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Abstract

This paper presents new Gaussian approximations for the cumulative distri-
bution function P(Aλ ≤ s) of a Poisson random variable Aλ with mean λ. Using
an integral transformation, we first bring the Poisson distribution into quasi-
Gaussian form, which permits evaluation in terms of the normal distribution
function Φ. The quasi-Gaussian form contains an implicitly defined function y,
which is closely related to the Lambert W function. A detailed analysis of y
leads to a powerful asymptotic expansion and sharp bounds on P(Aλ ≤ s).

The results for P(Aλ ≤ s) differ from most classical results related to the
central limit theorem in that the leading term Φ(β), with β = (s − λ)/

√
λ,

is replaced by Φ(α), where α is a simple function of s that converges to β
as s → ∞. Changing β into α turns out to increase precision for small and
moderately large values of s.

The results for P(Aλ ≤ s) lead to similar results related to the Erlang B for-
mula. The asymptotic expansion for Erlang’s B is shown to give rise to accurate
approximations; the obtained bounds seem to be the sharpest in the literature
thus far.

Keywords: Erlang B formula, Erlang loss model, Poisson distribution, Normal
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1 Introduction

Arguably the most famous result in stochastic network theory is the Erlang B for-
mula, derived by A.K. Erlang in 1917. The Erlang B formula gives the steady-state
blocking probability in the Erlang loss model (the M/G/s/s queue). This model has
s homogeneous servers working in parallel and no extra waiting space. Customers

1Philips Research. Digital Signal Processing Group, HTC-36, 5656 AA Eindhoven, The Nether-
lands. Email: a.j.e.m.janssen@philips.com.

2Eindhoven University of Technology and EURANDOM, P.O. Box 513 - 5600 MB Eindhoven,
The Netherlands. Email: j.s.h.v.leeuwaarden@tue.nl. Supported by an NWO VENI grant.

3Georgia Institute of Technology. H. Milton Stewart School of Industrial and Systems Engineer-
ing, 765 Ferst Drive, 30332 Atlanta, USA. Email: bertzwart@gatech.edu.

1



that find all s servers busy upon arrival are blocked (lost). Customers are assumed
to arrive according to a Poisson process with rate η and require service times that
are independent and generally distributed with mean 1/µ. Following convention,
we define the offered load as λ = η/µ, and the service utilization as ρ = λ/s. The
Erlang B formula then reads

B(s, λ) =
λs/s!

∑s
k=0 λk/k!

=
P(Aλ = s)

P(Aλ ≤ s)
, (1.1)

with Aλ a Poisson random variable with mean λ.
With β ∈ R a constant such that s = λ + β

√
λ, Erlang (see [5]) observed that, for

large values of s (and λ), the blocking probability can be very well approximated by

B(s, λ) ≈ φ(β)

Φ(β)
√

λ
, (1.2)

where Φ(x) and φ(x) denote the standard normal cumulative distribution function
(cdf) and density, respectively. This result follows almost immediately from the
central limit theorem for Poisson laws. Since Erlang did not provide a proof, Brock-
meyer gave a deduction of this limiting result in [5].

The Erlang B formula has found numerous applications, which makes that a scal-
ing result like (1.2) is not only important for historical reasons. In their seminal
paper [12], Halfin & Whitt suggested a similar scaling procedure for queues with
many servers and infinite waiting room. The regime where a many-server queue is
both in heavy traffic and critically loaded is known as the Halfin-Whitt regime or
the Quality and Efficiency Driven (QED) regime and has been the subject of an
extensive recent research effort, motivated by agent staffing problems in customer
contact centers, see for example [2, 6, 11, 23] and references therein. The staffing
rule s = λ + β

√
λ is known as square-root staffing.

The present paper is concerned with the derivation of bounds and asymptotic
expansions that have the same leading behavior as (1.2), but that are also sharp
for small and moderately large values of s. Our results therefore complement the
above-mentioned works, that are all of asymptotic nature.

