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Analysis of a wavelet arising from a model for arm movements
during epileptic seizures

T.M.E. Nijsen, A.J.E.M Janssen, Fellow IEEE, and R.M. Aarts, Fellow IEEE

Abstract— This paper analyses a wavelet that arises in the
study of myoclonic seizures. The wavelet comes about when
a physiological model is used that describes arm movements
associated with certain epileptic (myoclonic) seizures. Due to the
simple analytical form of the wavelet, x(t) = 0 for t < 0 and
x(t) = te−t− t

A e
−t
B for t ≥ 0, with B2 ≈A≈ 1, explicit computations

are feasible for the frequency response X(ω), the admissibility
condition and admissibility constant, the wavelet transform of
x itself using x or its time-reversed version x− (matched filter)
as analyzing wavelet, etc. The new wavelet is expected to yield
better detectability for the problem at hand than general purpose
wavelets would do. We show one example of how the new wavelet
performs on clinical data and we intend to follow up this study
with a more elaborate demonstration of its efficacy. The new
wavelet, and some of its variants (such as the odd extension of it
and a Gaussian smoothed version of it), are briefly compared with
certain wavelets presented in existing literature. Our preliminary
conclusion, to be elaborated in the near future, is that the wavelet
has excellent potential in the detection of myoclonic seizures from
accelerometric data of arm movements of epileptic patients.

Index Terms— accelerometry, epilepsy, myoclonic seizure,
wavelet

I. INTRODUCTION

In this paper a wavelet is analysed that arises from an
analytical model for accelerometric output associated with
myoclonic seizures. This wavelet can be used to derive salient
features of myoclonic seizure waveforms from accelerometric
data. Figure 1 shows two typical examples of an accelerometer
pattern associated with a myoclonic seizure. A myoclonic
seizure consists of one single muscle jerk. The electrical
activation of the muscle lasts less than 50 milliseconds [1].
Both the agonists and the antagonists in the muscle groups
involved contract and relax synchronously.
The clinical manifestation of myoclonic seizures is very subtle
so that they are often missed by current available detection
systems. Detecting these subtle seizures is of clinical
importance. A patient can experience many myoclonic
seizures during the night that can disturb sleep rhythm.
Counting myoclonic seizures may also be an important
measure for successful medical treatment. Furthermore,
severe motor seizures are often preceded by myoclonic
seizures, so that detection of myoclonic seizures could be
used for early warning.
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B. myoclonic waveform followed by other movements
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Fig. 1. Examples of accelerometric waveforms associated with myoclonic
seizures.

In choosing suitable features for automated detection of
these seizures from the ACM-signal, knowledge about these
patterns is important. Previously we presented an analytical
model that describes the accelerometric output during a
myoclonic seizure [2]. In this paper this model is used to
derive a matched wavelet transform.
In [2] signals of the form

(
te−t/τ − 1

A
te−t/(Bτ)

)
χ[0,∞)(t) , t ∈ R, (1)

are derived from a model for accelerometric patterns
associated with myoclonic seizures. In Eq. 1, χ[0,∞)(t) = 0
for t < 0 and χ[0,∞)(t) = 1 for t ≥ 0. The parameters A and B
are positive, and so is τ . In particular the case is considered
when A ≈ B2. In the case that A = B2, the signal in Eq. 1 is
admissible [3], [4] as a wavelet since then

∫ ∞

0

(
te−t/τ − 1

A
te−t/(Bτ)

)
dt = τ2

(
1− B2

A

)
= 0. (2)

Observe that

te−t/τ − 1
A

te−t/Bτ = τ
(

t ′e−t ′ − 1
A

t ′e−t ′/B
)

, t ′ = t/τ, (3)

hence for computation purposes we may suppose τ = 1. Thus
the signals

xA,B(t) :=
(

te−t − 1
A

te−t/B
)

