition of two orthogonal polarization states. We take the
linear polarization states along, respectively, the x- and y-axis as basic orthog-
onal states. A general elliptical state of polarization is obtained via a linear
superposition of the two basic linear states with relative amplitude weights
and a certain phase difference, according to the complex numbers a0 and b0
defined in Subsection 2.5.3. The complex transmission functions for the two
orthogonal linear polarizations in the entrance pupil are written

tx(ρ, θ)=Ax(ρ, θ) exp [iΦx(ρ, θ)] ,

ty(ρ, θ)=Ay(ρ, θ) exp [iΦy(ρ, θ)] . (2.63)

Where Ax and Ay are real-valued functions and describe the transmission fac-
tors in the x- and y-direction, Φx(ρ, θ) and Φy(ρ, θ) are also real-valued and
describe the phase distortion on the exit pupil sphere due to the wavefront
aberration W (ρ, θ) = Φ(ρ, θ)/k introduced by the optical system. The phase
difference ǫ(ρ, θ) = Φy(ρ, θ)−Φx(ρ, θ) is the result, after traversal of the optical
system, of a spatially varying birefringence due to medium transitions, optical
coatings, internal material stresses etc. In well-corrected optical systems, the
maximum value of the birefringence function ǫ(ρ, θ) should be small and cer-
tainly restricted to the range [−π,+π]. Other orthogonal polarization states,
for instance radial and azimuthal polarization distributions, see [Quabis, Dorn,
Eberler, Glöckl, Leuchs (2000)], can also be accounted for by appropriately cho-
sen functions tx(ρ, θ) and ty(ρ, θ).

The x- and y-dependent transmission functions of the optical system, given
the incident linear state of polarization, are expanded with the aid of Zernike
polynomials. We choose to apply a general expansion with complex Zernike
coefficients βx and βy so that a complex transmission function can be repre-
sented, see [Kintner, Sillitto (1976)]. From now on, we will use the letter β for
such an expansion to distinguish from an expansion of the phase aberration
function Φ only with coefficients α according to Eq.(2.27). We thus have

tx(ρ, θ)=
∑

nm
βm

n,x R
|m|
n (ρ) exp{imθ} ,

ty(ρ, θ)=
∑

nm
βm

n,y R
|m|
n (ρ) exp{imθ} . (2.64)

In the forward direction, the expansion is unique. In the reverse direction, ob-
taining the functions A and Φ from the β-coefficients, the uniqueness of such an
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expansion can be questioned because of the contribution to both the real and
imaginary part by the exponential factor in Eq.(2.63). But phase unwrapping
techniques can be used, like in optical interferometry [Ettl, Creath (1996)], to
recover the functions A and Φ independently if they show a smooth behaviour.

The transmission functions tx,y are now inserted in Eq.(2.39) and the fol-
lowing expressions are obtained for both the electric and magnetic field com-
ponents in the focal region

E(r, φ, f) =
−iπfLs

2
0

λ
exp

(

if

u0

)

∑

n,m
im exp[imφ] ×
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, (2.65)

and,

B(r, φ, f) =
−iπnrfLs
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, (2.66)

with fL the image side focal distance and ax and ay the complex amplitude
factors that determine the total power in the incident beam and allow to
specify the state of global polarization of the light incident on the entrance
pupil. The quantity nr is the refractive index of the image space medium. The
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newly defined functions V m
n,j that depend on the normalized radial coordinate

r and the defocus parameter f are given by (j = −2,−1, 0, 1, 2)

V m
n,j(r, f)=

1
∫

0

ρ|j|

(

1 +
√

1 − s2
0ρ

2
)−|j|+1

(1 − s2
0ρ

2)1/4
exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2
)

]

×

R|m|
n (ρ)Jm+j(2πrρ)ρdρ . (2.67)

In the expression for V m
n,j(r, f) we have incorporated the so-called radiometric

effect in imaging the entrance pupil distribution onto the exit pupil sphere
which leads to the factor (1 − s2

0ρ
2)−1/4 in the integrand; it was discussed in

Subsection 2.5.1 and follows from Abbe’s sine condition for the imaging of
the pupils, see Eq.(2.24). A series expansion can be devised to quickly obtain
accurate values of the integral above. The functions that can be used in the
expansions and the values of the corresponding expansion coefficients are given
in Appendix D.

To illustrate the results above, we produce in Figs. 2.11-2.13 some grey-
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Fig. 2.11. Graph of the absolute values of the Ex-field component, and its phase in the focal volume for
a high-numerical-aperture focused beam (s0=0.95, linearly polarized incident light along the x-axis).
Both the radial coordinate r and the axial coordinate z have been expressed in units of λ/s0. Phase
singularities are observed at the locations of zero amplitude.

scale graphs obtained with our high accuracy analytic formulae and that were
published in [Braat, Dirksen, Janssen, van de Nes (2003)]. The series expan-
sions for the vector components of the electric field have been truncated such
that the inaccuracy in the field components is below an absolute value of 10−6,
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Fig. 2.12. Same legend as Fig. 2.11, now for the y-component of the electric field.
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Fig. 2.13. Same legend as Fig. 2.11, now for the z-component of the electric field.

the corresponding inaccuracy in intensity below 10−12. Finally, in Fig. 2.14 we
have produced cross-sections of the energy density in the optimum focal plane
(z = f = 0). The ’Airy disc’ approximation (fully drawn curve) at high-NA has
been obtained from the analytical expression 4J2(2πr)/(2πr)2; its theoretical
minima have been plotted explicitly. The dashed and dotted curves have been
sampled using our semi-analytic series expansions for the field components in
the focal plane. Due to this discrete sampling, the zero values that are theoret-
ically possible in the cross-section perpendicular to the incident polarization
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Fig. 2.14. Cross-sections of the normalized energy density (∝ |E|2) in the optimum focal plane of a
high-numerical-aperture focused beam (s0=0.95, linearly polarized incident light) as a function of the
radial normalized coordinate r in units of λ/s0. Drawn line: hypothetic Airy disc profile, extrapolated
to this high-NA value from the low-aperture scalar model. Dashed line: cross-section of the normalized
energy density, in a plane perpendicular to the incident linear polarization (y-cross-section). Dotted
line: idem, now in the plane of the incident linear polarization parallel to the x-axis.

have not been exactly represented (dashed curve). Figure 2.14 clearly shows
that in the cross-section parallel to the incident polarization no explicit zeros
are observed. The different full widths at half maximum (FWHM) in the two
main cross-sections, already demonstrated in [Richards, Wolf (1959)], are also
clearly observed. The narrower FWHM for the cross-section perpendicular to
the plane of polarization of the incident light can be explained by the relative
amplitude enhancement as a function of the normalized exit pupil coordinate
ρ at the pupil rim. This phenomenon is proper to an optical system satisfying
Abbe’s sine condition. Its behavior resembles that of a system with an annular
aperture yielding a smaller value of the FWHM of the intensity profile and
showing increased side lobe intensity.

2.8 The point-spread function in a stratified medium

So far, we have supposed that the image space was homogeneous. In prac-
tice, when using point-spread functions for the assessment of the quality of an
optical system, the detection of the free-space focused beam is carried out in
a relatively thin detection medium, for instance photo-resist on a Si-substrate
or a photosensitive thin slice of doped crystalline silicon. The final transition
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to the detecting medium, within the focal volume, induces angle-dependent
amplitude and phase changes that produce a difference between the free-space
intensity distribution and the effectively detected distribution in the medium.
The effect of a single transition has been studied by [Ling, Lee (1984)] in
the framework of focused microwaves and by [Török, Varga, Laczik, Booker
(1995)] for optical microscopy when a mismatched aberrating cover glass is
used. A general analysis of high-numerical-aperture imaging is described in
[Mansuripur (1986)]-[Mansuripur (1989)]. The basic mathematical tool in the
analysis of these references is Fourier transformation, to propagate through free
space, but equally well through optical components of various nature (gratings,
birefringent plates, thin-film stacks), both for point-source imaging and for the
imaging of extended objects. Through its very general nature and flexibility,
this approach is less convenient for numerical treatment of a specific problem
like the formation of a point-spread function, issued from a single tiny source
point.

The specific problem of detecting a point-spread function in a thin recording
layer at very high numerical aperture is discussed in [Flagello, Milster (1992)],
[Flagello, Milster, Rosenbluth (1996)]. The analysis applies the matrix tech-
nique devised for reflection and transmission of light through thin films, see
[Macleod (1989)]. The plane wave components in the Debye integral expres-
sions that are incident at a certain angle on the detection layer are given by
the typical complex Fresnel coefficients belonging to the multiple reflection
and transmission phenomena in the thin film stack at that specific angle. A
modified version of the approach by Flagello et al. can be found in [van de
Nes, Billy, Pereira, Braat (2004)]. Here, the analysis has been simplified by
using polar coordinates throughout, thus exploiting the special behavior of the
electric field components in the plane of incidence and perpendicular to it, the
p- and s-components, respectively. For point-spread functions in a narrow field
close to the optical axis, this approach is permitted; it is not applicable when
skew beams and strongly off-axis point-spread functions have to be studied.
The superposition of the forward and backward propagating plane waves in
the layered medium with their angle-dependent amplitude and phase can be
taken into account in modified Zernike expansions of the pupil function. One
modified expansion applies to the forward propagating waves, the other to the
backward propagating waves, creating a second ’virtual’ exit pupil function.
With these modified pupil functions, two point-spread functions pertaining to
the two propagation directions can be calculated in the corresponding layer
of the stratified medium. The coherent superposition of the field components
of the two point-spread functions allows the calculation of the local electric

43



energy density that shows the typical standing wave phenomena in such a
thin-film stack. The first noticeable effect of the penetration of the focused
beam in the recording layer is a circularly symmetric phase defect to be clas-
sified as spherical aberration, see [Visser, Wiersma (1991)]. At high numerical
aperture, amplitude and phase deviations without circular symmetry become
visible in the case of, for instance, linearly polarized light in the entrance pupil.
Projected back to the exit pupil of the imaging system, this is equivalent to
the introduction of apparent astigmatism in the focusing beam. The further
treatment of point-spread function formation in layered media is outside the
scope of this chapter.
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3 Energy density and power flow in the focal region

In the preceding section we have derived expressions for the complex dis-
turbance (scalar approximation) or the complex field vectors (high-numerical-
aperture vector case) in the focal region. These basic quantities are needed for
evaluating the optically measurable quantities like energy density, intensity,
linear impulse and angular momentum that are built up in and transported
through the focal region. Although these quantities, time-averaged at optical
frequencies, can be obtained in each point from the electromagnetic field vec-
tors only, we will carry out, in this subsection, a detailed analysis of the typical
distributions in energy density and intensity that are associated with particular
aberrations. We need these expressions when we address the main subject of
this chapter, the assessment of optical systems using the point-spread function
intensity in the focal region. As the starting point, we will use the expressions
for the field vectors that were derived in Eqs.(2.65)-(2.66). Not only wavefront
aberration is incorporated in the model but also a non-uniform amplitude dis-
tribution on the exit pupil sphere, as this is, in any case, to be expected for
high-numerical-aperture imaging. In this section we will express the quadratic
quantities in the focal region (energy density, Poynting vector components)
in terms of the basic diffraction integral V m

n,j(r, f). Regarding the energy den-
sity, we will restrict ourselves to the electric energy density because this is the
quantity that is relevant for detectors or recording media at optical frequen-
cies. The energy flow, described by e.g. the cartesian or cylindrical components
of the Poynting vector, will be discussed relatively briefly. The direction and
magnitude of the vector yield the flow of the total electromagnetic energy, in-
cluding the magnetic part. The divergence of the Poynting vector yields the
energy outflow per unit volume. If the power loss in the detection medium is
due to its finite conductance only, the loss can be attributed to ohmic dissipa-
tion and is proportional to the electric energy density in the medium. In this
case, the electric energy density can directly be used; the Poynting vector data
can serve as a check on the calculations based on the electric energy density.
Finally, the electric energy density distribution in the focal region according to
the scalar approximation will come out as the low-aperture limit of the result
for an arbitrary opening angle of the focused beam.
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3.1 Expression for the electric energy density

The time averaged value of the electric field energy density 〈we〉 is given by

〈we〉 =
ǫ0
2
n2

r|E|2 , (3.1)

with the relative dielectric constant given by ǫ = n2
r. The electric field com-

ponents in the presence of aberrations in a high-numerical-aperture system,
as given by Eq.(2.65), are needed to compute the scalar product E∗ · E . The
direct evaluation of 〈we〉 leads to a quadruple sum over the indices n, m, n

′

and m
′

that appear in the products of the electric field components. In our
approach to quality assessment of optical systems, we focus on the typical az-
imuthal dependencies that appear in the through-focus intensity distribution
in the presence of aberrations. For that reason, a more systematic approach is
required in the evaluation of the energy density expression. We combine terms
with equal azimuthal dependence exp(imφ) and these collected terms will play
an important role in the quality assessment problem that we address in the
second part of this chapter.

A general term in the expression of Eq.(3.1) is written

Gkl(β1, β2)=
∑

n,m
im exp [imφ] βm

n,1V
m
n,k(r, f) exp [ikφ] ×

∑

n′,m′

i−m′

exp [−im′φ]βm
′∗

n′,2V
m

′∗
n′,l (r, f) exp [−ilφ]

=
∑

n,m,n′,m′

exp [i(m−m′)π/2] exp [i(m−m′ + k − l)φ] ×

βm
n,1β

m
′∗

n′,2V
m
n,k(r, f)V m

′∗
n′,l (r, f) , (3.2)

where the function Gkl has the sets of Zernike coefficients βm
n,1 and βm

n,2 as
variables, in shorthand notation written as β1 and β2 in the argument of
Gkl). The indices {kl} stem from the various combinations of V m

n,j exp[i(jφ)]-
functions that occur in the summation. The azimuthal dependence of the en-
ergy density terms is made explicit by writing the general quadruple series
∑

n,m,n′ ,m′ an,m,n′ ,m′ according to a diagonal summation scheme as

∑

m,m′,n,n′

am,m′;n,n′ =
∑

n

{

∑

m
am,m;n,n +
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µmax
∑

µ=1

∑

m
(am,m+µ;n,n + am+µ,m;n,n)

}

+
νmax
∑

ν=1

{

∑

n

∑

m
(am,m;n,n+ν + am,m;n+ν,n)

+
µmax
∑

µ=1

∑

n

∑

m

[

am,m+µ;n,n+ν + am+µ,m;n,n+ν

+am,m+µ;n+ν,n + am+µ,m;n+ν,n

]}

. (3.3)

The summation ranges for the indices m, n, µmax and νmax are derived from the
transformation from a rectangular summation scheme to a summation scheme
along the central diagonal and the off-axis diagonals. The following expression
for Gkl results

Gkl(β1, β2)=exp [i(k − l)φ]

[

∑

n

∑

m
βm

n,1β
m∗
n,2V

m
n,kV

m∗
n,l +

µmax
∑

µ=1

{

exp [−iµπ/2] exp [−iµφ]
∑

m

∑

n
βm

n,1β
m+µ∗
n,2 V m

n,kV
m+µ∗
n,l

+ exp [iµπ/2] exp [iµφ]
∑

m

∑

n
βm+µ

n,1 βm∗
n,2V

m+µ
n,k V m∗

n,l

}

+
νmax
∑

ν=1

{

∑

n

∑

m

(

βm
n,1β

m∗
n+ν,2V

m
n,kV

m∗
n+ν,l + βm

n+ν,1β
m∗
n,2V

m
n+ν,kV

m∗
n,l

)

+
µmax
∑

µ=1

[

exp [−iµπ/2] exp [−iµφ]

{

∑

n

∑

m

(

βm
n,1β

m+µ∗
n+ν,2V

m
n,kV

m+µ∗
n+ν,l

+βm
n+ν,1β

m+µ∗
n,2 V m

n+ν,kV
m+µ∗
n,l

)}

+ exp [iµπ/2] exp [+iµφ]

{

∑

n

∑

m

(

βm+µ
n,1 βm∗

n+ν,2V
m+µ
n,k V m∗

n+ν,l

+βm+µ
n+ν,1β

m∗
n,2V

m+µ
n+ν,kV

m∗
n,l

)

}]}]

,

(3.4)

where we have suppressed in the notation the (r, f)-dependence of the V -
functions. With the G-function notation above, the electric energy density is
readily written as

〈we(r, φ, f)〉= ǫ0n
2
rk

2
0f

2
Ls

4
0

8

[

|ax|2G0,0(βx, βx) +

s2
0ℜ{G0,2(axβx, axβx − iayβy)

+G0,−2(axβx, axβx + iayβy)} +

47



s4
0

4
{G2,2(axβx − iayβy, axβx − iayβy)+

+G−2,−2(axβx + iayβy, axβx + iayβy)} +

s4
0

2
ℜ{G2,−2(axβx − iayβy, axβx + iayβy)} +

|ay|2G0,0(βy, βy) +

−s2
0ℜ{G0,2(ayβy, iaxβx + ayβy)

+G0,−2(ayβy,−iaxβx + ayβy)} +

s4
0

4
{G2,2(iaxβx + ayβy, iaxβx + ayβy)+

G−2,−2(−iaxβx + ayβy,−iaxβx + ayβy)} +

s4
0

2
ℜ{G2,−2(iaxβx + ayβy,−iaxβx + ayβy)} +

s2
0 {G1,1(iaxβx + ayβy, iaxβx + ayβy)

+G−1,−1(−iaxβx + ayβy,−iaxβx + ayβy)} +

2s2
0ℜ{G1,−1(iaxβx + ayβy,−iaxβx + ayβy)}

]

, (3.5)

with k0 the vacuum wave number and fL the focal length of the imaging
system. The amplitude factors ax,y apply to the strength of the incident x-
and y-polarization components and the indices x, y of β in the arguments of
the Gkl-functions refer to the sets of Zernike coefficients to be used. They
correspond to either x- or y- linearly polarized light and are denoted by βm

n,x

and βm
n,y, respectively.