χ[0,∞)(t) , t ∈ R, (4)

are considered, and the admissible cases

xC(t) :=
(
te−t −C2te−Ct)χ[0,∞)(t) , t ∈ R. (5)
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II. WAVELET CHARACTERISTICS

A. Normalization and approximation by admissible wavelet

We want to approximate a general xA,B by an admissible
xC. To that end

∫ ∞

0
(xA,B(t)− xD−1(t))2dt (6)

is minimized (D = C−1). We compute

∫ ∞

0
(xA,B(t)− xD−1(t))2dt =

1
4B

[
s2− 16sx

(1+ x)3 +
1
x

]
,

s =
B2

A
≈ 1 , x =

D
B
≈ 1 . (7)

There is the Taylor expansion

s2− 16sx
(1+ x)3 +

1
x

=

(s−1)2 +
∞

∑
l=1

(1− x)l
{

(l +1)(l−2)
2l s+1

}
=

(s−1)2 +(x−1)(s−1)+(x−1)2

−(x−1)3(
1
2

s+1)+(x−1)4(
5
8

s+1)+ ... . (8)

The leading quadratic form in the last member of Eq. 8 can
be written as

(
x−1+

s−1
2

)2

+
3
4
(s−1)2 (9)

and is minimal 3
4 (s− 1)2 when x = 3−s

2 . We are thus led to
take x = 3−s

2 . Assuming A and B are known, we now have an
expression for D (and C). Hence, we have an approximation
xC of xA,B.

B. Computations for xC

In this section an overview is given of some characteristics
of xC.

1) Energy: The energy ‖xC‖2 is

‖xC‖2 =
∫ ∞

0
(te−t −C2te−Ct)2dt = (1−C)2 1+6C +C2

4(1+C)3 .

(10)
2) Fourier transform: The Fourier transform XC(ω) of xC

is given by:

XC(ω) =
∫ ∞

0
(te−t −C2te−Ct)eiωtdt

=
(

1
1− iω

)2

−
(

C
C− iω

)2

= −2iω(1−C)
C− 1

2 iω(1+C)
(1− iω)2(C− iω)2 . (11)

Observe that XC(ω) = 0 at ω = 0, which again shows that xC
is an admissible wavelet.

3) Admissibility constant: The admissibility constant CxC

is computed as

CxC =
∫ ∞

−∞
|XC(ω)|2 dω

|ω|

=
(

1−C
1+C

)2 {
2− (1+4C +C2)

lnC2

1−C2

}
. (12)

This admissibility constant is required when one wants to
invert the wavelet transform

f (τ)→CWTxC [ f ](t,a) =
1√
a

∫ ∞

−∞
f (τ)xC

(
t− τ

a

)
dτ (13)

according to the inversion formula

f (τ) =
1

CxC

∫ ∞

0

∫ ∞

−∞
CWTxC [ f ]

(
τ− t

a

)
da dt
a2√a

. (14)

4) Vanishing moments: A further issue in Wavelet analysis
is the desirability of vanishing moments. We compute for k =
0,1, ... ∫ ∞

0
tkxC(t)dt = (k +1)!

(
1− 1

Ck

)
; (15)

when k = 0 this vanishes for all C. When k = 1,2, .. this
vanishes only when C = 1. In the latter case we have xC=1 ≡ 0.
Therefore, except in the trivial case C=1, only the 0th moment
vanishes.

C. Limiting case C → 1

As said, we have xC = 0 when C = 1. Experimental
evidence [5] shows that C ≈ 1, hence we consider the
renormalized wavelet 1

1−C xC, and in particular, its limit when
C → 1. There holds

x(t) := lim
C→1

1
1−C

xC(t)

= − d
dC

[te−t −C2te−Ct ]C=1χ[0,∞)(t)

= t(2− t)e−t χ[0,∞)(t) . (16)

More precisely, we have

1
1−C

xC(t) = x(t)+(1−C)te−tR(t,C), (17)

where

R(t,C) =−1+(1+C)t +C2 1− (C−1)t− e−(C−1)t

(1−C)2 . (18)

Now there holds for this R(t,C) that

R(t,C) = R(t)+ ε(t) =−1+2t− 1
2

t2 + ε(t) , (19)

where the error ε(t) is of the order 1
6 |1−C|t3e|1−C|t or less.