A further rearrangement of the expression for 〈we(r, φ, f)〉 is possible by
using the properties

Gkl(β1 + β2, β3 + β4)=Gkl(β1, β3)

+Gkl(β1, β4) +Gkl(β2, β3) +Gkl(β2, β4), (3.6)

Gkl(β1, β2)=G∗
lk(β2, β1), (3.7)

leading to the expression

〈we(r, φ, f)〉= ǫ0n
2
rk

2
0f

2
Ls

4
0

8
×

[

|ax|2G0,0(βx, βx) + |ay|2G0,0(βy, βy) +

s2
0ℜ

{

|ax|2G0,2(βx, βx) + iaxa
∗
yG0,2(βx, βy)
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+ia∗xayG0,2(βy, βx) − |ay|2G0,2(βy, βy)
}

+

s2
0ℜ

{

|ax|2G0,−2(βx, βx) − iaxa
∗
yG0,−2(βx, βy)

−ia∗xayG0,−2(βy, βx) − |ay|2G0,−2(βy, βy)
}

+

s4
0

2

{

|ax|2G2,2(βx, βx) + iaxa
∗
yG2,2(βx, βy)

−ia∗xayG2,2(βy, βx) + |ay|2G2,2(βy, βy)
}

+

s4
0

2

{

|ax|2G−2,−2(βx, βx) − iaxa
∗
yG−2,−2(βx, βy)

+ia∗xayG−2,−2(βy, βx) + |ay|2G−2,−2(βy, βy)
}

+

s2
0

{

|ax|2G1,1(βx, βx) + iaxa
∗
yG1,1(βx, βy)

−ia∗xayG1,1(βy, βx) + |ay|2G1,1(βy, βy)
}

+

s2
0

{

|ax|2G−1,−1(βx, βx) − iaxa
∗
yG−1,−1(βx, βy)

+ia∗xayG−1,−1(βy, βx) + |ay|2G−1,−1(βy, βy)
}

+

+2s2
0ℜ

{

−|ax|2G1,−1(βx, βx) + iaxa
∗
yG1,−1(βx, βy)

+ia∗xayG1,−1(βy, βx) + |ay|2G1,−1(βy, βy)
}

]

. (3.8)

The expression above is, within the framework of the approximations related
to the Debye integral, a rigorous expression for the energy density in the focal
region for a general incident state of polarization with the optical system suf-
fering from transmission defects, wavefront aberration and spatially varying
birefringence over the pupil cross-section. Once we eliminate all optical defects
(βx = βy = β with β0

0 = 1 and all other βm
n ≡ 0) and limit ourselves to linear

polarization along the x-axis (ay = 0), the expression is greatly simplified to

〈we(r, φ, f)〉= ǫ0n
2
rk

2
0f

2
Ls

4
0 |ax|2

8
×

[

G0,0(β, β) +

s2
0ℜ{G0,2(β, β) +G0,−2(β, β) − 2G1,−1(β, β)}
s4
0

2
{G2,2(β, β) +G−2−2(β, β)}

]

, (3.9)

and, on substituting the expression for the functions Gkl in the case of a perfect
system, we find

〈we(r, φ, f)〉= ǫ0n
2
rk

2
0f

2
Ls

4
0 |ax|2

8
×
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[

|V 0
0,0|2 + 2s2

0

{

|V 0
0,1|2 + cos 2φ

[

|V 0
0,1|2 + ℜ(V 0

0,0V
0∗
0,2)

]}

+ s4
0|V 0

0,2|2
]

.

(3.10)

This special case corresponds to the original result on high-numerical aperture
focusing by a perfect system treated in [Richards, Wolf (1959)]. When we
strongly reduce the numerical aperture, only the leading term with s4

0 remains,
leading to Lommel’s result. Finally, in the nominal focal plane (f = 0) and,
using the analytic expression for V 0

0,0 with s0 → 0, we obtain the expression
corresponding to Airy’s result

〈we(r, φ, f)〉 =
ǫ0n

2
r|ax|2
2





π2f 2
Ls

4
0

λ2









2J1(2πr)

2πr





2

, (3.11)

where the factor between square brackets can be identified as the energy ’con-
centration’ factor in optimum focus.

If we limit ourselves to optical systems that are free of birefringence, we can
study characteristic energy density patterns in the focal region corresponding
to special cases of incident polarization. A general state of polarization in the
entrance pupil of the system is determined by the field coefficients ax = pxA
and ay = pyA, with px and py complex numbers satisfying |px|2 + |py|2 = 1 for
the purpose of normalization. The absence of birefringence allows us to write
for each aberration coefficient βm

n,x = βm
n,y = βm

n . Using the result of Eq.(3.8),
we find

〈we(r, φ, f)〉= ǫ0n
2
rk

2
0f

2
Ls

4
0|A|2

8
×

[

G0,0(β, β) +

s2
0

{[

|px|2 − |py|2
]

ℜ{G0,2(β, β)} − 2ℜ(pxp
∗
y)ℑ{G0,2(β, β)}

}

+

s2
0

{[

|px|2 − |py|2
]

ℜ{G0,−2(β, β)} + 2ℜ(pxp
∗
y)ℑ{G0,−2(β, β)}

}

+

s4
0

2

[{

1 − 2ℑ(pxp
∗
y)
}

G2,2(β, β) +
{

1 + 2ℑ(pxp
∗
y)
}

G−2,−2(β, β)
]

+

s2
0

[{

1 − 2ℑ(pxp
∗
y)
}

G1,1(β, β) +
{

1 + 2ℑ(pxp
∗
y)
}

G−1,−1(β, β)
]

+

−2s2
0

{[

|px|2 − |py|2
]

ℜ{G+1,−1(β, β)}+

2ℜ(pxp
∗
y)ℑ{G+1,−1(β, β)}

}

]

.

(3.12)
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Alternatively, the various terms in the expression above can be arranged ac-
cording to their contribution to the four Stokes vector components like it was
shown in [Stallinga (2001)]. Some special cases can be distinguished regarding
the incident state of polarization.

3.1.1 Linear polarization

- x-direction, (px, py) = (1, 0)

The energy density reduces to

〈wx
e (r, φ, f)〉0∝G0,0(β, β) + s2

0ℜ [G0,2(β, β) +G0,−2(β, β)]

+
s4
0

2
[G2,2(β, β) +G−2,−2(β, β)]

+s2
0 [G1,1(β, β) +G−1,−1(β, β)]

−2s2
0ℜ{G+1,−1(β, β)} . (3.13)

- y-direction, (px, py) = (0, 1)

The energy density is now proportional to

〈wy
e(r, φ, f)〉0∝G0,0(β, β) − s2

0ℜ [G0,2(β, β) +G0,−2(β, β)]

+
s4
0

2
[G2,2(β, β) +G−2,−2(β, β)]

+s2
0 [G1,1(β, β) +G−1,−1(β, β)]

+2s2
0ℜ{G+1,−1(β, β)} . (3.14)

In Fig. 3.1 grey-scale plots of the intensity distribution in the focal volume
are presented in the presence of typical lower order aberrations. The state
of polarization in all graphs is linear with the plane of polarization parallel
to the x-axis. The defocus range, going from left to right, extends over four
focal depths (|f | = π/2) of ∆z = λ/(4u0); this quantity, defined in Eq.(2.31),
is used in the case of high numerical aperture values, to be compared with
∆z = λ/(2s2

0) for low values of s0. The upper row shows the energy density
in the aberration-free case. The well-known broadening of the point-spread
function in the cross-section parallel to the plane of polarization in the entrance
pupil is clearly visible, leading to an overall elliptical profile of the point-spread
function. In the second row, the coefficient α0

4,c, describing the phase departure

in the entrance pupil due to spherical aberration, has been put equal to
√

2.
This aberration value is such that the classical Strehl intensity, see [Born, Wolf
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Fig. 3.1. Intensity of the point-spread function of a high-numerical-aperture imaging system
(s0 = 0.95). The columns pertain to the defocus parameter with f = π, π/2, 0,−π/2,−π, from
left to right, going away from the exit pupil according to the sign convention. Radial size: |r| ≤ 3.
Upper row: aberration-free case; row 2: α0

4,c = 1.41; row 3: α1
3,c = 1.79; row 4: α1

3,s = 1.79; row 5:
α2

2,c = 1.55; row 6: α2
2,s = 1.55; row 7: α0

4,c = 0.81, α1
3,c = 1.03, α2

2,c = 0.89. The grey-scale graphs
have been normalized in each row to the top intensity in the focal plane with f = 0. The maximum
intensity of the aberrated graphs in rows 2 to 7 is approximately 0.60 (Strehl intensity).

(2002)], would become 0.60. This means that the aberration pushes the quality
of the imaging system beyond the ’just-diffraction-limited’ level corresponding
to the Strehl ratio value of 0.80. The columns on the right, corresponding to
the defocus region beyond the nominal focal point F start to show a narrower
ring-shaped pattern; closer to the exit pupil, the central lobe of the point-
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spread function is broadened. This asymmetry with respect to ’best’ focus
is characteristic for spherical aberration. In the low aperture scalar case, it
leads to sharp and narrow diffraction rings beyond focus, and a more blurred
pattern at the short side of F , at least when the sign of α0

4,c is positive like in
Fig. 3.1. In the high numerical aperture case, the typical spherical aberration
effects are somewhat blurred by the intrinsic ’unsharpness’ that arises from
the vector diffraction effects. The third and the fourth row are point-spread
functions of an imaging system suffering from comatic aberration, in this case
with a coefficient α1

3,c = 1.79 in the third row and the same value for α1
3,s in

the fourth row. The characteristic asymmetric pattern of comatic aberration
is present in both cases. In the third row, the comatic blur is superimposed
on the intrinsic blur in the x-direction due to the linear state of polarization.
It also becomes apparent from the graphs that comatic aberration does not
perturb the axial symmetry with respect to the nominal focal plane in F . In
the fifth row we have introduced lowest order astigmatism with the coefficient
α2

2,c = 1.55. The vector diffraction effects influence the widths of the focal
lines in the x- and y-direction in the defocused state. The focal line in the
y-direction, farther away from focus, has suffered a strong broadening due
to the polarization effect. Note that with the chosen value of α2

2,c, the two
outer focus settings approximately correspond to the sharp focal line positions
predicted by geometrical optics. The sixth row shows, with the astigmatic
aberration rotated by 45 degrees, the typical interaction between the vector
’blur’ direction along the x-axis and the astigmatic effect that is diagonal. The
net visual effect is a small extra rotation of the point-spread function towards
the y-axis. Finally, the graphs in the seventh row correspond to a mixture of
the three basic aberrations above, so that the total rms phase departure is the
same and the Strehl intensity is again close to 0.60.

Certain azimuthal dependencies in the energy density patterns can be made
visible by the subtraction of ’orthogonal’ states of polarization. In this case,
the subtraction of the two orthogonal linearly polarized patterns at 0 and 90
degrees with the x-axis yields

∆wl,0 = 〈wx
e (r, φ, f)〉π/2 − 〈wy

e(r, φ, f)〉0 =

2s2
0 ℜ [G0,2(β, β) +G0,−2(β, β) − 2G+1,−1(β, β)] . (3.15)

The subtraction of two energy patterns belonging to diagonal linear polariza-
tion states gives rise to

∆wl,π/4 = 〈wx
e (r, φ, f)〉3π/4 − 〈wy

e(r, φ, f)〉π/4 =
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2s2
0 ℑ [G0,2(β, β) −G0,−2(β, β) + 2G+1,−1(β, β)] . (3.16)

The G-functions above, in the absence of aberrations, contain the basic 2φ-
azimuthal dependence in the energy density, in general a mixture of the cos 2φ-
and sin 2φ-function from their real and imaginary parts, depending on the ori-
entation of the linear state of polarization. The addition of aberrations intro-
duces higher and lower order φ-dependencies in the energy density function.
This phenomenon plays an important role when studying the quality of an
optical system with the aid of its through-focus point-spread functions.

3.1.2 Circular polarization (LC and RC)

If we substitute py = −ipx and py = ipx, we define right- and left-handed
circularly polarized light, respectively. This definition of polarization handed-
ness follows from our convention exp{i(kz − ωt)} for an outgoing plane wave
in the positive z-direction. The energy density is proportional to

〈wRC
e (r, φ, f)〉0∝G0,0(β, β) + s4

0 G2,2(β, β)

+2s2
0 G1,1(β, β) (3.17)

and, in a corresponding way,

〈wLC
e (r, φ, f)〉0∝G0,0(β, β) + s4

0 G−2,−2(β, β)

+2s2
0 G−1,−1(β, β) . (3.18)

The difference between right- and left-handed polarization density distribu-
tions thus equals

∆wC,0 = s4
0 [G2,2(β, β) −G−2,−2(β, β)]

+2s2
0 [G1,1(β, β) −G−1,−1(β, β)] . (3.19)

In the aberration-free case, this difference is identical zero. However, in the
presence of aberrations, the nonzero difference function with its specific az-
imuthal dependencies carries information on the aberration function of the
optical system. Like for the linear state of polarization, this fact will be ex-
ploited later in this chapter in the part on the assessment of optical systems
regarding their imaging quality.
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3.1.3 Unpolarized or ’natural’ light

The energy density in the case of incoherent (’natural’) light is obtained by
adding the energy density patterns corresponding to two orthogonal polariza-
tion states. We find

〈wN
e (r, φ, f)〉=G0,0(β, β) + s2

0 [G1,1(β, β) +G−1,−1(β, β)]

+
s4
0

2
[G2,2(β, β) +G−2,−2(β, β)] . (3.20)

In the aberration-free case, the energy density for natural light and circularly
polarized light is equal. This is generally not the case in the presence of aber-
rations. The case of partially polarized light can be accounted for by defining a
total energy density that is a weighted sum of a fully polarized pattern and an
unpolarized pattern, the weight being determined by the degree of polarization.

3.1.4 Circularly symmetric states of polarization (radial and tangential)

Other states of polarization with a specific structure have been studied in
the context of the angular momentum of light beams, in particular Gauss-
Laguerre beam modes [Allen, Beijersbergen, Spreeuw, Woerdman (1992)], [He,
Friese, Heckenberg, Rubinsztein-Dunlop (1995)]. These special beams have a
spatially varying state of polarization over the beam cross-section and cannot
be represented by a combination of two complex numbers specifying their
constant x- and y-components. The Gauss-Laguerre beam modes apply to
paraxial beams with a gradual decrease in field strenght as a function of radial
position. To incorporate finite-size beams with a sharp aperture limitation as
is common in imaging systems, we give below the Zernike expansion of radially
or tangentially polarized beams, or, more generally, of polarized beams with
circular symmetry. The expansion to be used is that of Eq.(2.64) in which
the linear phase terms, carrying angular momentum, are present as exp(imθ)
with m also assuming negative values to allow for the positive or negative
sign of angular momentum. Two sets of expansion coefficients are required
to represent the x- and y-components of the field in the entrance pupil. We
write the state of polarization of the incident field in the entrance pupil as, see
[Braat, Dirksen, Janssen, van de Nes (2003)],

Ex =A0 cos(θ + θ0),

Ey =A0 sin(θ + θ0) exp(iǫxy). (3.21)
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Fig. 3.2. Intensity of the point-spread function for various states of polarization in the entrance pupil
of an aberration-free imaging system (s0 = 0.95). The columns pertain to the defocus parameter
with f = π, π/2, 0,−π/2,−π, from left to right. Radial size: |r| ≤ 3. Upper row: incident light is
unpolarized; row 2: circular polarization; row 3: radial polarization; row 4: tangential polarization.

With ǫxy ≡ 0, we find as limiting cases radial polarization for θ0 = 0 and
tangential or azimuthal polarization for θ0 = π/2. The constant phase ǫxy

allows a gradual change from linearly polarized light along the x- and y-axis
to elliptically polarized light with maximum eccentricity along the diagonal
sections of the aperture.

Limiting ourselves to ǫxy = 0, we can calculate the general coefficients βm
n,x

and βm
n,y of the Zernike expansion by forming the inner products with the field

components of Eq.(3.21). The details of the derivation are given in Appendix
F; the result is given by

β+1
2n+1,x =fc(n) exp(iθ0),

β−1
2n+1,x =fc(n) exp(−iθ0),

β+1
2n+1,y =fc(n) exp{i(θ0 − π/2)}, ,
β−1

2n+1,y =fc(n) exp{−i(θ0 − π/2)},

with fc(n)=(−1)n 2n+ 2

(2n+ 1)(2n+ 3)
, (3.22)
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and with n = 0, 1, ..., nmax, where the value of nmax depends on the conver-
gence of the expansion. Some special states of polarization have been depicted
in Fig. 3.2. In all cases, the phase departure of the focusing wave in the exit
pupil is zero. With the through-focus planes of each column chosen as in Fig.
3.1, we first present the point-spread function intensity resulting from imaging
with unpolarized light, obtained by adding with equal weights the intensity
distribution belonging to two orthogonal states of polarization. The second
row pertains to circularly polarized light, with no difference between right- or
left-handed circular polarization in the aberration-free case. Moreover, as it
is also suggested by Fig. 3.2, the point-spread functions in row one and two
are identical in the aberration-free case, see Eqs.(3.17)-(3.18) and (3.20). In
the third and fourth row we show through-focus point-spread functions cor-
responding to, respectively, radial and tangential polarization in the entrance
pupil. The wavefront deformation in the exit pupil is still zero but nonzero
complex Zernike coefficients β±1

2n+1,x and β±1
2n+1,y are needed now to represent

the continuously varying state of polarization in the entrance pupil. In the case
of radial polarization (row three), a strong z-component of the electric field is
present in the optimum focal point F . It is seen that the radial polarization
leads to an overall blurring effect when the total energy density is considered.
Particular components of the electric field, in this case the z-component, give
rise to a contribution to the energy density distribution that is significantly
narrower than the typical point-spread function width. If a detecting material
can be devised that is preferentially sensitive to the z-component, this point-
spread function narrowing can be exploited in practice. In the fourth row with
tangential polarization, we observe a zero on-axis, surrounded by a strong ring
in the plane of best focus. This singular point in the energy density distribu-
tion can be exploited, for instance, when pointing accuracy in metrology is
important. As a final remark we note that, apart from dimensional issues, the
geometry of the electric field distribution for radial polarization is identical to
that of the magnetic field in the case of tangential polarization, and vice versa.

3.2 Expression for the Poynting vector

In this subsection we briefly discuss the behavior of the components of the
Poynting vector in a high-numerical-aperture system with general aberration
and state of polarization in the entrance pupil. The energy flow in the focal vol-
ume is determined by the time averaged values of the cartesian components of
the Poynting vector S. In a passive system, the quantity |< ∇ · (E × B) >| /µ0,
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integrated over a certain volume, determines the total power loss in that vol-
ume. If the loss is ohmic only, this quantity can also be written as σ|E|2/2 with
σ the local electric conductivity in Sm−1. The exposure in a photo-resist layer
or the total charge collected by a detector thus depends on either the electric
energy density or on the divergence of the Poynting vector. In practice, it will
be easier to calculate exposure or detected charge by using the directly avail-
able electric energy density. However, despite the evident advantage of using
|E|2, we present the expressions for the Poynting vector components to enable
a comparison and numerical check of both approaches.

For harmonic fields, the time average of the Poynting vector reads

〈S〉 =
ǫ0c

2

2
E × B∗ . (3.23)

We write the Poynting vector in a medium (refractive index nr) as

S = (Sx, Sy, Sz) =
ǫ0nrc

8
k2

0f
2
Ls

4
0|A|2(Px, Py, Pz), (3.24)

where the incident electric field is represented by ax = pxA, ay = pyA, like we
did before in the case of an optical system that is free of birefringence. Using
Eqs.(2.65)-(2.66) for the electromagnetic field vectors, we obtain after some
lengthy manipulation for the components Px and Py

Px =s0

{

− 2ip∗xpy[ℑ(G0,1) + ℑ(G0,−1)]

+i
{

|px|2
[

G∗
0,1 −G∗

0,−1

]

− |py|2 [G0,1 −G0,−1]
}

}

−s3
0

[

{

−2ℑ(pxp
∗
y) + 1

}

ℑ(G2,1) −
{

2ℑ(pxp
∗
y) + 1

}

ℑ(G−2,−1)

+2iℜ(pxp
∗
y) {ℑ(G1,−2 −ℑ(G2,−1}

+i(|px|2 − |py|2) {ℜ(G1,−2 −ℜ(G2,−1}
]

, (3.25)

Py =s0

{

2ipxp
∗
y[ℜ(G0,1) −ℜ(G0,−1)]

+|px|2 [G0,1 +G0,−1] + |py|2
[

G∗
0,1 +G∗

0,−1

]

}

+s3
0

[

{

−2ℑ(pxp
∗
y) + 1

}

ℜ(G2,1) +
{

2ℑ(pxp
∗
y) + 1

}

ℜ(G−2,−1)

+2iℜ(pxp
∗
y) {ℜ(G1,−2 −ℜ(G2,−1}
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−i(|px|2 − |py|2) {ℑ(G1,−2 −ℑ(G2,−1}
]

. (3.26)

The z-component of the Poynting vector equals

Pz =G0,0 − s2
0

[

i(|px|2 − |py|2)ℑ(G0,2) + 2iℜ(pxp
∗
y)ℜ(G0,2)

+i(|px|2 − |py|2)ℑ(G0,−2) − 2iℜ(pxp
∗
y)ℜ(G0,−2)

]

−s
4
0

2

[

{

1 − 2ℑ(pxp
∗
y)
}

G2,2 +
{

1 + 2ℑ(pxp
∗
y)
}

G−2,−2

]

. (3.27)

The real parts of the above expressions are needed to obtain the time-averaged
energy flow and to eliminate the reactive part of the Poynting vector, yielding
the adapted Poynting vector components

Px,r =s0

{

− 2ℑ(pxp
∗
y)ℑ (G0,1 +G0,−1) + ℑ (G0,1 −G0,−1)

}

+s3
0

{

+ 2ℑ(pxp
∗
y)ℑ (G2,1 +G−2,−1) −ℑ (G2,1 −G−2,−1)

}

, (3.28)

Py,r =s0

{

− 2ℑ(pxp
∗
y)ℜ (G0,1 −G0,−1) + ℜ (G0,1 +G0,−1)

}

+s3
0

{

− 2ℑ(pxp
∗
y)ℜ (G2,1 −G−2,−1) + ℜ (G2,1 +G−2,−1)

}

, (3.29)

Pz,r =G0,0 −
s4
0

2

{

(G2,2 +G−2,−2) − 2ℑ(pxp
∗
y) (G2,2 −G−2,−2)

}

. (3.30)

In Fig. 3.3 we have plotted these Poynting vector components in three cross-
sections of the focal volume with f = π, 0,−π. The top row (no aberrations)
shows a uniformly directed flow on both sides of best focus, towards the focal
point F in front of F and outgoing beyond F . In the plane with f = 0,
the only nonzero flow component is that along the z-axis. Despite the non-
circularly symmetric energy density in the high-numerical-aperture case, the
flow pattern of the Poynting vector is circularly symmetric. This is because
of the complementary field distributions of the E- and B-vector, yielding a
circularly symmetric function regarding their product. At a very fine scale,
not visible in the Figure, vortices in the flow pattern are possible, close to
the regions in space of zero energy density where the z-component of the
Poynting vector changes sign, see [Richards, Wolf (1959)]. In the second row
of Fig. 3.3, in the presence of spherical aberration, the global flow pattern of
the aberration-free case is still there, but finite radial components are visible
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Fig. 3.3. Flow lines of the electromagnetic energy in the focal region of a high-numerical-aperture
beam (s0 = 0.95, linear polarization x-direction), going from a defocused plane closer to the exit pupil,
via the best focus plane in F to a defocused plane beyond F (the defocus distance equals two focal
depths). Lateral dimensions in x- and y-direction are −1.11 ≤ x, y ≤ +1.11 in dimensionless units of
λ/s0. The x- and y-components of the Poynting vector are represented by arrows; the amplitude of the
z-component is represented by the grey-shading in each plane z=constant. Top row: aberration-free
case; row 2: α0

4,c = 1.41; row 3: α1
3,c = 1.79; row 4: α2

2,s = 1.55.

now in the plane f = 0 because of the ’distributed’ axial focus in the beam.
The asymmetry around focus, already present in the energy density function, is
also visible in the Poynting vector flow pattern. In the third row, the left graph
shows the enhanced energy flow in the x-direction towards the asymmetrical
coma distribution in the plane f = 0. On the other side of the best focal plane,
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the outflow in the x-direction is also stronger to get back to the balanced flow
pattern at large defocus value in the far-field. Finally, in the fourth row, we
observe in the energy flow pattern the effect of the splitting of the ideal focal
point into two focal lines, due to the astigmatism at 45 degrees. The slight
change in orientation of the ’focal lines’ towards the y-axis is due to the initial
state of linear polarization that was chosen along the x-axis.

3.2.1 The aberration-free system as a special case

It is interesting to reduce the general expressions for the Poynting vector
components to their simpler form in the case of an aberration-free imaging
system. In that case, we put βm

n = 0 with the exception of β0
0 ≡ 1. The G-

functions reduce to

Gkl(β) = exp {i(k − l)φ}Ψ0
0;k,l(r, f), (3.31)

with the shorthand notation Ψ0
0;k,l(r, f) = V 0

0,k(r, f)V 0∗
0,l (r, f). After some ma-

nipulation, the cartesian Poynting vector components are found to be

Px,r =2s0

{

2ℑ(pxp
∗
y)ℜ{Ψ0

0;0,1(r, f)} sinφ+ ℑ{Ψ0
0;0,1(r, f)} cosφ

}

+2s3
0

{

2ℑ(pxp
∗
y)ℜ{Ψ0

0;2,1(r, f)} sinφ−ℑ{Ψ0
0;2,1(r, f)} cosφ

}

,

(3.32)

Py,r =2s0

{

− 2ℑ(pxp
∗
y)ℜ{Ψ0

0;0,1(r, f)} cosφ+ ℑ{Ψ0
0;0,1(r, f)} sinφ

}

+2s3
0

{

− 2ℑ(pxp
∗
y)ℜ{Ψ0

0;2,1(r, f)} cosφ−ℑ{Ψ0
0;2,1(r, f)} sinφ

}

,

(3.33)

Pz,r =Ψ0
0;0,0(r, f) − s4

0Ψ
0
0;2,2(r, f) . (3.34)

Because of the basic circular symmetry of many diffraction problems, it is ap-
propriate to express the Poynting vector components in cylindrical coordinates
and we find for the polar components

Pr =2s0 ℑ
[

Ψ0
0;0,1(r, f) − s2

0Ψ
0
0;2,1(r, f)

]

,

Pφ =−4s0ℑ(pxp
∗
y) ℜ

[

Ψ0
0;0,1(r, f) − s2

0Ψ
0
0;2,1(r, f)

]

. (3.35)

Some conclusions can be drawn from the above expressions. Using the property
Ψ0

0;k,l(r,−f) = Ψ0∗
0;k,l(r, f), we can state that
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Fig. 3.4. Flow lines of the Poynting vector in the focal region of an ideal imaging system (s0 = 0.95)
for various states of polarization in the entrance pupil. Left column: f = π; central column: f = 0,
right column: f = −π. Lateral dimensions in x- and y-direction are −1.11r ≤ x, y ≤ +1.11. Up-
per row: linear polarization along the x-axis. Middle row: Right-handed circularly polarized light
(px = 1, py = −i). Bottom row: radial polarization.

• On-axis (r = 0), the power flow is directed along the axis of the beam.
• The radial component changes sign through focus.
• The azimuthal component is only present if the incident radiation is not lin-

early polarized (arg(px) 6= arg(py)), see [Boivin, Dow, Wolf, 1967], [Stallinga
(2001)]. This corresponds to the presence of angular momentum in the fo-
cused beam.

• The azimuthal component is maximum in the case of circularly polarized
light.

• The azimuthal component maintains its sign on both sides of the optimum
focus.

• For large s0, all components can locally change sign with respect to their
average values if the (r, f)-dependent function becomes zero. This can give
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rise to regions where the energy flow is in the negative z-direction and also
to the appearance of vortices in the energy flow pattern.

• Regardless of the incident state of polarization, the z-component possesses
circular symmetry. This is because the Poynting vector describes the energy
flow of both electric and magnetic energy. Any lack of circular symmetry in
the energy densities of these contributions is cancelled in their sum.

• In the low-aperture case, the z-component is the only surviving only.

In Fig. 3.4 we have presented some graphs that illustrate the observations
made above for the aberration-free case. With the upper row (linear polariza-
tion in the x-direction) as a reference, we see in the second row the influence
of circular polarization in the entrance pupil on the flow pattern in the focal
region. The state of polarization is right-handed, the flow circulation in focus
becomes left-handed. Everywhere on the optical axis the azimuthal component
is zero. The beam possesses a certain amount of angular momentum. With the
positive z-direction as the viewing direction, we observe that the rotation sense
of the electric field vector is left-handed for RC-polarized light and this rotation
sense is in accordance with the sign of the angular momentum of the electric
field distribution in the focal region. In the bottom row, we have plotted the
power flow in the case of radial polarization. Because of the interchangeability
of the E- and B-vector between radial and azimuthal polarization, the flow
pattern would have been the same for azimuthal polarization. It is important
to remark that the z-component of the Poynting vector is zero everywhere
on-axis, despite the fact that the energy density is finite on-axis in the case of
radial polarization. The same holds for the magnetic energy density in the case
of azimuthal polarization. However, because of the vanishing transversal com-
ponents of either the electric (radial polarization) or magnetic (azimuthal) field
components on the z-axis, there is no power flow possible in the z-direction on
the axis itself.

63



4 Quality assessment by inverse problem solution

In the preceding sections, a thorough description has been presented of the
energy density and the intensity in the focal region. Various methods are avail-
able to calculate these quantities. The propagation from the exit pupil sphere
to the image region is the crucial and most labor-intensive step for obtaining
the above quantities. Numerical methods are frequently used, in most cases
based on the Fast Fourier Transform scheme. These methods can handle a
large variety of practical situations; with the correct sampling density quite
arbitrary geometries are tractable. Analytic methods generally are less versa-
tile but they have the advantage of providing an immediate solution of the
diffraction integral, thus saving much computational effort. Considerations of
this nature are important when addressing the so-called ’inverse problem’, how
to obtain reliable information on the properties of the optical imaging system
to assess its quality. Although an excellent method like interferometry is avail-
able to evaluate the aberrations of an optical system, this method is not always
easily implemented in a practical situation. Special sources, preferably lasers,
are required at the specific design wavelengths of the optical system. Perfect
optics are needed in the reference branch of an amplitude-splitting interfer-
ometer or a wavefront splitting device in a shearing interferometer. Coherence
length requirements have to be satisfied and the necessary mechanical and en-
vironmental stability is difficult to obtain. For these reasons, the reconstruction
or retrieval of system information from images in the focal region is interesting
because this method avoids most of the subtle experimental conditions en-
countered in interferometry. The images to be studied for ’retrieval’ of system
parameters can be of a general nature or they can be of the simplest form, the
image of a point source, the so-called point-spread function. After a brief dis-
cussion of the more general methods for phase retrieval, we will focus in this
section on the point-source or quasi-point-source option as it is, experimen-
tally, most easily realized. The quasi-point-source is the practical compromise
between smallest possible object dimension and light efficiency in the measure-
ment set-up. The analyses in this section will be limited to the scalar approxi-
mation of image formation, valid for relatively low-numerical-aperture imaging
systems. The extension of the inverse problem to high-numerical-aperture will
be treated in the following section.
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4.1 Intensity measurements and phase retrieval

The most important quantity impairing the performance of an optical in-
strument is its phase aberration. It may be due to environmental perturbations
like atmospheric turbulence in astronomical imaging, it may be caused by the
design of the system or induced by fabrication and mounting errors of the sys-
tem components, such as the improper figuring of an aspheric optical surface.
In this subsection we briefly discuss the model for retrieval of phase information
from intensity measurements based on an approximate solution of the scalar
wave equation for quasi-parallel or low-aperture beams. The starting point of
the analysis is the so-called paraxial or parabolic Helmholtz wave equation
[Kogelnik (1965)],

∇2
tQ+ 2ik

∂Q

∂z
+ k2Q = 0, (4.1)

with Q(x, y; z) the slowly varying amplitude in the z-direction of the scalar
solution U for the wave

U(x, y, z; t) = Q(x, y; z) exp {i(kz − ωt)} . (4.2)

The circular wave number of the wave propagating in the z-direction is again
given by k, the circular frequency is ω. The ∇2

t -sign means that only the sec-
ond derivatives in the transversal direction need to be taken. The complex
amplitude is more explicitly written as Q(x, y; z) = A(x, y; z) exp{iφ(x, y; z)}
where, again, the parameter-wise notation of the z-coordinate indicates that
the functions only slowly vary as a function of this variable.

The intensity of the wave phenomenon is given by |U |2 = QQ∗ = I and an
equation can be derived [Teague (1983)] that relates the measured intensity
I to the phase function φ(x, y; z) of the wave, the so-called Intensity Trans-
port Equation (ITE). Multiplying Eq.(4.1) by Q∗ and the complex conjugate
expression of Eq.(4.1) by Q itself and subtracting the results, we obtain after
some rearrangement

2ik
∂A2

∂z
+ 4iA

[

∂A

∂x

∂φ

∂x
− ∂A

∂y

∂φ

∂y

]

+ 2iA2





∂2φ

∂x2
+
∂2φ

∂y2



 = 0, (4.3)
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which is commonly written as the ITE-equation in compact notation

−k∂I
∂z

= ∇t · (I∇tφ) = I∇2
tφ+ ∇tI · ∇tφ. (4.4)

If the intensity across the beam is locally constant, the second term on the right
side of Eq.(4.4) is zero and the axial derivative of the intensity is proportional to
the wave front curvature. In regions where the intensity across the beam varies,
the gradient or slope of the wavefront determines the transfer of intensity across
the beam (see Fig. 4.1) Methods to solve the intensity transport equation

x
y

z

∆z

I(x,y;z  ) I(x,y;z  )1  2

Fig. 4.1. Schematic drawing of a quasi-parallel beam and the variation of its intensity in the axial
and in the transverse beam direction due to, for instance, wave front curvature. The lower intensity
regions have been shaded. The energy propagation direction is given by the arrows, the dashed curve
indicates the curved wavefront. All effects have been strongly exaggerated in the figure.

using Green’s functions have been presented in [Woods, Greenaway (2003)].
The experimental evaluation of the z-derivative of the intensity is generally
done by measuring the intensity distribution in two axially shifted planes. The
ITE-based phase retrieval method is limited to paraxial beams. In this chapter,
the interest is focused on the characterization of high-quality imaging systems
where, in most cases, imaging pencils with a medium to large opening angle are
encountered. The characterization of such systems is treated in the following
subsections.

4.2 The optical inverse problem for finite-aperture imaging systems

The aberration of an optical imaging systems influences its complex ’lens’
transmission function. Measurements only give access to the intensity, the mod-
ulus squared of the complex amplitude. In this subsection we discuss inverse
schemes that go back to the complex lens function in a generally unambiguous
way using appropriate intensity measurements. However, a unique way back to
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the lens function is not guaranteed in all cases, among others given the prob-
lem of phase retrieval from data that extend beyond the basic retrieval interval
for phase data of [−π,+π] (phase-unwrapping problem). The first scheme for

αmax

u

v

x

y

a

z

D

Q

R

P

Fig. 4.2. Schematic drawing of the exit upil domain (far field, coordinates Q(u, v)) and the image
domain (coordinates P (x, y, z)). The propagation forth and back between the two domains is governed
by the scalar diffraction integral. In a different set-up, the light is focused first on the object in a
plane z = z0; the far field then becomes available on the detection sphere D. The angular extent
αmax of the imaging pencil has been exaggerated in the figure.

phase retrieval or pupil function reconstruction goes back to [Gerchberg, Sax-
ton (1971)]. The method is based on the frequent back and forth propagation
of the complex amplitude between the image plane and the exit pupil, see Fig.
4.2. A Fast Fourier Transform (FFT) is executed and the Fraunhofer or Fresnel
approximation is used for calculating the pathlength from a general point Q in
the exit pupil to a point P in the image plane. After each forward and back-
ward propagation, the calculated results are updated to better match them
with the measurements and the physical boundary condition (non-negativity
of the intensity). Denoting the image plane complex amplitude in a certain
plane z = z0 by f(x, y, z0), we have the basic Fourier relationship

F (kx, ky; z0)=
+∞
∫

−∞

+∞
∫

−∞
f(x, y, z0) exp{−i(kxx+ kyy)}dxdy,

f(x, y, z0)=
1

(2π)2

+∞
∫

−∞

+∞
∫

−∞
F (kx, ky; z0) exp{+i(kxx+ kyy)}dkxdky,

(4.5)

where kx and ky are the optical ’far field’ coordinates and where we have
neglected the exact radiation factors that should precede the integrals. Both
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F (kx, ky; z0) and f(x, y, z0) are complex-valued according to

F (kx, ky; z0)= |F (kx, ky; z0)| exp{iφF (kx, ky; z0)},
f(x, y, z0)= |f(x, y, z0)| exp{iφf(x, y, z0)}. (4.6)

In the most comfortable situation, both the optical far field |F | and near
field |f | are accessible to measurements via their squared moduli. In other
circumstances, for instance when measuring the far field distribution scattered
from a microscopic periodic transmitting object, |F | is available and we want
to get back to the object transmission function f , including its phase φf . In
the case of the single intensity measurement, a supplementary property of
the object needs to be specified. This could be, for example, the frequently
occurring boundary condition that the object is partly obscuring the light,
yielding a transmission function f(x, y; z0) that should be real and positive.
The Gerchberg-Saxton algorithm then proceeds as follows

(1) produce an estimate of the object and calculate its Fourier transform to
obtain the far field,

(2) replace the calculated modulus of the far field by its measured value to
obtain a better estimate of the far field,

(3) apply an inverse Fourier Transform to this function to obtain an image
estimate,

(4) replace the modulus of the image by the measured modulus to further
improve the image.