For the leading behavior R of R(t,C) we have

∫ ∞

0
te−tR(t)dt = 0 ;

−1≤ R(t)≤ 1 , 0≤ t ≤ 4 . (20)



3

Next an overview is given, of some characteristics of x(t).
We compute

‖x‖2
2 =

∫ ∞

0
(t(2− t)e−t)2dt =

1
4

, (21)

‖x‖1 =
∫ ∞

0
|t(2− t)e−t |dt =

8
e2 = 1.082682266 . (22)

Furthermore, for the Fourier transform X(ω) of x we find

X(ω) =
∫ ∞

0
eiωtt(2− t)e−tdt =

−2iω
(1− iω)3 . (23)

The spectral version of Eq. 17 and 18 reads

1
1−C

XC(ω) = X(ω)−2iω(1−C)
C− 1

2 iω + 1
2 ω2

(1− iω)3(C− iω)2 . (24)

The admissibility constant Cx of x is given by:

Cx =
∫ ∞

−∞
|X(ω)|2 dω

|ω| = 2 . (25)

The wavelet transform of x, using x itself or the the time-
reversed signal x− as wavelet are given by

CWTx[x](t,a) = 1√
a

∫ ∞
−∞ x(τ)x

( t−τ
a

)
dτ =

e−t/a

a2√a [−2at(t−2)e2(−α, t)

+(2t2 +(8a−4)t−8a)e3(−α, t)−12(t +a−1)e4(−α, t)
+24e5(−α, t)], t > 0 , (26)

while CWTx[x](t,a) = 0 for t ≤ 0. In Eq. 26 we have set

el(β , t) =
1
β l

(
eβ t −1−β t− ...− (β t)l−1

(l−1)!

)

= t l
∞

∑
j=0

(β t) j

( j + l)!
(27)

which is to be read as t2

l! when β = 0 in accordance with the
last member of Eq. 27. Also we have α = 1−a−1 in Eq. 26.
Furthermore we have

CWTx−(t,a) =
1√
a

∫ ∞

−∞
x(τ)x

(
τ− t

a

)
dτ =

t ≥ 0 :
e−t

a2√a
[−2a

(
a

a+1

)2

t(t−2)

+
(

a
a+1

)3

(2t2− (8a+4)t +8a)

+12
(

a
a+1

)4

(t−a−1)+24
(

a
a+1

)5

] ,

t ≤ 0 :
e−t/a

a2√a
[−2a2

(
a

a+1

)2

t(t +2a)

+
(

a
a+1

)3

(2t2 +(8+4a)t +8a)

−12
(

a
a+1

)4

(t +a+1)+24
(

a
a+1

)5

] . (28)

We finally compute the moments of x as
∫ ∞

0
tkx(t)dt =−(k +1)!k , k = 0,1, .. , (29)

and this vanishes for k = 0 only.

III. APPLICATION TO CLINICAL DATA

Figure 2 shows three visual representations of the wavelet
transform of a modelled myoclonic seizure, using x as a model
and two accelerometric patterns from clinical data that are
associated with a myoclonic seizure and an other movement.
The wavelet used is the time reversed version of x.
For the myoclonic seizure, the coefficients with the highest

0  1 2 3 4 5
−0.1

−0.05

0

0.05

0.1
model x

ac
ce

le
ra

tio
n 

(g
)

0  1 2 3 4 5
−0.1

−0.05

0

0.05

0.1
myoclonic seizure

0  1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4
normal movement

0  1 2 3 4 5

10

20

30

40

50

time (s)
sc

al
e

0  1 2 3 4 5

10

20

30

40

50

time (s)
0 1 2 3 4 5

10

20

30

40

50

time (s)