Following the analysis in [Fienup (1982)], the equations governing the four
steps in the nth cycle are, starting with, for instance, the nth estimate fn of the
object function

Fn(kx, ky; z0)= |Fn(kx, ky; z0)| exp{iφF,n(kx, ky; z0)} = F [fn(x, y, z0], (4.7)

F
′

n(kx, ky; z0)= |F (kx, ky; z0)| exp{iφF,n(kx, ky; z0)}, (4.8)

f
′

n(x, y, z0)= |f ′

n(x, y, z0)| exp{iφ′

f,n(x, y, z0)} = F−1[F
′

n(kx, ky; z0], (4.9)

fn+1(x, y, z0)= |f(x, y, z0)| exp{iφf,n+1(x, y, z0)}
= |f(x, y, z0)| exp{iφ′

f,n(x, y, z0)}. (4.10)

Here, F and F−1 stand for the forward and backward Fourier Transform op-
erations; the primed quantity F

′

n has been obtained by using the measurement
result for |F |. In a comparable way, the non-primed quantity fn+1 in the fourth
equation has been obtained from the primed f

′

n by substituting the measure-
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ment result of |f |. If a complete measurement of F or f is not available, partial
adjustments can be made in steps 2 and 4. These are related to possible neg-
ative intensity values or to the spreading of F or f outside a fixed domain for
these functions whose limits are known a priori. The whole cycle is repeated
until no further improvement is obtained. This means that either the optimum
image or pupil function has been found or that stagnation has occurred. The
improvement is monitored by calculating a merit or cost function at each cycle
according to

Mn,f =
∫∫

∣

∣

∣fn+1(x, y, z0) − f
′

n(x, y, z0)
∣

∣

∣

2
dxdy, (4.11)

Mn,F =
1

(2π)2

∫∫

∣

∣

∣F
′

n(kx, ky; z0) − Fn(kx, ky; z0)
∣

∣

∣

2
dkxdky, (4.12)

where either the image plane or the far-field data are monitored.
Convergence of the merit function can be proved in the following way. Ap-

plying Parseval’s theorem first to Mn,F we find

Mn,F =
1

(2π)2

∫∫

∣

∣

∣F
′

n(kx, ky; z0) − Fn(kx, ky; z0)
∣

∣

∣

2
dkxdky =

∫∫

∣

∣

∣f
′

n(x, y, z0) − fn(x, y, z0)
∣

∣

∣

2
dxdy. (4.13)

Inspection of Eqs.(4.7)-(4.10) yields the result

|f ′

n − fn| ≥
∣

∣

∣|f ′

n| − |f |
∣

∣

∣ = |f ′

n − fn+1|, (4.14)

since the argument values of the complex quantities f
′

n and fn are different in
general. This allows us to write

1

(2π)2

∫∫

∣

∣

∣F
′

n(kx, ky; z0) − Fn(kx, ky; z0)
∣

∣

∣

2
dkxdky

≥
∫∫

∣

∣

∣fn+1(x, y, z0) − f
′

n(x, y, z0)
∣

∣

∣

2
dxdy, or: Mn,F ≥Mn,f . (4.15)

In an analogous manner, Parseval’s theorem applied to Mn,f yields the result
Mn,f ≥ Mn+1,F , which leads to the conclusion that each iteration cycle will
produce smaller (or equal) values of the merit function, defined either in the
far-field or in the image domain. The original method by Gerchberg and Saxton
can be classified in the more general framework of optimization methods; it
then becomes a special case of the method of steepest descent.
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4.3 Solving the optical inverse problem using phase diversity

The initial solution to optical inverse problems required the measurement
of one intensity pattern, subject to certain constraints in the corresponding
Fourier domain, or the measurement of two intensity patterns in both Fourier
domains. The success of a solution method strongly depends on a fast prop-
agation algorithm to switch between the two domains; the preferred tool to
carry out this propagation is the Fast Fourier Transform. If it is not possible to
have access to both domains or if the measurements in the second domain add
virtually no information, the inverse problem can be extended to more than
one measurement in a single domain. The first suggestion to do so goes back to
[Gonsalves (1982)] and, in the case of sufficiently small aberration, the proce-
dure for unique phase retrieval using two intensity measurements is explained
as follows [Gonsalves (2001)]. In Fig. 4.3 we have depicted a system producing

S

D

D1

2

P

O

Fig. 4.3. A simple set-up to produce simultaneously two intensity patterns on the detectors D1 and
D2 of an object. The required phase diversity between the two detected images is obtained by the
defocusing (heavily exaggerated in the figure) of the point-spread function on D2. The object is a
point source S, the exit pupil of the optical system O has been denoted by P .

phase diversity by means of the beam splitter that delivers a defocused image
on detector D2. In what follows, both the aberrations of the system O itself
and the defocusing on the second detector are small with respect to the wave-
length λ of the light. The pupil function of the imaging system O is now given
by

P = A exp[iΦ] ≈ A[1 + iΦ] = A+ i[AΦ1 + AΦ2] = A+ i[Ψ1 + Ψ2], (4.16)

where we have suppressed, for ease of notation, the dependence of the functions
on the pupil coordinates (u, v). Moreover, we have split the phase function Φ
in two parts, an even part Φ1 and an odd part Φ2. The total phase departure Φ
should remain small, typically ≤ π/2. The amplitude function A is supposed
to be real and positive (0 < A ≤ 1). If the detector D1 is positioned in the
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nominal imaging plane, the amplitude point-spread function is given by the
Fourier transform of the pupil function P and is written

p = a+ i(ψ1 + ψ2) = a+ ψ3 + iψ1, (4.17)

with the lower-case symbols indicating the Fourier transforms of the corre-
sponding functions in the pupil domain. The Fourier transform ψ1 of the even
function Ψ1 is real and even. Because Ψ2 is odd, its transform ψ2 is purely
imaginary and odd; for that reason it has been replaced by ψ3 = iψ2 with ψ3

real and odd to have only real functions in Eq.(4.17). The measured intensity
on D1 is proportional to pp∗, yielding

SD1
= S11 + S12 = (a2 + ψ2

1 + ψ2
3) + 2aψ3, (4.18)

where we have split up the detector signal in an even part S11 and an odd part
S12. The function ψ2 = −iψ3 = −iS12/(2a) is purely imaginary. After applying
a backward or inverse Fourier Transform we get the result AΦ2 = ℑ{Ψ2} for
the odd part of the pupil function.
Having obtained the odd part of the pupil function, Eq.(4.18) allows to find
the function ψ1 using S11, the even part of the detector signal, and retrieve
AΦ1 using ψ1 =

√

S11 − a2 − ψ2
3 and applying an inverse Fourier Transform

to this function. The problem in doing this is the uncertainty about the sign
when taking the square root. Phase diversity is a useful tool to eliminate this
problem. The defocusing in the second measurement branch corresponds to a
modified pupil function

P = A exp[i(Φ + Φd] ≈ A+ i[Ψ1 + Ψ2 + Ψd], (4.19)

with Ψd = AΦd and Φd the quadratic phase function due to defocusing, again
small in amplitude. Using the same arguments as above, the signal on the
second defocused detector is now given by

SD2
= S21 + S22 = (a2 + ψ3)

2 + (ψ1 + ψd)
2, (4.20)

where ψd is the Fourier transform of the defocus function AΦd. Combining the
two detector measurements we write

SD2
= SD1

+ 2ψ1ψd + ψ2
d , (4.21)
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with the solution

ψ1 =
SD2

− SD1
− ψ2

d

2ψd
. (4.22)

Finally, the value of AΦ1 is obtained after applying the backward Fourier
Transform to ψ1 and taking the real part of it. Possible divisions by zero in
obtaining ψ2 above and ψ1 in Eq.(4.22) can be numerically avoided by replac-
ing a division by a by the expression a/(a2 + ǫ) where the value of ǫ decides
about the allowed range of function values of the ψ1- and ψ2-functions.

The basic approach of phase diversity as described above has been extended
to problems of a more general nature [Fienup (1999)], for instance in the con-
text of the Hubble space telescope recovery action, or the analysis of micro-
scope objectives [Wesner, Heil, Sure (2002)]. The ’diversity’ in images to be
treated can be extended to the wavelength domain (broadband imaging), to
varying aberration settings and to changes in pupil geometry. The extension
to broadband imaging is especially interesting when dealing with astronomi-
cal images of extremely weak objects (photon-starved regime); a restriction to
quasi-monochromatic detection would give rise to a prohibitively low signal-
to-noise ratio of the corresponding images.
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5 Quality assessment using the Extended Nijboer-Zernike diffraction theory

In this section we focus on the retrieval of the pupil function using an ex-
pansion in terms of Zernike polynomials. The coefficients of the expansion are
obtained by means of an inversion or retrieval process that uses as input the
data from various intensity patterns collected in the focal region of the opti-
cal system. To be able to treat these defocused intensity patterns, an analytic
extension of the Nijboer-Zernike theory was recently devised [Janssen (2002)],
[Braat, Dirksen, Janssen (2002)]. The out-of-focus extension of the classical
Nijboer-Zernike diffraction theory allows for a fast and numerically stable for-
ward propagation from the exit pupil to the focal ’volume’ of the imaging
system. This can be done independently for each of the amplitude and in-
tensity patterns belonging to a typical Zernike aberration. In this way, Fast
Fourier Transform methods can be avoided. Although the latter are reputedly
fast with respect to the classical numerical evaluation of a diffraction integral,
they still constitute the major numerical burden in an inversion process. Be-
cause of the discontinuous behaviour of the pupil function, high sample rates
are needed. A semi-analytic approach as made possible by using the extended
Nijboer-Zernike theory offers very substantial advantages in the speed with
which an inversion can be carried out. Moreover, due to the analytic decompo-
sition of the inversion problem, certain computational tasks are independent
of the parameter values and can be carried out beforehand, making the effec-
tive inversion operation extremely fast. Both the amplitude and phase part of
the pupil function can be retrieved by using the complex Zernike coefficient
expansion that was given in Eq.(2.27) for the scalar diffraction case and in
Eq.(2.64) for the vector diffraction case. Due to the limited space available,
most considerations in this section are of a global nature; analytic and com-
putational details can be found in the references.

We first treat the retrieval process for relatively low numerical aperture sys-
tems using the scalar diffraction model. This is a good approximation up to
aperture values of 0.60 in air, or equivalently, up to a full cone convergence
angle of the focused pencil below 75 degrees, independently of the refractive
index of the image space medium. An extension to higher aperture values
first needs an adaptation of the defocus factor in the diffraction integral from
the quadratic form to the exact expression at high numerical aperture. With
this extension, one can still adequately describe imaging up to a numerical
aperture value of, say, 0.85 if the imaging is carried out with natural light so
that polarization effects in the focal region are not yet pronounced, see [Dirk-
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sen, Braat, Janssen, Leeuwestein (2005)] and [van der Avoort, Braat, Dirksen,
Janssen (2005)]. But in the case of fully polarized illumination in the entrance
pupil and imaging with high numerical aperture, one should use the full vec-
tor diffraction integral and the complete parametric description of the pupil
function according to Eq.(2.64). With this expansion one can detect possible
birefringence introduced by the optical system, a non-negligible factor of qual-
ity deterioration in imaging systems, especially at high numerical aperture.
The limits of applicability of the extended Nijboer-Zernike diffraction model
are given in practice by the restrictions on the illumination. The illumina-
tion of the entrance pupil should basically be done with a point source, or,
in practice, a source that is much smaller than the diffraction unit λ/sE in
object space, with sE the object side numerical aperture of the optical system.
Because of the limited throughput of such a tiny source, it is important to
be able to extend the model to sources with a finite lateral extent. This can
be done by including the analytically known non-uniform far-field pattern of
a finite source in the effective pupil function of the optical system [van der
Avoort, Braat, Dirksen, Janssen (2005)]. In this way, the model is made appli-
cable to practical experimental circumstances where exposure time or detector
sensitivity are critical factors.

5.1 Scalar retrieval process using the Extended Nijboer-Zernike theory

The starting point for the retrieval process is the analytic expression for the
complex amplitude in the focal region that was obtained in Section 2.6, using
the result for the diffraction integral of Eq.(2.47). We describe the complex
amplitude distribution on the exit pupil sphere, in analogy with Eq.(2.27) by

P (ρ, θ) = E(ρ, θ) exp{iΦ(ρ, θ)} =
∑

nm
βm

n R|m|
n (ρ) exp{imθ}, (5.1)

where we have used the symbol βm
n for the complex expansion coefficients

for the complete pupil function to distinguish them from the (real) expansion
coefficients αm

n that are related to the expansion of the phase function Φ only.
In the case of sufficiently smooth functions E and Φ, it is possible to go back
from the complex βm

n to the separate amplitude and phase parts of the pupil
function. Using the above expansion for the exit pupil function in Eq.(2.20),
we readily obtain the complex amplitude in the focal region with the aid of
Eq.(2.47),
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Ef(r, φ, f)∝∑

nm
2im βm

n V m
n (r, f) exp{imφ}, (5.2)

where the summation over the index m has to be carried out over both positive
and negative values. The function V m

n (r, f) and its series expansion have been
given in Eqs.(2.47)-(2.50).

The intensity I in the focal region is obtained by taking the squared mod-
ulus of Ef . In the case of relatively small aberrations and transmission non-
uniformity, the intensity is approximated by

I(r, φ, f)≈4(β0
0)

2 |V 0
0 (r, f)|2

+8β0
0

∞
∑

n=0

+∞
∑

m=−∞
ℜ
{

i−mβm ∗
n V 0

0 (r, f) V m ∗
n (r, f) exp[−imφ]

}

, (5.3)

where the term with m = n = 0 has to be omitted in the summation. The
coefficient β0

0 is chosen to be real and > 0; any nonzero phase of β0
0 can be

accounted for by a phase offset in the coefficients βm
n with n = m 6= 0 as

the absolute phase of the wavefront in the exit pupil is of no concern when
measuring the image intensity. The approximation in Eq.(5.3) is justified when
β0

0 is the dominant coefficient in the Zernike expansion of the pupil function,
thus allowing the deletion of any quadratic terms in β that do not contain a β0

0

coefficient. In (5.3) the leading term is the aberration-free intensity pattern,
for f = 0 equal to the Airy disc intensity.

Although the parametric representation of the pupil function with the aid
of the β-coefficients is mathematically efficient and compact, the relationship
between the amplitude and phase part of the pupil function and the structure of
the intensity distribution in the focal volume tends to become obscure. For that
reason, we temporarily resort to the more common harmonic representation
with possibly complex βc- and βs-coefficients for the cosine and sine terms and
the following relationship with the general β-coefficients

βm
n =

βm
n,c

2
− i

βm
n,s

2
, β−m

n =
βm

n,c

2
+ i

βm
n,s

2
. (5.4)

When the pupil function shows only weak phase aberration, one uses the ap-
proximate representation

P (ρ, θ) ≈ 1 + iΦ(ρ, θ) = 1 + i
′
∑

nm
Rm

n (ρ)
[

αm
n,c cos θ + αm

n,s sin θ
]

. (5.5)
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The hyphen on top of the summation sign indicates that the term with n =
m = 0 should be excluded from the summation. The corresponding β-coefficients
are given by

βm
n = i

αm
n,c

2
+
αm

n,s

2
, β−m

n = i
αm

n,c

2
− αm

n,s

2
,

and
βm

n,c = iαm
n,c, βm

n,s = iαm
n,s, β0

0 = 1, (5.6)

with the real coefficients αm
n,c and αm

n,s now specifically linked to the phase
part of the pupil function. For this latter, frequently occurring practical case,
Eq.(5.3) can be written out in detail to make visible the separate φ- and (r, f)-
dependencies in the intensity distribution in the focal region. These dependen-
cies will be exploited later in the retrieval scheme. After some manipulation,
Eq.(5.3) is written according to

I(r, φ, f)≈Ψ0
0 +

′
∑

n,m

{

ℜ [Ψm
n (r, f)]

(

ℜ[βm
n,c] cosmφ+ ℜ[βm

n,s] sinmφ
)

+ℑ [Ψm
n (r, f)]

(

ℑ[βm
n,c] cosmφ+ ℑ[βm

n,s] sinmφ
)}

, (5.7)

where we have introduced the function

Ψm
n (r, f) = γmi

−mV 0
0 (r, f)V m ∗

n (r, f) (5.8)

with γ0 = 4 and γm = 8 for m = 1, 2, .... With the phase-only pupil function
and the coefficients according to Eq.(5.6) we find

I(r, φ, f) ≈ Ψ0
0 +

′
∑

n,m
ℑ [Ψm

n (r, f)]
(

αm
n,c cosmφ+ αm

n, sinmφ
)

. (5.9)

This expression represents a set of equations in the unknown coefficients αm
n,c

and αm
n,s of which a certain set is needed to represent in a sufficiently accurate

way the phase part of the pupil function Φ. Various methods can be applied
to solve for the unknown coefficients, like point-matching or a least-squares
solution. Here, we present the approach that is based on the formation of a
set of equations using inner products, see [Dirksen, Braat, Janssen, Juffermans
(2003)], [van der Avoort, Braat, Dirksen, Janssen (2005)].
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5.1.1 Solution method using inner products

To solve for the unknown aberration coefficients we first carry out a harmonic
analysis of the intensity data in the focal volume by evaluating

Ξm
c (r, f) =

1

2π

2π
∫

0

I(r, φ, f) cosmφ dφ, (5.10)

and the corresponding sine-transform Ξm
s (r, f). Carrying out the same har-

monic analysis on the right-hand side of Eq.(5.9) we obtain the equations

Ξm
c (r, f)= δmmΨ0

0(r, f) +
1

2

∑

n
αm

n,cℑ [Ψm
n (r, f)]

Ξm
s (r, f)=

1

2

∑

n
αm

n,sℑ [Ψm
n (r, f)] , (5.11)

with δmm the Kronecker symbol. We define the (normalized) inner product of
two functions Ψm

n by

(Ψ1(r, f),Ψ2(r, f)) =
1

2πR2F

R
∫

0

F
∫

−F

Ψ1(r, f)Ψ∗
2(r, f) rdrdf, (5.12)

where the integration extends over the focal volume up to certain limits within
which reliable data have been made available by measurement. We now apply
the inner product operation to both sides of Eq.(5.12) and obtain

(Ξm
c ,ℑ[Ψm

n′])= δmm

(

Ψ0
0,ℑ[Ψm

n′]
)

+
1

2

∑

n
αm

n,c (ℑ[Ψm
n (r, f)],ℑ[Ψm

n′])

(Ξm
s ,ℑ[Ψm

n′])=
1

2

∑

n
αm

n,s (ℑ[Ψm
n (r, f)],ℑ[Ψm

n′]) . (5.13)

By choosing a sufficiently large number of n
′

values, a preferably square system
of equations is constructed for each specific value of the harmonic component
m. The inner products on the right-hand side of Eq.(5.13) are calculated be-
forehand, a single time. The inner products on the left-hand side depend on
the measurement data and have to be calculated anew for each system mea-
surement. The solution of the system of equations is further facilitated by the
fact that the matrix system of linear equations, built via the inner product
method, is sparse with an almost perfect diagonal structure; this is because
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of the ’almost’ orthogonality properties of the elementary functions Ψm
n (r, f)

over the two-dimensional (r, f)-integration domain in the focal region.

5.1.2 Experimental results of aberration retrieval in the scalar approximation

In Fig. 5.1 we have sketched an experimental set-up to measure the lens
quality of a high-resolution projection lens meant for optical lithography. The
lens is illuminated via a tiny pinhole at the mask or reticle location using the
standard illumination system of the lens. The pinhole image is captured in the
high-numerical-aperture image space with the aid of a measuring objective that
produces a magnified image on a high-density image sensor. The typical images
produced by such a sensor are shown in Fig. 5.1 at the right. Through-focus
images are successively captured by a defocusing of the measuring objective.
A typical number of images to be treated in the total measurement series is

Fig. 5.1. Measurement set-up for quality assessment of a high-resolution projection lens. The interme-
diate image of the projection lens is captured by a measurement objective that produces a magnified
image on the image sensor. The inserted picture at the right is a typical defocused image.

2N + 1, preferably symmetrically arranged around the optimum focal plane
(see Fig. 5.2, upper row). The total excursion on either side of optimum focus

Fig. 5.2. A through-focus collection of point-spread functions captured by the image sensor. In this
case, seven images, symmetrically arranged around best focus, have been recorded for aberration
retrieval (upper row). The calculated result of the retrieval process is shown in the lower row of
pictures where, for an easy comparison, the same pixel structure as during recording has been kept.
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is of the order of 3 to 4 focal depths (−2π ≤ f ≤ +2π). The total amount
of data captured from the 2N + 1 through-focus images is used to construct
an interpolated 3D-picture of the intensity distribution in the focal volume.
The data are submitted to the harmonic decomposition of Eq.(5.10), yielding
the cosine and sine components of the intensity variations over a circle of ra-
dius r at axial position f . The solution of the system of linear equations then
yields the Zernike coefficients. The set of measured coefficients that resulted
from the point-spread function analysis of Fig. 5.2, upper row, is shown in Fig.
5.3. The Zernike aberration coefficients have been arranged according to their
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Fig. 5.3. A lens quality map obtained with the aid of the extended Nijboer Zernike method in terms
of measured Zernike coefficients of the most frequently occurring aberrations. The measurement data
are those of Fig. 5.2, upper row. The coefficients are expressed in units of milli-wavelength (mλ) of the
light. The vertical scales of each order m has been adapted to the size of the aberration coefficients.
Horizontal axis: Zernike polynomial index according to the Fringe Convention.

azimuthal order mθ, ranging from 0 to 5. The numbering along the horizontal
axis follows the Fringe Convention ordering of Zernike polynomials [Mahajan
(1998)]. It is seen that the lowest order aberrations (m ≤ 3) are dominating.

The stability of the retrieval process has been tested by adding numerical
noise to the captured images. The amplitude of the noise was 10% of the top
intensity, measured in the best-focus region. An example of such a series of
perturbed images and their originals is given in Fig. 5.4. The retrieval pro-
cess with the aid of the noisy images gave only minor deviations with respect
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Fig. 5.4. A selection from a through-focus set of seventeen point-source images (left set) and the
same pictures with noise artificially added to them (set of pictures to the right). The retrieval process
applied to the noisy images shows only minor differences with respect to the original result.

to the original result. Maximum coefficient deviation remained below 10 mλ,
resulting in an rms wavefront deviation of less than 3 mλ. This value would
be too large for reliable quality assessment of high-resolution projection lenses
for microlithography, but, fortunately, the image detection conditions are fa-
vorable there. The noisy pictures on the right are typical for photon-starved
detection conditions. These are encountered in astronomical observation where
aberration detection with 10 mλ precision is generally more than sufficient.

Up to now, the through-focus images were experimentally obtained using
an intermediate magnifying objective with its possible own optical defects. Al-
though a separate assessment of such an objective is feasible, it is preferable to
have a direct measurement of the point-spread function in the high-numerical-
aperture image space. A method to obtain the intensity profile in the high-NA
focal region is the printing of the point-source images in a thin layer of photo-
resist. To this goal, a point source is imitated by means of a tiny hole in the
chromium layer of the object mask of the projection lens with a diameter of
typically 0.5λ/s0, the diffraction unit at the mask side (see Fig. 5.5). For a
certain exposure, the printed resist image will be developed up to a certain
contour of equal intensity in the point-source image. By varying the exposure
between successive displaced images in the resist layer, a whole range of equal
intensity contours of the point-source images is obtained. By an analysis of
the contour plot of each resist image for the complete series of defocused resist
images at varying exposure, we can go back to the three-dimensional intensity
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Fig. 5.5. A finite-size hole in the object mask chromium layer for a high-resolution projection lens
(left picture) and its developed resist image in the focal region, obtained with a certain exposure
dose (electron microscope images). The geometric measurement of a large number of such defocused
and over- or under-exposed images yields the required three-dimensional intensity distribution in the
focal region.

distribution in the focal volume. Here we should note that the contour plots
carry with them intrinsically both the effect of using a finite hole size and the
effect of image blur due to finite exposure. Fortunately, the ENZ-formalism is
flexible enough to account for such effects, see for instance, [Dirksen, Braat,
Janssen (2006)]. Below we show how we account for finite hole size effects, while
in Subsection 5.1.3 image blur effects are handled. For a circular object hole,
illuminated by a plane wave, the normalized far-field amplitude distribution is
given by (scalar approximation),

In(sinαf)=
2J1 (πD sinαf/λ)

(πD sinαf/λ)

≈1 − π2D2

4λ2
sin2 αf ≈ exp







−π
2D2

4λ2
sin2 αf







, (5.14)

with αf the polar far-field angle and J1(x) the first order Bessel function of
the first kind [van der Avoort, Braat, Dirksen, Janssen (2005)]. In Eq.(5.14)
we have also used, for sufficiently small values of the argument x, the approx-
imation 2J1(x)/x ≈ 1 − x2/4 ≈ exp{−x2/4}. The quadratically decreasing
amplitude on the entrance pupil is accounted for in the diffraction integral of
Eq.(2.20) by allowing the defocus parameter f to become complex according
to f̃ = f − ifd. If the numerical aperture at the object side is given by sE, the
matching of the far-field amplitude function at the rim of the entrance pupil
(ρ = 1) yields the result

exp{−if̃ρ2} = exp{−ifρ2} exp







−




π2D2s2
E

4λ2



 ρ2







, (5.15)
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with the appropriate value of the amplitude factor fd.
In [Dirksen, Braat, Janssen, Juffermans, Leeuwestein (2003)] a calibration of

the retrieval method using resist images is discussed. A lithographic projection
objective (NA=0.63, λ=193 nm) has been analyzed in its nominal setting
and in some ’detuned settings’. The detuning operation allows to introduce
well defined aberration increments by axial displacement, decentring or tilt of
individual lens elements of the objective. In Fig. 5.6 retrieved lens data are
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Fig. 5.6. Measurement results for a microlithographic projection objective (NA=0.63, λ=193 nm).
The original aberrational data (lowest orders) of the objective are represented by the black bars
(absolute values). The second set of white bars represents the measurement results for a detuned
aberration setting of the objective with an increment of 50 mλ for the astigmatic coefficient α2

2,c,
respectively.

shown for the nominal lens (black bars) and a particular detuned state of the
objective. The objective has been detuned so that the coefficient α2

2,c for x-
oriented astigmatism should have been increased by an amount of 50 mλ. The
retrieved aberration coefficients of the detuned objective are represented by the
white bars, showing the approximate increase by 50 mλ for the α2

2,c-coefficient.
The measurement spread ∆αm

n,c/s in the other fixed aberration coefficients is of
the order of ±10 mλ and have to be imputed to small drifts in the objective
itself and to the accuracy of the retrieval method. The short-term repeatability
of the retrieved coefficients is of the order of a few mλ.

An analysis of the convergence and the robustness of the through-focus
retrieval method using the extended Nijboer-Zernike theory has been carried
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out in [van der Avoort, Braat, Dirksen, Janssen (2005)]. In this analysis, an
approximated scalar retrieval scheme at high numerical aperture values was
also given. It was found, as a rule of thumb, that the values of the wavefront
coefficients |αm

n | should not collectively give rise to a variance of the phase
aberration larger than 0.4, equivalent to an rms wavefront aberration of less
than λ/10. This corresponds to a Strehl ratio of 0.60, well outside the ’just’
diffraction-limited regime. To achieve good retrieval results for these larger
aberration coefficients, it is necessary to extend the linearized retrieval scheme
with a predictor-corrector iteration method, [van der Avoort, Braat, Dirksen,
Janssen (2005)]. We will discuss this iteration method in the next section on
the vector diffraction case. In the same reference, the addition of zero-average
detection noise in the captured images has been simulated and the resulting
coefficients have been compared with the original values for defocus, wavefront
tilt, coma and astigmatism. In Table 5.1.2 we reproduce these simulated data
and it can be concluded that a signal-to-noise ratio as small as 10 is still capable
of yielding retrieval errors not larger than 5%. It has been observed that the
detection noise should have zero mean. If this not the case, serious off-sets in
the retrieved coefficients can occur.

indices input values retrieved values

n m SNR=∞ SNR=100 SNR=10

2 0 0.3000 0.3000 0.2996 0.2989

1 1 0.1000 0.1000 0.1003 0.1027

3 1 0.4000 0.4000 0.4002 0.4082

2 2 0.2000 0.2000 0.1991 0.2087

Table 5.1
Simulation of detection noise (zero mean) and its influence on the values of some lower order retrieved
aberration coefficients.

5.1.3 Refinements of the scalar retrieval model

The influence of the finite object pinhole size is an example of how to extend
the basic imaging and retrieval model to real experimental conditions. In this
subsection we present some refinements of the basic model that allow a broader
range of application of the retrieval method. With these refinements one can
treat images that are affected by focus or in-plane noise during acquisition,
by blurring due to chromatic aberration of an imaging system or by lateral
blurring due to image sensor digitization or photo-resist diffusion effects. These
are typical ’blurring’ effects that arise in the treatment of point-source images
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produced by high-resolution projection lenses. For these lenses, the quality
assessment has to be carried out with utmost accuracy and such a refined
model is mandatory. As a side-effect, such a retrieval process also allows to
establish the magnitude of the parameters that cause the blurring, for instance
the photo-resist diffusion parameters in the case of image capture via developed
photo-resist images in a high-NA space.

The exposure in the focal region, affected by in-plane or axial position noise,
depends on the statistics of the movements. Following [Dirksen, Braat, Janssen
(2006)], it is customary to adopt Gaussian statistics for the movements with a
probability density function given by

∆x(t) =
1√

2πσx

exp



−∆2
x(t)

2σ2
x



 , (5.16)

with σx the standard deviation of the movement in the x-direction. Comparable
expressions hold for the statistical excursions in the y- and f -direction with
standard deviations of σy and σf , respectively. The incremental exposure in
a resist layer or the time-integrated intensity recorded by a sufficiently small
detector pixel is given by

dEr(x, y, f)= I {x− ∆x(t), y − ∆y(t), f − ∆f(t)} dt. (5.17)

In the case of a sufficiently small standard deviation value σr with respect
to the full width at half maximum (FWHM) of the lateral intensity profile
and a sufficiently small value of σf of the axial movements with respect to,
for instance, the focal depth of the imaging system, a Taylor expansion of
the intensity distribution can be applied. The total exposure, integrated over
sufficiently long time is then approximated, at least up to second order, by

Er(r, f)≈
+∞
∫

−∞

[

I(r, f) − ∆x(t)
∂I

∂x
− ∆y(t)

∂I

∂y
− ∆f(t)

∂I

∂f

+
1

2
∆2

x(t)
∂2I

∂x2
+

1

2
∆2

y(t)
∂2I

∂y2
+

1

2
∆2

f(t)
∂2I

∂f 2

+∆x(t)∆y(t)
∂2I

∂x∂y
+ ∆x(t)∆f(t)

∂2I

∂x∂f

+∆y(t)∆f(t)
∂2I

∂y∂f
+ · · ·



 dt. (5.18)
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In what follows, the expressions are simplified by considering the case that the
intensity distribution possesses radial symmetry and that equally large sta-
tistical x- and y-movements are present (isotropic case) with each a standard
deviation σm. This limitation to the radially symmetric case is adequate in
most practical cases. In the radially symmetric case, one can easily introduce
a further effect that is very important in resist imaging, the chemical diffusion
of the exposure profile in the resist layer. This chemical blurring of the expo-
sure profile occurs partly during the exposure and development process (latent
image formation) but it is most pronounced during the so-called post-exposure
bake. It can be adequately incorporated in a total radial standard deviation
given by

σ2
r = σ2

m + 2Dtb, (5.19)

where 2Dtb is the Fickian diffusion length, the product of the acid diffusion
coefficient D and the baking time tb [Lavery, Vogt, Prabhu, Lin, Wu (2006)].
The integration of Eq.(5.18), formally over the total time of resist exposure up
to the end of the post-exposure bake, gives rise to

Er(r, f)=E0(r, f) +
tEσ

2
r

2







∂2

∂r2
+

1

r

∂

∂r







I(r, f) +
tEσ

2
f

2

∂2I(r, f)

∂f 2
, (5.20)

all other terms yielding zero in the radially symmetric case due to statistical
averaging. The leading term E0(r, f) = I(r, f)tE is called the static exposure
term, with tE a sufficiently long exposure time so that the statistical averaging
effectively has taken place.

For the evaluation of the first and second derivative of the function I(r, f),
it is sufficient to use the approximated expression of Eq.(5.3) with m = 0 in
the summation term. In [Dirksen, Braat, Janssen (2006)], the derivatives of
the products V 0

0 (r, f)V 0 ∗
2n (r, f) have been given. To cover still larger blurring

effects, an expansion term of the fourth order has been included in Eq.(5.18).
This fourth order Taylor term, in general contributing

tEσ
4
r

8





∂2

∂x2
+

∂2

∂y2





2

I(r, f) (5.21)

to the exposure of Eq.(5.20), is then restricted in this reference to the leading
term of I(r, f), the aberration-free term |V 0

0 (r, f)|2.
In Fig. 5.7 three physical causes for blurring of the point-spread function
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have been presented, all three for a radially symmetric case. The contour plots
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Fig. 5.7. Contour plots for typical blur effects (dashed lines) in a point-spread function (radial sym-
metry). The ideal point-spread function contours have been represented with full lines. The left graph
has been obtained by introducing spherical aberration in the imaging system (α0

4 = 75 mλ). In the
central graph, a radial blur (chemical diffusion in resist pattern) has been applied, σr = 30 nm. The
graph on the right presents the effect of an axial blur due to focus noise (σf = 150 nm.

apply to a point-spread function produced by an objective with an NA of
0.63, operating at a wavelength of 193 nm (Deep UV illumination). The scales
are in absolute measure, although different along the radial and axial axes.
In the left graph, an (r, f) contour plot (dashed) is given for a point-spread
function suffering from spherical aberration. The Zernike coefficient α0

4 of the
wavefront aberration equals 75 mλ, giving rise to an rms wavefront aberration
of 33 mλ, well within the diffraction limit of 71 mλ. The drawn curves applies
to the aberration-free case. The typical asymmetric behavior of the point-
spread function with respect to the plane f = 0 is well visible in the figure. A
blurring of comparable magnitude, but now with focus symmetry, is presented
in the middle graph (dashed contours). In this case, the exposure profile in the
recording resist layer has introduced a radial diffusion of the exposure pattern
of 30 nm rms value (σr); the axial blur is very small. Finally, in the right figure,
the point-spread function was subjected to a focus blurring with an rms value
of 150 nm, to be compared with the approximate focal depth of 240 nm. In the
case of focus noise, the symmetry around focus is also preserved, the blurring
being mainly in the axial direction.

Further refinements in the scalar retrieval method are possible to account for
other experimental conditions. Instead of mechanical focus noise, an axial blur
can also be produced by axial chromatism of the imaging system. As it was
mentioned earlier, in some applications broadband light has to be used. This
leads to a blurring of the incoherently superimposed monochromatic point-
spread functions by the scaling of the diffraction unit λ/NA.
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5.2 Pupil function retrieval for high-NA imaging systems

The foregoing section has extensively discussed the retrieval mechanism for
the complex pupil function using the scalar imaging model. In this section we
replace the scalar through-focus intensity distribution by its vector equivalent
and then apply this new expression to basically the same retrieval procedure.
The complications that arise in the vector imaging model stem from the influ-
ence of the state of polarization in the exit pupil on the intensity distribution
in the focal region, see Section 3. In most cases, the state of polarization in the
exit pupil is uniquely determined by the state of polarization in the entrance
pupil. This direct relationship disappears when the optical system introduces
birefringence. The vector imaging model is capable to keep track of this bire-
fringence and, using more than one set of through-focus images with different
states of polarization in the entrance pupil, it is even possible to retrieve also
the birefringence properties of the system. We first present a linearized ex-
pression for the intensity distribution in the focal volume in the absence of
birefringence and use this expression in a vector diffraction retrieval scheme.
The extension to retrieval in the presence of birefringence is addressed further
on in this section but will not be worked out in full detail.

5.2.1 Approximated linearized intensity distribution in the focal volume

In this section we use the expressions for the cartesian electric field vectors
in the focal region of a high-NA imaging system in the case of a point source
object. The field in the entrance pupil is described by a coherent superpo-
sition of two orthogonally polarized linear states of polarization according to
E = (px, py, 0)A0 where px and py generally are complex numbers and A0 is the
constant amplitude factor. The influence of the non-perfect high-numerical-
aperture imaging system is the introduction of wavefront deformation and
transmission changes, on top of an intrinsic amplitude distribution on the exit
pupil sphere that is different for each cartesian field component and that has
been described in [Wolf (1959)] and [Richards, Wolf (1959)]. The field in the
focal region is obtained by calculating three basic integrals. In what follows,
the behavior of an aberrated optical system is described by an expansion of the
complex lens transmission function in terms of Zernike polynomials with com-
plex coefficients that are supposed to be identical for each polarization state.
We suppose that each vector component of the electric field in the exit pupil
has to be multiplied by the complex pupil transmission function of Eq.(2.63)
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with the Zernike coefficients βm
n,x = βm

n,y = βm
n yielding a pupil function

P (ρ, θ) =
∑

n,m
βm

n R
|m|
n (ρ) exp (imθ). (5.22)

As usually, we suppose that β0
0 is the leading term; this will be the case for

optical systems that are close to the diffraction limit. Using the extended
Nijboer-Zernike theory, the complex field vectors in the focal region are now
calculated using Eq.(2.64) with the modified integrals V m

n,−2, V
m
n,−1, V

m
n,0, V

m
n,+1,

V m
n,+2 with the indices (n,m) pertaining to the Zernike polynomial expansion

on the exit pupil function. The evaluation of these integrals is possible using
the analytic schemes given in Appendix D.

The general expression for the energy density has been given in Eq.(3.8). An
important reduction in complexity is obtained for an isotropic imaging system
with the pupil function defined by Eq.(5.22) above and the resulting expression
is found in Eq.(3.12). The expression for the energy density that will be used
in the retrieval scheme allows a further approximation that was also used in
the scalar case by exploiting the fact that β0

0 is the leading term in the pupil
function expansion. The expression for a general term Gk,l of Eq.(3.12)is then
given by

Gk,l(β, β)=
β0

0

2
exp{i(k − l)φ} ×

∑

ν

∑

µ
(2 − δνµ)

{

βµ∗
ν Ψµ∗

ν;k,l(r, f) exp(−iµφ) + +βµ
ν Ψµ

ν;l,k(r, f) exp(+iµφ)
}

,

(5.23)

In this expression, µ assumes both positive and negative values and δνµ stands
for the Kronecker symbol. We also introduced the shorthand notation

Ψµ
ν;k,l(r, f) = (+i)µV 0∗

0,k(r, f)V µ
ν,l(r, f) . (5.24)

5.2.2 Aberration retrieval scheme for the vector diffraction case

Like in the scalar case, the retrieval scheme for obtaining the complex pupil
function is based on a Fourier analysis of the measured and the analytically
proposed intensity data. In contrast with the analysis of Subsection 5.1 where
we have dealt with separate expressions for the cosine and sine harmonic com-
ponents, we will use from now on the complex exponentials exp(imθ) and
the complex β-coefficients with m-indices running from −∞ to +∞. The har-
monic dependence in the focal region is represented by complex exponentials
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exp(imφ). The Fourier decomposition is carried out with respect to the har-
monics in the through-focus intensity distribution. To this goal we evaluate

Ψm
an(r, f) =

1

2π

+π
∫

−π

〈we(r, φ, f)〉 exp(imφ)dφ , (5.25)

with the subscript (an) referring to the analytically calculated intensity distri-
bution. A comparable operation is performed on the measured intensity data,
yielding functions Ψm(r, f).