 

 

Fig. 2. Wavelet transform of x, an accelerometric pattern that is associated
with a myoclonic seizure, and an accelerometric pattern that is associated with
a movement that is not a myoclonic seizure.

values lie in the 2–8 range of scales. This agrees with the
findings presented in [5]. Similar behavior can be observed be-
tween the modelled myoclonic seizure and the real myoclonic
seizure. In the scalogram of the other movement we see high
values at high scales. This example shows that it is possible to
distinguish between myoclonic seizures and other movements
using the wavelet presented in this paper.

IV. COMPARISON TO OTHER WAVELETS IN LITERATURE

In this section, the new wavelet x, a smoothed version of x
and its odd extension are compared to some wavelets described
in literature.
Figure 3 shows the Cauchy wavelet and its Fourier transform
[3].

 

Fig. 3. Cauchy wavelet x(t) = 1
2π(1−it)3 (imaginary part dashed), and its

Fourier transform X(ω) = ω2e−ω , from [3].
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Figure 4 shows the Bessel wavelet and its Fourier transform
[3].

 

Fig. 4. Bessel wavelet x(t) = 1
π
√

1−it
K1(2

√
1− it) (imaginary part dashed),

with K1 a modified Bessel function of order 1, and its Fourier transform
X(ω) = e−(ω+1/ω), ω > 0, from [3].

Observe that x is real, causal and of simple from so that
relevant data concerning x can be computed analytically.
Figure 5 shows the signal x(t) and its Fourier transform |X(ω)|
(solid lines). It can be seen that |X(ω)| decays rather slowly,
roughly like 2/ω2, as ω → ∞. This is due to the abrupt rise
of x(t) at t = 0.
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Fig. 5. a. x(t) and a Gaussian window g. b. |X(ω)|, and |X(ω)G(ω)|.

In Fig. 5 (a) also a Gaussian window g is depicted (dashed
line) by which x(t) is to be smoothed. The resulting spectrum
|X(ω)G(ω)| is depicted in Fig. 5 (b) (dashed line) and decays
quite a bit faster. Smoothing x(t) with a Gaussian g yields a
non-causal signal; also, it is certainly not so that a Gaussian
g is optimal and/or in complete agreement with physiology.

1) Odd extension of x: A different sort of modification is
obtained when we consider the odd extension of x,

xodd = x(t)− x(−t) , t ∈ R , (30)

whose spectrum is given by

Xodd(ω) = 2i Im[X(ω)] = 4i
3ω3−ω
(1+ω2)3 ,ω ∈ R . (31)

Fig. 6 shows xodd(t) and |Xodd(ω)|. Note that xodd looks quite
similar to (the imaginary part) of certain wavelets that can be
found in literature. Compared to X(ω), Xodd(ω) decays more
rapidly, like 12/ω3, as ω → ∞. Furthermore, Xodd(ω) has a
peak value that is 1.5 times larger than the peak value of X(ω),
and this peak value occurs at an ω that is more than 1.5 times
larger than the ω at which X(ω) has its peak value.
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Fig. 6. xodd(t) and 1
i Xodd(ω).

V. CONCLUSION

A new wavelet, based on an analytical description for
accelerometric patterns associated with myoclonic seizures
has been introduced. Explicit computations are feasible for
the frequency response X(ω), the admissibility condition and
admissibility constant, the wavelet transform of x itself using
x or its time-reversed version x− (matched filter) as analyzing
wavelet. The new wavelet, a Gaussian smoothed version of
it, and the odd extension of it, have similar appearances
as wavelets known in literature. It is possible to distinguish
between myoclonic seizures and other movements using the
wavelet presented in this paper. Thus the wavelet has excellent
potential in the detection of myoclonic seizures from accelero-
metric data of arm movements of epileptic patients.
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