The analytic energy density distribution of Eq.(3.12) is used to calculate
Ψm

an in combination with the linearized Gkl-functions, and, after some lengthy
manipulation, we obtain (see Appendix A of [Braat, Dirksen, Janssen, van de
Nes, van Haver (2005)] and [van Haver, Braat, Dirksen, Janssen (2006)])
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. (5.26)

We recall that the expression above is not exact but applies to the linearized
approximation of the Gk,l-functions. The equations to be solved now read

Ψm(r, f) ≈ Ψm
an(r, f) , (5.27)

to be solved for each separate m-value. In practice, we merge these equations
into one large system of linearized equations. Like in the scalar case, the prac-
tical solution procedure consists of taking inner products on both sides with
the functions Ψm

n;k,l(r, f) and to solve this new system of equations. This more
global method replaces the direct approach that would try to find the solution
with the optimum match for each point in the (r, f)-cross-section of the focal
volume. The inner products are defined by Eq.(5.12), in line with the scalar
retrieval method. In the vector retrieval case, the functions Ψm(r, f), Ψm

an(r, f)
and Ψm

n;k,l(r, f) are now all complex; the integration limits are determined by
the axial and lateral range of the collected intensity data.

5.3 Retrieval examples for high-NA systems

In this subsection we present an example that shows the inadequacy of a
retrieval method based on scalar diffraction theory when applied to a high-NA
imaging system. Secondly, we show the ranges of aberration and transmission
defects that can be handled by the linearized system of equations based on
Eq.(5.27). Subsequently, the error is evaluated that is introduced in the re-
trieval process when system parameters, such as the numerical aperture and
incident polarization, are not exactly known. We then present a simulated re-
trieval example performed in such a way that it closely resembles the treatment
of experimental data. Experimental intensity data are analyzed for a high nu-
merical aperture projection lens illuminated by a source with a partial degree
of polarization equal to zero.

5.3.1 Retrieval of a high-NA system assuming scalar conditions

To underline the necessity of applying the full vectorial case when assessing
imaging systems with a high numerical aperture, we analyze the following re-
trieval operation on simulated data. A through-focus intensity distribution is
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constructed from five axially displaced through-focus images with focus param-
eter values f = −2,−1, 0, 1, 2, in dimensionless focal units according to the def-
inition in Eq.(2.31). The intensity distribution is calculated for an aberration-
free optical system with a numerical aperture of 0.95, whose entrance pupil is
illuminated by a linearly polarized wave with the plane of polarization parallel
to the x-axis. We apply the forward-calculation scheme using the expressions
for the electric field components of Eq.(2.65). The high-NA data set acquired

Fig. 5.8. In-focus (f = 0) intensities as a function of the positive x- and y-coordinate (upper left
graph, dashed and solid line, respectively). Right upper graph: grey-scale plot in the (x, y)-plane of
the difference between the aberration-free intensity distribution (NA = 0.95, x-polarization) and its
retrieved version based on a scalar model. In the second row the same information is presented for
an out-of-focus position with f = −2.

through this operation is then analyzed using the scalar version of the re-
trieval scheme. This scheme neglects the vector character of the optical field
but takes into account the exact phase departure of a defocused wave at high
numerical aperture as it is done in Eq.(2.33). This gives rise to the set of re-
trieved β-coefficients that can be found in the column on the right of Table
5.2. The fit imposed by this limited set of β-coefficients is remarkably good
as can be derived from Fig. 5.8; the maximum intensity deviations are of the
order of 5%. Nevertheless, on comparing the β-coefficients obtained through
the scalar retrieval operation with the actual β’s (aberration-free case) used
for the simulation, we observe a very poor correspondence, see Fig. 5.9. Al-
though it seems that the scalar model with high-NA focus adaptation is able
to fit a high-NA intensity distribution, the retrieved β-coefficients do not have
a physical relevance. We observe that the β0

2-, β
2
2- and β−2

2 -coefficients are all
real and thus affect the transmission part of the pupil function. This amplitude
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modulation, composed of a circularly symmetric part and a contribution with
a cos 2θ-dependence, is necessary to describe the strongly elliptical energy den-
sity distribution in the focal region at high values of the numerical aperture.
Note that the strong amplitude deformation even includes a region in the pupil

Fig. 5.9. The strongly deformed pupil function resulting from a scalar retrieval method applied to an
imaging system with NA = 0.95. Left graph: false color plot of the modulus of the retrieved pupil
function. Right graph: phase of the pupil function (black region with zero phase, white region with
a phase of π. The figure shows that the outer part of the pupil function in the x-direction assumes
negative values.

where the amplitude is negative, see Fig. 5.9. This effectively means that this
region is subjected to a phase shift of π.

This example with simulated data shows that the β-coefficients that are
found when applying scalar theory to intensity distributions governed by the
vectorial model, do not have direct physical relevance and no longer give a
correct description of the system under consideration. Physically relevant β-
coefficients for a high-NA optical system can only be expected if the full vecto-
rial case is applied at the retrieval stage. The high-NA retrieval formalism was
introduced above and it will now be further examined using both simulated
data and a set of experimentally obtained data.

Input Retrieved

β0
0 1.000 1.038

β0
2 0.000 −0.593

β−2

2
0.000 −0.466

β2
2 0.000 −0.466

Table 5.2
Comparison between the initial and the retrieved β-coefficients when retrieving a simulated
aberration-free intensity distribution (NA = 0.95, x-polarization) using the scalar retrieval scheme.
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5.3.2 Accuracy of the high-numerical-aperture retrieval scheme

When applying the retrieval scheme for the high numerical aperture case,
the retrieved β-coefficients are generally not exact because of our approxi-
mated version of the Ψm

an-functions according to Eq.(5.26). An exception is
the aberration-free system where the retrieved β-coefficients are exact, giving
the trivial solution β0

0 = 1 and all other βm
n equal to zero. When aberrations

are present in the system, described by additional β-coefficients with n or m
6= 0, the retrieved βm

n -coefficients will show residual errors originating from the
linearization applied in Eq.(5.26).

An impression of the magnitude of the errors in the retrieved β-coefficients
is obtained by performing the following simulations. Starting from a perfect
(aberration-free) system, represented by a single β-coefficient, β0

0 = 1, we in-
troduce one additional non-zero β-coefficient, for instance β2

2 6= 0. Next, this
pair of β-coefficients is used to simulate a through-focus intensity distribu-
tion that serves as input for the retrieval operation. The retrieval process will
now generate an estimate for this pair of β-coefficients describing the system.
These estimates, which we shall denote as β’, are not exact and include a cer-
tain error. The above process having been repeated at ever increasing size of
β2

2 leads to the error behavior in the set of retrieved β’ shown in Fig. 5.10. In
the figure, the maximum error in the set of retrieved β-coefficients is plotted
as a function of the magnitude of the β2

2-coefficient that was used as an in-
put to the simulation. Figure 5.10 indicates a quadratic relation between the
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Fig. 5.10. Plot of the maximum error present in the retrieved β’-coefficients as a function of the
magnitude of the β2

2-coefficient that served as input. The imaging system was free of any other
defect; incident light x-polarized, NA= 0.95.
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maximum observed error in the retrieved β’-coefficients and the input value
β2

2 . This has to be expected, as we omit exactly the cross-terms depending on
βm

n β
m′

n′ in the linearized expression for Gk,l, see Eq. (5.23). The linearized re-
trieval method is very accurate for well-corrected optical systems (β ≤ 10−1).
On the other hand, if we have a system influenced by larger aberrations (β
of the order of 1), the errors present in the retrieved β-coefficients will be of
the same order, which means that the quality of the retrieval method is poor.
Fortunately, iterative schemes can be applied to the solution of linearized sys-
tems of equations, updating the system at each iteration step with an estimate
of the ignored quadratic term. Such a correction scheme can be applied to
the retrieval method and it produces strongly improved retrieval results to the
extent that the retrieved β-coefficients converge to their correct values. The
correction scheme of the ”predictor-corrector” type, is discussed in more detail
below.

5.3.3 Predictor-corrector method for improved system assessment

A wider range of aberrated pupil functions can be handled once we use the
so-called predictor-corrector extension when solving the linearized equations.
It leads to a better assessment of the quality of imaging systems over a range
that substantially exceeds the classical diffraction limit (Strehl ratio ≥ 0.80).
Although the final quality of high-resolution imaging systems should be well
within this limit, it is well known that during the quality-tuning stage in the
manufacturing process these systems can show appreciable deviations from the
diffraction limit. The medium to large aberrations that can be expected dur-
ing this stage should be accessible for an assessment method of more general
use. To improve scalar retrieval results, a so-called predictor-corrector itera-
tion scheme was already proposed and thoroughly tested, see [van der Avoort,
Braat, Dirksen, Janssen (2005)]. An equivalent iterative procedure has been
devised for the high-numerical-aperture case. It is discussed in detail in Ap-
pendix E.

In Fig. 5.11 the results are shown of high-NA retrieval using the predictor-
corrector procedure. The optical system suffers from astigmatism in the x-
direction (β0

0 = 1, β2
2 = β−2

2 = 0.5i). The numerical aperture is 0.95, the
incident light is polarized in the x-direction. One observes a steady decrease of
the error present in the retrieval result with the number of iterations. For the
synthetic data used in this example, the error eventually attains the typical
machine precision of the calculation software, equal to ≈ 10−15 in the case of
Fig. 5.11. Note that accuracies, customary for practical applications and typi-
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Fig. 5.11. A plot of the residual errors in the retrieved β-values versus the number of iterative steps
taken in the predictor-corrector procedure. The colours pertain to various aberration terms that were
either initially present or that were erroneously detected at the start of the iterative retrieval process.
The end value is determined by machine precision.

cally of the order of a few times 10−3, are reached within less than 10 cycles.
For real experimental data, when numerous inaccuracies and perturbations

such as noise are inevitable, the attainable precision will be limited. Still in
that case, the residual errors in the retrieved β-values, obtained through the
predictor-corrector procedure, will be small and of the same (or lower) order of
magnitude than the noise present in the data. We have observed such a perfor-
mance for aberration values that can be as large as twice the diffraction-limit,
up to an rms wavefront deviation of 0.15λ. The influence of noise is discussed
further on in this section; we now first investigate the effect on the retrieval
quality of systematic errors in the parameters that describe the optical imaging
system.

5.3.4 Systematic errors and their influence on the quality assessment

One of the possible complications encountered when going from simulated
data to experimental data obtained from a real optical system, is that cer-
tain system parameters are not exactly known. The investigation of the effect
on the retrieval quality has been carried out in the case that incorrect values
of the numerical aperture and the azimuth of the linear state of polarization
were assumed [van Haver, Braat, Dirksen, Janssen (2006)]. To this goal, a
through-focus intensity distribution according to the β-values of Table 5.3 was
synthesized. Next, the system defined in Table 5.3 is subjected to the pupil
function retrieval procedure based on the vector diffraction model. A range of
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Input values β-coefficients

β0
0 β0

2 β−1

3
β1

3 β−2

2
β2

2

1.0000 0.0200i 0.0500i 0.0500i 0.0100i 0.0100i

Table 5.3
Set of β-coefficients used for the description of the field on the exit pupil sphere of the imaging system
under consideration (NA = 0.95).

values for the numerical aperture was assumed, ranging from very low to the
extreme value of unity. The error in the assessment of the imaging system is
monitored by recording several β-coefficients and the results are given in Fig.
5.12. One observes that the residual error in all β-coefficients is minimal for
the correct value of the numerical aperture. This feature not only enables a
tuning of the retrieval process to the exact value of the numerical aperture, but
also suggests a procedure to accurately determine the numerical aperture of an
unknown system. A comparable simulation is presented in [van Haver, Braat,
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Fig. 5.12. The error present in some relevant β-coefficients when retrieving the system defined in
Table 5.3 while assuming different values for the numerical aperture NA. The colours point to typical
aberration coefficients; the residual errors for all aberrations are smallest at the correct value of the
numerical aperture s0.

Dirksen, Janssen (2006)], now regarding an erroneous input of the azimuth of
the linear state of polarization in the entrance pupil of the optical system; the
numerical aperture was fixed in this case at a value of 0.95. The synthetic data
representing the through-focus intensity distribution are obtained by assuming
an exact linearly polarized illumination of the entrance pupil along the x-axis.
The linear state of polarization is then varied by adapting the coefficients px

and py while having px and py both real and maintaining (|px|2 + |py|2) = 1 for
normalization purposes. This leads to a rotation of the plane of polarization
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towards a certain finite angle with respect to the x-axis. This presumed linear
state of polarization, different from the actual state of the system, leads to an
error in the retrieved set of β-coefficients. The results of these simulations are
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Fig. 5.13. The error present in some selected retrieved β-coefficients (solid lines) as a function of
the off-set angle between the chosen plane of polarization at the construction stage of the synthetic
intensity data (x-polarization) and the angle of the polarization plane at the retrieval stage. The

dotted line is a plot of the total rms error of the retrieved β-coefficients, defined by
(
∑

nm |∆βm
n |2

)
1

2 ,
with ∆βm

n the error in each coefficient.

given in Fig. 5.13, where the error present in the set of retrieved βm
n -coefficients

is plotted versus the angle between the supposed and the actual orientation
of the plane of polarization. From Fig. 5.13 one observes that it is also impor-
tant to have accurate knowledge of the polarization state of the system under
consideration in order to obtain good retrieval quality. An angular deviation
of one degree is a practical limit when it is needed to assess very high-quality
imaging systems with sufficient accuracy.

The above example illustrates an interesting relation between the possible
inaccuracy in the polarization state and the error in the retrieved β-coefficient.
For an optical system of which the polarization state is approximately known,
an equivalent operation as used for the generation of Fig. 5.13 can be put into
place to determine the polarization state with great accuracy. For the general
case that one has no knowledge whatsoever about the state of polarization,
the above procedure is no longer applicable. This is caused by the fact that
the predictor-corrector procedure is not applicable once the deviations from
the real state of polarization are very large. In this case, a basic retrieval op-

97



eration can be used to obtain the approximate polarization state after which
the predictor-corrector method can be applied to determine the state of polar-
ization with great accuracy.

5.3.5 Quality assessment of a high-NA optical system in the presence of noise

Like in the scalar approach, a good estimate of the influence of intensity
noise on the retrieved β-coefficients is required. Zero-mean intensity noise can
be added to a synthetic data set to perform a numerical noise experiment.
In [van Haver, Braat, Dirksen, Janssen (2006)], a through-focus intensity dis-
tribution is constructed, corresponding to the β-coefficients of Table 5.4, first
two columns. The resulting through-focus intensity distribution is sampled in
2N + 1 axial planes, several of which are shown in the top row of Fig. 5.14).
Noise is added yielding the corresponding pictures in the second row. The
noisy distribution (SNR=10 with respect to the highest measured intensity in
the best focal plane) is used for a retrieval operation in which all other pa-
rameters are assumed to be exactly known. The retrieval results are shown on
the third and fourth row. The pictures on the third row are obtained after a
single retrieval step, the fourth row gives the results after convergence using
the predictor-corrector method. Although a visual inspection hardly shows any
difference between the original and the retrieved intensity distributions of Fig.
5.14, the differences are made clear by inspection of Table 5.4. With the chosen
values of the β-coefficients, a predictor-corrector step is essential for obtaining
the correct input values. It is striking that the presence of the noise does not
change the first estimate after linear retrieval. It is the convergence towards
the final correct values with the predictor-corrector method that is obstructed
by the noise. With the signal to noise ratio of 10, the final coefficients show
deviations of the order of 10 to 15%.

5.3.6 Quality assessment of a high-NA system using experimental data

In this subsection we discuss the quality assessment of a lithographic projec-
tion lens with a numerical aperture of 0.85 [Dirksen, Braat, Janssen, Leeuwest-
ein (2005)]. The lithographic lens is illuminated by a special illuminator using
an excimer laser emitting radiation at λ=193 nm. The radiation of the multi-
mode laser source is effectively unpolarized after integration over the exposure
time that is needed to create a developable latent image in the photo-resist
layer. The point-spread function created by such an effectively unpolarized
focused beam is given by Eq.(3.20). In the aberration-free case, it possesses
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SNR = ∞ SNR = 10

Input coeff. Lin. retr. Pr.-Corr. Lin. retr. Pr.-Corr.

β0
0 1.0 1.1294 1.0000 1.1291 1.0004

β−1

1
0.0 0.1002 0.0000 0.0934 0.0050

+i0.5 +i0.4278 +i0.5000 +i0.4277 +i0.4933

β1
1 0.0 0.0997 0.0000 0.0973 −0.0124

+i0.5 +i0.4576 +i0.5000 +i0.4598 +i0.5068

β−1

3
0.5 0.4545 0.5000 0.4401 0.4688

+i0.0 +i0.0028 +i0.0000 +i0.0144 +i0.0099

β1
3 −0.5 −0.4330 −0.5000 −0.4339 −0.5041

+i0.0 −i0.0008 +i0.0000 −i0.0174 −i0.0385

β0
2 0.0 0.0382 0.0000 0.0220 −0.0264

+i0.0 +i0.0000 +i0.0000 −i0.0176 −i0.0270

β−2

2
0.0 0.1138 0.0000 0.1276 0.0112

+i0.5 +i0.5813 +i0.5000 +i0.5306 +i0.4327

β2
2 0.0 0.1113 0.0000 0.1122 0.0060

+i0.5 +i0.3039 +i0.5000 +i0.3095 +i0.5137

β−3

3
−0.5 −0.3269 −0.5000 −0.3821 −0.5468

+i0.0 −i0.0843 +i0.0000 −i0.0641 +i0.0253

β3
3 0.5 0.5534 0.5000 0.5631 0.5139

+i0.0 +i0.0869 +i0.0000 +i0.0535 −i0.0296

Table 5.4
Set of β-coefficients needed to describe the field in the exit pupil of the optical system (NA = 0.95)
subjected to a numerical test with noise added to the through-focus intensity distribution. The input
data were a noise-free intensity distribution and a distribution with a highest signal-to-noise ratio of
10 at best-focus; from the pictures in the second row of Fig. 5.14 it is clear that the SNR-value is
much lower for the out-of-focus intensity distributions. Both distributions are formed from synthetic
data obtained by a forward calculation. The retrieved coefficients have been obtained by linearized
retrieval and by repeated application of the predictor-corrector scheme.

circular symmetry with respect to the optical axis and a cross-section of the
theoretical radial cross-section in the optimum focal plane is given in Fig. 5.15.
The salient features are the broadening of the central width of the profile with
respect to the scalar prediction by approximately 10% and the absence of dark
rings (see graph on the right). The broadening effect for unpolarized illumina-
tion is predicted by the shape of the orthogonal intensity cross-sections in Fig.
2.14 for linearly polarized illumination. The broadening effect of the unpolar-
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Fig. 5.14. Through-focus intensity distributions pertaining to the system defined by the β-coefficients
of Table. 5.4 (NA= 0.95, x-polarization). The upper row is the synthesized actual distribution,
the second row is the modified one after adding noise with a SNR of 10. The third row gives the
distribution defined by the first β-estimates and the last row is the distribution resulting after the
predictor-corrector procedure. Note that all images have been scaled according to their maximum
value in order to show maximum detail. The SNR-value of 10 applies to the highest intensity of the
in-focus distribution.

ized point-spread function is likely to reduce the resolution capability of the
imaging system although it does not necessarily affect the spatial bandwidth
of the imaging system.

The assessment of the imaging system with an object point source is carried
out in reality with a circular hole in a chromium mask with finite diameter.
In the retrieval procedure based on the extended Nijboer-Zernike diffraction
theory, the effect of the finite source diameter is accounted for by a com-
plex defocus parameter, see Eq.(5.15). Including such a finite hole size in the

100



0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

v   -->

In
te

n
si

ty
   

 -
->

3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

v  -->

vector di!raction

scalar approximation   

Fig. 5.15. Radial cross-section of the normalized in-focus intensity in the case of a high-numerical
aperture aberration-free optical system (s0=0.85) that is illuminated with effectively unpolarized
light. The radial coordinate is v = 2πr with r expressed in the diffraction unit λ/s0.

point-spread calculations gives rise to the through-focus cross-sections of Fig.
5.16. In the left graph, a comparison with the theoretical point-source response
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Fig. 5.16. Through-focus cross-sections of the radially symmetric point-spread function in the presence
of a finite diameter of the source. The diameter of the circular source is 50 nm (left figure) and 200
nm (right figure) and has to be scaled by the magnification (1/4) of the imaging system (s0 = 0.85,
λ=193 nm). The solid lines are obtained using a lithographic simulation package, [SOLID-C (2004)],
the dashed lines have been calculated using the extended Nijboer-Zernike formalism. The vertical
and horizontal coordinates, z and r respectively, apply to the focal position and the radial image
coordinate, both expressed in real space units of µm.

would show only minor differences because of the 12.5 nm geometrical size at
the image side. The graph on the right shows an appreciable broadening, the
scaled source size becoming comparable to the halfwidth of the theoretical
point-spread function.
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The retrieval procedure using the inner product method exploits the (non-
perfect) orthogonality of the through-focus intensity patterns corresponding
to a specific Zernike coefficient of the pupil function. As an example of two
such patterns, we first produce in Fig. 5.17 the aberration-free pattern that
is basically associated with the coefficient |β0

0 |2|V 0
0 |2 with β0

0 = 1 (left graph).
The graph on the right is the through-focus pattern of a system that suffers
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Fig. 5.17. Through-focus cross-section of a radially symmetric point-spread function for the aber-
ration-free case, leftfigure, and in the case where spherical aberration of lowest order is present
(β0

4 ≈ 0.25i, right figure). The solid lines are obtained using the lithographic simulation package
SOLID-C, the dashed lines have been calculated using the extended Nijboer-Zernike formalism. Ver-
tical and horizontal coordinates in µm; s0 = 0.85, λ=193 nm.

from lowest order spherical aberration and is, in a first order, proportional to
the sum of a contribution associated with (β0

0)
2 and contributions stemming

from the product of β0
0β

0 ∗
4 and the corresponding product of V -functions. The

graph on the right has been calculated with a spherical aberration coefficient
of β0

4 ≈ 0.25i or a value Z9 = 40 mλ (Fringe Convention). In the case of Fig.
5.17, the partial orthogonality between the two patterns stems from the asym-
metry through focus of the point-spread function with spherical aberration.

As it was pointed out in Subsection 5.1.3, the detected point-spread function
is blurred by various effects like mechanical movements in the axial direction
or in the plane of the image, or by chemical diffusion of the latent resist im-
age, mainly during the post-exposure bake of the developed resist layer. These
effects can be mapped on a radial and axial blurring of the image, the magni-
tude of which is represented by the standard deviations σr and σf . The graph
on the right of Fig. 5.18 shows that a radial diffusion with a typical value of
σr=40 nm has a very large impact on the radial scale of the detected point-
spread function. With the aberration-free full width at half maximum of the
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Fig. 5.18. Through-focus cross-section of the aberration-free point-spread function (left graph) and
the point-spread function contours of the recorded latent image after a diffusion process in the resist
layer (right figure) with σr=40 nm. The solid lines are again obtained using the SOLID-C package,
the dashed lines have been calculated with the Nijboer-Zernike formalism. Vertical and horizontal
coordinates in µm; s0 = 0.85, λ=193 nm.

point-spread function in the radial direction given by 65 nm, we observe an
increase to 85 nm in the graph on the right, showing that the diffusion effect
in resist imaging should not be neglected.

With the extensions described above, a retrieval operation can be carried
out on experimental data, including lateral diffusion and axial blurring. The
through-focus point-spread function data were obtained with the resist printing
method sketched in Fig. 5.5. The contour lines of the experimental through-
focus point-spread function are shown in Fig. 5.19, solid lines. They apply
to a lithographic projection objective with a numerical aperture of 0.85, used
in water immersion. The refractive index of water is 1.4367 at the deep UV
wavelength of 193 nm. It is important to note that the contour lines can-
not be experimentally constructed at relatively high intensity levels where the
contour diameter becomes small. The corresponding resist images are beyond
the recording capabilities of current photo-resist materials. This fact has not
proven to be detrimental in the retrieval process because the point-spread
function deformation by aberrations is most visible at larger values of the ra-
dial coordinate and there where the diffraction ring structure is found. The
retrieval procedure carried out on the experimental data gave rise to a very
low aberration level with |β0

4 | ≤ 0.05. The dominating factor for the contour
line broadening was due to the diffusion and blurring in the lateral and axial
directions. The standard deviations of these blurring phenomena could also be
retrieved by using them as free parameters in the retrieval method. In line with
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Fig. 5.19. An experimentally obtained through-focus contour plot (solid lines) of a point-spread
function in a thin photo-resist layer. The dashed lines have been obtained after Zernike coefficient
retrieval using the extended Nijboer-Zernike formalism. Vertical and horizontal coordinates in µm;
λ=193 nm, water immersion with n=1.4367, s0 = 0.85/1.4367.

[Dirksen, Braat, Janssen (2006)], a merit function can be defined according to

M(σr, σf) =

∑

n6=0
{ℜ[β0

2n(σr,σf )−β0

2n,o]}2

2n+1

∑

n
|β0

2n(σr,σf )−ℜ[β0

2n,o]|2
2n+1

, (5.28)

where the real parts ℜ[β0
2n,o] with n ≥ 2 represent the deviation from unity

of the transmission function of the imaging system, in most cases available
by a priori knowledge about the system. The blurring due to lateral diffu-
sion and defocus could become visible in the retrieved coefficients by a change
in their real parts that affect the transmission function of the imaging sys-
tem. A reduced resolution because of blurring can be enforced by a reduction
in the amplitude transmission function at the pupil rim to effectively reduce
the numerical aperture of the system. Given the original circularly symmetric
transmission function of the imaging system, well represented by the coeffi-
cients ℜ[β0

2n,o], the quantity (M(σr, σf) weighs the change in these coefficients
with respect to the total power in the retrieved complex β-coefficients. The
combination of σr- and σf -values that minimizes M is the most likely solution
for the retrieval problem at hand. When the retrieval procedure using mini-
mization of M was applied to the data set of Fig. 5.19, the values σr=16 nm
and σr=100 nm were obtained.
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5.3.7 Birefringence assessment in a high-NA imaging system

The initial state of polarization of the incident wave in the entrance pupil of
an optical system is modified when it propagates through the optical system.
The change in state of polarization because of a change in beam convergence
has been extensively described for a high-NA system in Subsection 2.5.3. An-
other factor that influences the state of polarization on the ext pupil sphere is
associated with the polarization-dependent amplitude and phase changes on
transmission through the (coated) air-lens and lens-air interfaces of an imaging
system or the reflections at mirror surfaces; these are especially appreciable in
imaging systems with a high numerical aperture where the ray incidence angles
at intermediate surfaces can be large. We also mention possible anisotropy of
the lens materials or the reflective coatings. This anisotropy can be induced by
structural properties but also by residual stresses in the coatings or lens mate-
rials. The result is a gradual or abrupt change in the state of polarization on
propagation of the radiation through the imaging system. In [Braat, Dirksen,
Janssen, van de Nes, van Haver (2005)] it is indicated how these polarization-
sensitive effects can be dealt with in a high-numerical-aperture system. By a
number of retrieval steps with different states of polarization in the entrance
pupil of the system, one obtains several sets of complex Zernike coefficients
corresponding to these incident polarization states. The combination of these
retrieved sets of coefficients leads to the value of the geometric wave front de-
formation and to the amplitude and axis orientation of the cumulative system
birefringence in each point on the exit pupil sphere. The exact procedure is
briefly pointed out below.

I. Obtaining the required field components Ex and Ey in the exit pupil

The cumulative effect of birefringence in the optical system is represented in
each point on the exit pupil sphere by a certain value of the retardation due to
the birefringence, ∆b, and the azimuths of the orthogonal principal axes, for
instance, by defining the angle αb of the ’slow’ axis of the birefringence. For
most practical cases, it is allowed to simplify the analysis by neglecting the
dichroism introduced by the optical system. This means that we trust that the
amplitude anisotropy, for instance by modulus changes in the transmission or
reflection coefficients at surfaces, will have much less influence on the system
performance than the corresponding phase anisotropy. This is a reasonable as-
sumption once we do not employ resonant structures like multi-layer coatings
in an optical system. Thus, in the modified expressions for the E-field com-
ponents in the exit pupil due to birefringence, only phase ’retardation’ will be
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considered.
The state of polarization in the exit pupil is now analyzed using the Jones

matrix analysis. The matrix relation between the x- and y-components of the
input and output electric fields belonging to a plane wave that has traversed
a birefringent optical element is given by [Jones (1941)], [McGuire, Chipman
(1990)]











Ex,j

Ey,j











=











J11 J12

J21 J22





















px,j

py,j











Aj = J (ρ, θ)











px,j

py,j











Aj, (5.29)

where the complex amplitudes of the x- and y-components of the incident elec-
tric field at the j-th exposure or detection are given by (px,jAj, py,jAj) with
Aj the modulus of the amplitude of the incident fields. The field components
(Ex,j, Ey,j) depend on the position (ρ, θ) in the entrance pupil because, in gen-
eral, the J -matrix is spatially varying. The functions describing the locally
varying complex amplitudes can be expanded with the aid of Zernike polyno-
mials and their coefficients, βm

n,x and βm
n,y. The field components (Ex,j, Ey,j),

affected by the birefringence of the optical system, will now formally replace
the original components (px,j, py,j)Aj in the entrance pupil. The Zernike ex-
pansions corresponding to (Ex,j, Ey,j) are then used to determine the vector
components of the field on the exit pupil sphere and these are used to evaluate
the field in the focal region, see Eq.(2.65).

II. Linearized energy density in the presence of birefringence

Basically, we need to evaluate the four complex matrix elements Jij for each
sample point in the exit pupil, leading to eight independent quantities to be
determined. But since we have excluded dichroism, the above matrix has a
special structure [Lu, Chipman (1994)]-[Stallinga (2004-2)] and can be written
as

J =











J11 J12

−J ∗
12 J ∗

11











, (5.30)

with the property |J11|2 + |J12|2 = 1. The eigenstates of this matrix are el-
liptical in general. Once the eigenvalues and eigenstates have been found, the
orientation α of the slow and fast axes and the value ∆b of the phase birefrin-
gence are known.

The retrieval procedure starts with Eq.(3.8) where we use the still unknown
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coefficients βm
n,x and βm

n,y to construct the energy density in the focal volume.
The effect of birefringence has to be accounted for in each basic function
Gkl(βx, βy), see Eq.(3.4). Linearization of Gkl(βx, βy), keeping only products
with β0

0,x or β0
0,y, gives contributions from lines 1 and 5-8 in Eq.(3.4). Ordering

these terms leads to the following general expression, comparable to Eq.(5.23)
for the isotropic case,

Gk,l(β1, β2)}=exp{i(k − l)φ} ∑
ν≥0

∑

µ6=0

{

β0
0,1 β

µ∗
ν,2Ψ

µ∗
ν;k,l(r, f) exp(−iµφ)

+ (1 − δνµ)β
0∗
0,2 β

µ
ν,1Ψ

µ
ν;l,k(r, f) exp(+iµφ)

}

. (5.31)

The difference between the coefficients β0
0,1 and β0

0,2 is due to the average bire-
fringence over the exit pupil. Because of the neglect of dichroism, these two
coefficients have equal moduli but show a phase difference ∆12 defined by

β0
0,1 = β0

0 exp {i∆12/2}

β0
0,2 = β0

0 exp {−i∆12/2}



















or, β0
0,2 = β0

0,1 exp {−i∆12} . (5.32)

With this definition of the (0, 0)-coefficients, we obtain

Gk,l(β1, β2)}=exp{i(k − l)φ}β0
0 exp {i∆12/2} ×

∑

ν≥0

∑

µ6=0

{

βµ∗
ν,2Ψ

µ∗
ν;k,l(r, f) exp(−iµφ)

+ (1 − δνµ) β
µ
ν,1Ψ

µ
ν;l,k(r, f) exp(+iµφ)

}

. (5.33)

Inspection of the above expression shows that the relationship Gkl(β1, β2)=
G∗

lk(β2, β1) remains valid using the property ∆12 = −∆21.
Because of the special structure of the unitary matrix J , three independent

quantities need to be determined on top of the geometrical wavefront aberra-
tion and transmission defects of the system. We thus need four retrieval oper-
ations to determine the complex quantities J11 and J12 plus the polarization-
independent geometrical defects of the system. Preferred polarization states
(px,j, py,j) are two orthogonal linear polarization states, e.g. (1, 0) and (0, 1)
and the circular ones, viz. (1, i)/

√
2 for left-circularly polarized and (1,−i)/

√
2

for right-circularly polarized light. The four exposures or detection steps with
the preferred polarization states lead, after retrieval, to four different sets of
βx- and βy-coefficients. The four sets of β-coefficients are now used to obtain
the complex amplitude in any point of the exit pupil for four different polar-
ization states. This is basically sufficient to uniquely determine the size and
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the orientation of the cumulative birefringence of the optical system in that
specific point of the exit pupil. In addition, we obtain the geometrical defects
of the system that are independent of the state of polarization in the entrance
pupil of the optical system.
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6 Conclusion and outlook

The assessment of optical systems regarding their imaging capability fo-
cuses on the measurement of the exit pupil function. Especially the phase part
of the exit pupil function is important as it determines the imaging aberrations
and possible birefringence of the system. An accurate knowledge of the exit
pupil function, both in the design and in the manufacturing stage, allows for
the correction of aberrations or birefringence in the fine-tuning manufacturing
step. Precision interferometry is the most direct method to measure the exit
pupil function. In practice, its applicability is somewhat limited because of the
requirement of special sources and extremely well specified reference surfaces.
In this chapter we have discussed the measurement of the point-spread func-
tion of an imaging system as a means to obtain accurate information about
the defects of the wave in the exit pupil, not only regarding the aberrations
of the system under test but also including its transmission and birefringence
defects. A prerequisite for solving the so-called inverse problem is the accurate
knowledge of the point-spread function in the focal volume as a function of
the aberrations and other defects of the exit pupil function. For systems with
a high numerical aperture, the state of polarization of the incident field has to
be included and the vector diffraction integral of the aberrated system has to
be solved. Based on the use of Zernike polynomials, we have discussed semi-
analytic expressions for the complex amplitude and the energy density in the
focal region. They first apply to the scalar diffraction case at low numerical
aperture, to an extended scalar regime for apertures up to values of 0.85 and,
finally, to the vector diffraction case at very high aperture close to unity re-
garding the sine of the opening angle of the focusing beams. The availability
of analytic expressions offers an interesting short-cut to the more laborious
propagation methods based on a numerical solution of the diffraction integrals
involved in the propagation from the exit pupil to the focal region.

Inverse problem solution in optical imaging has been addressed by several
authors, based on the matching of measured intensity distributions in the im-
age plane and the exit pupil function intensity. Certain physical constraints
are applied like the non-negativity of optical intensity or the limited extent of
a point-spread or pupil function to assure convergence towards a most likely
solution. Like in optical interferometry, the method of phase diversity has
been introduced in optical inverse problem solution to avoid the phase ambi-
guity that is possible when intensity measurements are used to retrieve the
complex amplitude of the exit pupil function. We have focused in the last
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part of this chapter on a special application of the phase diversity principle,
the collection of through-focus point-spread functions to reconstruct the com-
plex amplitude of the exit pupil. With our analytic expression for the energy
density or, equivalently, for the power flow in the focal region, we are capa-
ble to address the inverse problem of how to retrieve the coefficients of the
Zernike expansion of the complex pupil function that created the measured
through-focus point-spread function. Using a linearized version of the energy
density function for weak system defects, a system of equations is developed to
solve for the unknown complex Zernike coefficients. At larger defect values, a
predictor-corrector method is applied to improve the solution. The total range
of aberration and other defects that can be covered in this way is well in excess
of what is needed for good-quality imaging systems. The quality assessment
method takes into account the particularities of the detecting medium. For
very high resolution systems, a photo-resist layer is needed to record the ex-
tremely fine features of the through-focus point-spread functions. The chemical
diffusion in a resist layer is accounted for and a matching procedure allows the
precise estimate of the magnitude of this diffusion effect. The same match-
ing principle can be applied to other blurring factors like in-plane and axial
vibrations during the point-spread function exposure time. It is equally pos-
sible to obtain an accurate estimate of the value of the numerical aperture of
the system under test and of the state of polarization of the light incident on
the entrance pupil. Future work in this direction will address the assessment
of systems with a more general pupil configurations, especially those with a
central obstruction. An extension of the analysis to systems with broadband
illumination would be of great practical importance because this would bring
within reach applications in the fields of, for instance, astronomical observa-
tion and ophthalmology.

Acknowledgement

One of the authors (J.B.) thanks the Technical University of Delft for the op-
portunity of a sabbatical leave and Profs. Mario Bertolotti and Concita Sibilia
of University ‘La Sapienza’, Rome, for their generous hospitality during this
sabbatical leave.

110



Appendices

A Derivation of Weyl’s plane wave expansion of a spherical wave

The time-independent Helmholtz equation is given by

(∇2 + k2)f(r, r′) = −δ(r − r′) , (A.1)

where the point source is located at r = r′. The (normalized) solution for the
three-dimensional geometry is given by the expression for a scalar spherical
wave

f3(x, y, z; x
′, y′, z′) =

exp(ik|r − r′|)
4π|r − r′| , (A.2)

with |r − r′| given by {(x− x′)2 + (y − y′)2 + (z − z′)2}1/2. A solution for the
one-dimensional geometry where a uniform coherent source covers the entire
plane z = z′ is obtained from the Helmholtz equation

(∇2 + k2
z)f(x, y, z; kx, ky, z

′) = −δ(z − z′) , (A.3)

where the value of kz is given by k2
z = k2 − k2

x − k2
y. The individual plane wave

solutions of this equation are given by

f1(x, y, z; kx, ky, z
′) =

i

2kz
exp {ikz|z − z′|} exp[i(kxx+ kyy)] . (A.4)

The validity of this plane wave solution is easily checked by substituting the
solution in Eq.(A.3) and by verifying, using Gauss’ theorem, that

∮

∇f1 · n dS =
∫∫∫

[

−δ(z − z′) − k2
zf
]

dV , (A.5)

where the surface S is that of a thin box at z = z′ that infinitely extends in the
x- and y-directions and has a vanishing thickness in the z-direction, n is the
outward normal to S and the volume V is the interior of the box. The complete
solution for the one-dimensional geometry is obtained by an integration over
all (kx, ky).

The one-dimensional solution can equally well be constructed from the three-
dimensional solution by a 2D-integration over the source plane at z = z′. This
leads to the alternative expression
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f1(x, y, z; kx, ky, z
′)=

+∞
∫

−∞

∫

f3(x, y, z; x
′, y′, z′) ×

exp{i[kx(x− x′) + ky(y − y′)]}dx′dy′

=exp{i[kxx+ kyy]}
+∞
∫

−∞

∫ exp{ik|r − r′|}
4π|r − r′| ×

exp{−i[kxx
′ + kyy

′]}dx′dy′ . (A.6)

When comparing Eq.(A.4) and Eq.(A.6), it can be concluded that the sec-
ond integral in (A.6), the Fourier transform of f3(x, y, z; x

′, y′, z′), should equal
(i/2kz) exp{ikz(|z−z′|}. By taking the inverse Fourier transform of both quan-
tities we obtain

FT−1



FT





exp{ik|r − r′|}
4π|r − r′|







=
i

(2π)2
×

+∞
∫

−∞

∫ exp{i[kz|z − z′| + kxx+ kyy]}
2kz

dkxdky , (A.7)

or, in its most elementary notation,

exp(ik|r|)
|r| =

i

2π

+∞
∫

−∞

∫ exp{i[kzz + kxx+ kyy]}
kz

dkxdky . (A.8)

B The Debye integral in the presence of aberrations

The angular spectrum of the field distribution in the aperture A is given
by Eq.(2.12). In the aberrated case the field E0(x

′, y′) is written as A0(x
′, y′)×

exp{iΦ(x′, y′)}. The function Φ(x′, y′) = kW (x′, y′) is the phase deviation re-
sulting from the aberration W (x′, y′) from the spherical shape of the incident
wavefront. Our sign convention implies that a positive wavefront aberration
corresponds to a position of the wavefront further away from the focal point F
than in the aberration-free case. To obtain an asymptotic value of Ẽ(z′; kx, ky),
the stationary points of the integrand in Eq.(2.12) with respect to x′ and y′

have to be found. Writing the integrand as

A0(x
′, y′)

RQF
exp {−i[kRQF + kxx

′ + kyy
′ − Φ(x′, y′)]}=

g(x′, y′) exp{ih(x′, y′)} , (B.1)
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we find the stationary points by putting ∂h/∂x′ = 0 and ∂h/∂y′ = 0, and this
yields the equations

k(x′ − xf)

RQF
=−kx +

∂Φ

∂x′
,

k(y′ − yf)

RQF
=−ky +

∂Φ

∂y′
. (B.2)

These equations can be solved by squaring both equations, next summing them
and adding (z′ − zf)

2/R2
QF to the result, finally yielding

1 =
(z′ − zf)

2

R2
QF

+
1

k2





(

kx −
∂Φ

∂x′

)2

+

(

ky −
∂Φ

∂y′

)2


 (B.3)

Neglecting the second order terms in ∂Φ/∂x′ and ∂Φ/∂y′ we find

RQF

k
=

zf − z′

kz

[

1 + 2
k2

z

(

kx
∂Φ
∂x′ + ky

∂Φ
∂y′

)](1/2)
. (B.4)

For small derivative values of Φ, the stationary points are approximated by

x
′

s≈xf −
kx(zf − z′)

kz







1 −




k2 − k2
y

kxk2
z





∂Φ

∂x′
− ky

k2
z

∂Φ

∂y′







,

y
′

s≈yf −
ky(zf − z′)

kz







1 − kx

k2
z

∂Φ

∂x′
−




k2 − k2
x

kyk2
z





∂Φ

∂y′







. (B.5)

In the aberration-free case, we find the stationary points that already appeared
in the argument of E0 in Eq.(2.13). It is common practice to neglect the influ-
ence of aberrations on the position of the stationary points in the diffracting
aperture. If the aberration is small and the aperture size is many wavelengths
large, the derivatives of Φ will remain relatively small and the factors between
braces in Eq.(B.5) can be put equal to unity. A more careful examination is
needed at high numerical aperture values when the various pre-factors contain-
ing kx, ky and kz can become large; high order aberrations also yield higher
derivative values in Eq.(B.5).
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C Series expansion of the diffraction integral at large defocus

The diffraction integral corresponding to V m
n (r, f) is written using Bauer’s

formula according to Eq.(2.45) yielding

V m
n (r, f)=exp(

if

2
)

∞
∑

k=0

(2k + 1) ik jk(f/2) ×
1
∫

0

R0
2k(ρ)R

m
n (ρ) Jm(2πrρ) ρ dρ . (C.1)

The polynomial product in the integrand of Eq.(C.1) is written as

R0
2k(ρ)R

m
m+2p(ρ) =

∑

l

wklR
m
m+2l(ρ) . (C.2)

In [Janssen, Braat, Dirksen (2004)] it is shown that the coefficients wkl can be
represented by a double series involving the product of three other coefficients
according to

wkl =
p
∑

s=0

min(k,s)
∑

t=0

fm
ps g

m
k+s−2t, l bkst , (C.3)

with the coefficients f , g and b given by

fm
ps = (−1)p−s 2s+ 1

p+ s+ 1

(

m+p−s−1
m−1

)(

m+p+s
s

)

(

p+s
s

) , s = 0, ..., p , (C.4)

gm
ul =

m+ 2l + 1

m+ u+ l + 1

(

m
u−l

)(

u+l
l

)

(

m+l+u
m+l

) , u = l, ..., l +m , (C.5)

bs1s2t =
2s1 + 2s2 − 4t+ 1

2s1 + 2s2 − 2t+ 1

As1−tAtAs2−t

As1+s2−t
, t = 0, ...,min(s1, s2), (C.6)

and the coefficients Ak given by the binomial coefficient
(

2k
k

)

. We have wkl 6= 0
only when l between max(0, k − p −m, p − k) and k + p. Also wkl ≥ 0 in all
cases.

A special case arises when m = 0 and the expressions of Eqs.(C.4)-(C.5) are
now defined as

f 0
ps = δps , g0

ul = δul , (C.7)
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with δab equal to Kronecker’s delta symbol. Here, as before, n, m are integers
≥ 0 with n−m ≥ 0 and even, and the definitions for p and q are, respectively,
p = (n−m)/2 and q = (n+m)/2.

D Series expansion for the diffraction integral V m
n,j(r, f)

In this Appendix, we present two methods for obtaining a series expansion
of the integral V m

n,j(r, f) given by

V m
n,j(r, f)=

1
∫

0

ρ|j|

(

1 +
√

1 − s2
0ρ

2
)−|j|+1

(1 − s2
0ρ

2)1/4
exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2
)

]

×

R|m|
n (ρ)J|m+j|(2πrρ)ρdρ , (D.1)

with m,n, j integers and n− |m| ≥ 0. We have used the absolute value of the
order number (m+j) of the Bessel function. The relation J−n(x) = (−1)nJn(x)
assures that we can also accommodate negative values of the order index
(m+ j).

The first method, discussed in [Braat, Dirksen, Janssen, van de Nes (2003)],
applies a series expansion that is based on the scalar diffraction integral V m

n (r, f)
according to Eqs.(2.47). The second method uses an expansion with the func-
tions Tm

n (r, f) of Eq.(2.57) as basis functions. Both functions, V (r, f) and
T (r, f), have their own Bessel series expansion and expansion coefficients given
by Eqs.(2.48)-(2.50) and Eqs.(2.58)-(2.59), respectively.

D.1 Expansion using the functions V m
n (r, f)

The necessary steps that are required to transform the integral Eq.(D.1) into
a tractable form are the following;

• we write
(

1 +
√

1 − s2
0ρ

2
)−|j|+1

exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2
)

]

= exp
[

gj + ifjρ
2
]

∞
∑

k=0

hkjR
0
2k(ρ) , (D.2)

and define the coefficients gj and fj by requiring the best fit for the constant
and the quadratic term in ρ in the expression. The series of Zernike polyno-
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mials with coefficients hkj will be normally limited to a constant term h0j

close to unity, and, a relatively small higher order term h2j. If the value of
s0, the geometrical numerical aperture, approaches a value of, say, 0.90, or
the defocus parameter exceeds the value of 2π, higher order coefficients hkj

are needed.
• To reduce the integral Vnm,j(r, f) to the analytically known result Vnm(r, f),

the upper index of the Zernike polynomial and the order of the Bessel func-
tion should be identical. Recursion formulae, already presented in [Nijboer
(1942)], can be used and the following general relationship can be established

ρ|j|R|m|
n (ρ) =

|j|
∑

s=0

cn|m|jsR
|m+j|
n+|j|−2s(ρ) . (D.3)

• Having determined the two or three new Zernike polynomials that we denote
by R

|m+j|
n+|j|−2s(ρ), we need to evaluate products of these Zernike polynomials

with a general polynomial R0
2k(ρ) that appeared in the first step. It can be

shown that the following general relationship exists

R0
2k(ρ)R

|m+j|
n+|j|−2s(ρ) =

∞
∑

t=0

dn|m|jsktR
|m+j|
n+|j|−2s+2t(ρ) , (D.4)

and the number of terms t in the summation is normally limited to three.
Note that problem of finding the coefficients dn|m|jskt was already solved in
Appendix C where an explicit expression for the coefficients wkl was given
via Eqs.(C.4)-(C.6).

When combining the above steps we have succeeded in writing V m
n,j as a lin-

ear combination of a modest number of terms of the form V
|m+j|
n+|j|−2s+2t(r, fj)

× exp (gj). A detailed derivation of the expressions for the coefficients gj and
fj, for the coefficient cn|m|js with running index s and the coefficient dn|m|jskt

with running index t can be found in [Braat, Dirksen, Janssen, van de Nes
(2003)].

D.2 Expansion using the functions Tm
n (r, f)

The expansion according to the second method is more straightforward and
allows a better monitoring of the convergence than when using the first method.
We start with the slightly more general integral
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I(r, f)=
1
∫

0

ρk

(

1 +
√

1 − s2
0ρ

2
)−p+1

(1 − s2
0ρ

2)1/4
exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2
)

]

×

Ru
n(ρ)Jl(2πrρ)ρdρ , (D.5)

where k, p, u, n, l ≥ 0 and both n−u and k+u− l are ≥ 0 and even. We write

Ru
n(ρ) = ρu

n−u
2
∑

s=0

Csρ
2s ; Cs =

(−1)
n−u

2
−s

(

n−u
2 − s

)

! s! (n− s)!
, (D.6)

and

(

1 +
√

1 − s2
0ρ

2
)−p+1

(1 − s2
0ρ

2)1/4
exp

[

if

u0

(

1 −
√

1 − s2
0ρ

2
)

]

= exp{g′ + if ′ρ2}
∞
∑

t=0

Btρ
2t. (D.7)

The coefficients Bt are obtained from a computation scheme that is given
below. Using these coefficients we write the integral I(r, f) as

I(r, f) =

n−u
2
∑

s=0

∞
∑

t=0

Cs Bt T
l
k+u+2s+2t(r, f

′) , (D.8)

with the Bessel series expansion for T (r, f) itself given by Eq.(2.58); there fur-
ther holds k + u+ 2s+ 2t− l ≥ 0 and even.

The computation scheme for the coefficients Bt runs as follows. As a first
step, we bring the fraction on the left-hand side of Eq.(D.7) into the exponen-
tial function and split off the optimal quadratic part g′ + if ′ρ2. The Taylor
expansion of the remaining part in the exponential is written as

∑∞
t′=0At′ρ

2t′.
The coefficients Bt are defined by

∞
∑

t=0

Btρ
2t = exp





∞
∑

t′=0

At′ρ
2t′


 . (D.9)
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Using u0 =
√

1 − s2
0 and d0 = (u0/s0)

2 as auxiliary quantities, the detailed
scheme now looks as follows,























































a0 = 1
2 − 1

6d0, b0 = 1
2d0 + ln

(

u0

d0

)

,

c0 = −
{

1 + 1−s2

0

s2

0

ln(1 − s2
0)
}

,

a1 = 1
2

(

1 − 1
5d

2
0

)

, b1 = −1
4d0 (2 − d0) ,

c1 = −3
∑∞

m=1
s2m
0

(m+1)(m+2) ,

(D.10)



















g′ = −1
4(c0 − c1) + (−p+ 1)(b0 − b1) + if(a0 − a1),

f ′ = 1
2ic1 + 2fa1 − 2i(−p+ 1)b1,

(D.11)



















A0 = (−p+ 1) ln 2 − g′, A1 = 1
4s

2
0

(

p+ 2if
u0

)

− if ′,

At′ =
{

(p− 1)
(− 1

2

t′

)

(−1)t′ + 1
2 −

if
u0

( − 1

2

t′−1

)

(−1)t′
}

s2t′

0

2t′ , t′ = 2, 3, ...,
(D.12)

with the binomial coefficients again given by Eq.(2.51). The values of the B-
coefficients in Eq.(D.9) are then given by

B0 =exp(A0) ,

Bt+1 =
t
∑

j=0

t+ 1 − j

t+ 1
At+1−j Bj , t = 0, 1, ... . (D.13)

The number of coefficients to be used can be judged from the convergence of the
series expansion for I(r, f). Like in the first case, even for numerical aperture
values s0 as high as 0.95, a limited number of coefficients is generally needed to
attain an accuracy of, say 10−4, in complex amplitude, or, equivalently, 10−8 in
intensity. Such an accuracy is largely sufficient in practical applications where
the measured intensity data, to be used in a retrieval process, are affected by
noise at a much higher level.

E The predictor-corrector procedure

The predictor-corrector procedure has been described and tested in simula-
tions in [van der Avoort, Braat, Dirksen, Janssen (2005)], Sec. 4, for the case of
relatively low-numerical-aperture systems that allow a scalar treatment of the
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image formation. The extension to the high-numerical-aperture vectorial case
is rather straightforward. The basic principles being identical, we only present
a brief outline.

The starting point of the predictor-corrector method is the availability of
a measured through-focus intensity distribution I. From this distribution,
by Fourier analysis, we form the various parts with azimuthal dependence
exp(imφ) that are represented in the form

Im =
(

β0
0

)2
χ0,0

0,0 + 2
∑

n,m

′

β0
0β

m∗
n χm,0

n,0 +
∑

n,m

′
∑

n′,m′

′

βm
n β

m′∗
n′ χ

m,m′

n,n′ . (E.1)

Here we use the symbols χ0,0
0,0 and χm,0

n,0 to identify the dominant aberration-free
self-interference term and the dominant cross-terms, respectively, that arise in
accordance with Eq.(3.12) and Eq.(5.24). The third term on the right-hand

side of Eq.(E.1), χm,m′

n,n′ , is an elaborate term that involves products V m
n;jV

m′∗
n′;j′ ,

pertaining to relatively small cross-terms. The ′-signs in the summations in
(E.1) indicate that the terms with n = m = 0 and n′ = m′ = 0 should be
deleted. In the basic linearized retrieval scheme, we choose the β’s in the small
cross-term deleted version

(

β0
0

)2
χ0,0

0,0 + 2
∑

n,m

′

β0
0β

m∗
n χm,0

n,0 (E.2)

of (E.1) such that the match between (E.2) and Im is maximal; this is done
in accordance with Eqs.(5.26)-(5.27). The resulting β’s are denoted by βm

n (1)
and form a first estimate of the β’s in (E.1) that serve to represent Im.

In the linearized retrieval scheme matching was done with the small cross-
terms deleted. Now that an estimate βm

n (1) has been found, the small cross-
term expression in Eq.(E.1) can be estimated as

∑

n,m

′
∑

n′,m′

′

βm
n (1)βm′∗

n′ (1)χm,m′

n,n′ (E.3)

in which the unknown βm
n are replaced by their first estimates βm

n (1). A direct

computation of (E.3) is, however, quite involved since the χm,m′

n,n′ are rather com-
plicated, so we proceed in a different manner. We compute, using the forward
scheme for computing the field components Ei in Eq.(2.65), the through-focus
intensity point-spread function I(1) = |E(1)|2 of the optical system with pupil
function P (1) of Eq.(5.22) where we have set βm

n = βm
n (1) throughout. Then,
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in accordance with (E.1), the quantity of (E.3) is given by

I(1) −
(

β0
0(1)

)2
χ0,0

0,0 − 2
∑

n,m

′

β0
0(1)βm∗

n (1)χm,0
n,0 , (E.4)

and its computation is now much easier and feasible in a strongly reduced
time.

Having available now the double summation cross-term of (E.3), we perform
basic retrieval with the Im replaced by

Im − ∑

n,m

′
∑

n′,m′

′

βm
n (1)βm′∗

n′ (1)χm,m′

n,n′ . (E.5)

Hence, the β’s in Eq.(E.2) now maximize the match between Eqs.(E.2) and
(E.5) to yield a new collection of coefficients βm

n (2). This whole process of
adjusting Im is repeated until convergence is reached. When convergence is
reached we have obtained coefficients βm

n (∞) that satisfy

Im − ∑

n,m

′
∑

n′,m′

′

βm
n (∞)βm′∗

n′ (∞)χm,m′

n,n′ =

(

β0
0(∞)

)2
χ0,0

0,0 − 2
∑

n,m

′

β0
0(∞)βm∗

n (∞)χm,0
n,0 . (E.6)

By bringing the double summation at the left-hand side of Eq.(E.6) to the
right side of (E.6), we see that we have managed to represent Im in the form
Eq.(E.1) using βm

n = βm
n (∞).

F Zernike coefficients for circularly symmetric polarization states

The incident field in the entrance pupil is given by Eq.(3.21) and using the
expansion of Eq.(2.64) with

Ex =
∑

βm
n,xR

|m|
n (ρ) exp(imθ),

Ey =
∑

βm
n,yR

|m|
n (ρ) exp(imθ), (F.1)

we form the inner products with a general Zernike polynomialR|m′|
n (ρ) exp(im′θ).

For the Ex-component we obtain

1

π

∫∫

A
cos(θ + θ0)R

|m′|
n (ρ) exp(−im′θ)ρdρdθ
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=
1

π

∑

n,m

2π
∫

0

1
∫

0

βm
n,xR

|m|
n (ρ) exp(+imθ)R|m′|

n (ρ) exp(−im′θ)ρdρdθ

= 2βm′

n,x

1
∫

0

[

R|m′|
n (ρ)

]2
ρdρ =

βm′

n,x

n+ 1
, (F.2)

where we have used the properties of the inner products of the radial Zernike
polynomials R|m|

n , see [Born, Wolf (2002)]. Evaluating the first integral in (F.2)
then yields

βm′

n,x =
n+ 1

π

1
∫

0

2π
∫

0





exp{i(θ + θ0)} + exp{−i(θ + θ0)}
2



×

exp(−im′

θ)dθ
1
∫

0

R|m′|
n (ρ)ρdρ

=(n+ 1) {exp(iθ0)δm′,+1 + exp(−iθ0)δm′,−1}
1
∫

0

R|m′|
n (ρ)ρdρ, (F.3)

with δm,m′ the Kronecker symbol.
Using the properties of the Jacobi polynomials, see [Braat, Dirksen, Janssen,

van de Nes (2003)], an analytic solution of the integral over ρ can be found

1
∫

0

Rm
m+2p(ρ)ρdρ=

1

2
(−1)p (m

2 )p

(m+2
2 )p+1

with the Pochhammer symbol (m)p given by


















(m)p = m(m+ 1)....(m+ p− 1) ,

(m)0 = 1 .
(F.4)

For our special case |m′| = 1; we then find the only nonzero coefficients β±1
2n+1,x

and β±1
2n+1,y of Eq.(3.22).
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