When λ is a positive integer, Aλ is the sum of λ Poisson random variables with
mean one. The central limit theorem and the Berry-Esséen bound imply

P(Aλ ≤ s) = Φ(β) + O(λ−1/2), (1.3)

as λ → ∞. To obtain better estimates for the error and to improve on this result
one can derive asymptotic expansions. There are various general theorems that yield
asymptotic expansions for P(Aλ ≤ s) in ascending positive powers of λ−1/2, see, for
instance, [3, 4, 9, 14, 19, 22]. One example would be Edgeworth expansion, which
for the Poisson distribution yields (see [3], Eq. (4.18) on p. 96)

P(Aλ ≤ s) = Φ(β) − φ(β)(β2 − 1)

6
√

λ
+ O(1/λ). (1.4)

We shall derive an alternative asymptotic expansion for P(Aλ ≤ s) in ascending
positive powers of s−1/2. In contrast to classical expansions related to the central

2



limit theorem, like Edgeworth expansions or saddle point approximations, the lead-
ing term in our expansion is not Φ(β). Instead, it is Φ(α), where α is a function of
s, cf. (2.5), that converges to β as s → ∞ (assuming β to be fixed).

We will demonstrate that this switch from β to α is very convenient. The first few
terms of the expansion serve as sharp approximations to P(Aλ ≤ s), even for small
and moderate values of s. Our expansion is intimately related with the expansion
derived by Temme [25] for the incomplete gamma function, although the coefficients
in the expansion are, except for the leading term, not the same. In his by now clas-
sical treatment of the Erlang B formula, Jagerman [17] provides several alternative
asymptotic expansions, see Section 5. The main difference between our results and
those in [17, 25] is perhaps the fact that truncated versions of the expansion can be
converted into bounds, as explained below. Another difference is that our expansion
for Erlang’s B is also accurate in the large deviations regime, where the ratio of s
and λ is fixed.

In passing from the Poisson distribution to its normal approximation, we first
bring P(Aλ ≤ s) into what we call quasi-Gaussian form, cf. (2.6), which permits
evaluation in terms of the normal distribution function Φ. The quasi-Gaussian form
contains an implicitly defined function y, related to the Lambert W function, which
permits a power series representation. This leads to the asymptotic expansion for
P(Aλ ≤ s).

The idea of bringing P(Aλ ≤ s) into quasi-Gaussian form was introduced by the
authors in their recent paper [15] on corrected asymptotics in the Halfin-Whitt
regime for the delay probability in the M/D/s queue. In [15] a detailed analysis of
y was presented for the case λ < s. The present setting requires additional analysis
for the case λ ≥ s. Moreover, in the present paper we fully exploit the fact that the
quasi-Gaussian form permits us to derive bounds on P(Aλ ≤ s) by deriving bounds
on y and its derivative y′. The bounds on P(Aλ ≤ s) are of the Berry-Esséen type
except that we again express our approximation in terms of α instead of β. Using
the Berry-Esséen Theorem, Michel [21] proved that

|P(Aλ ≤ s) − Φ(β)| ≤ 0.8√
λ

. (1.5)

Our bounds will turn out to be much sharper.
The results for P(Aλ ≤ s) lead to corresponding results for Erlang’s B. The asymp-

totic expansion for Erlang’s B is shown to give rise to accurate approximations and
the bounds seem to be the sharpest obtained in the literature thus far. The following
result is among the most appealing ones obtained in this paper.

Theorem 1. For λ > 0 and s ∈ N the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤ Φ(α)
√

s

φ(α)
+

2

3
+

√
s

φ(α)(12s − 1)
, (1.6)

B(s, λ)−1 ≥ Φ(α)
√

s

φ(α)
+

2

3
, (1.7)

with α defined as in (2.5).
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Let us compare these bounds to Erlang’s approximation (1.2). Since α ↑ β and
λ ↑ s as s → ∞, we conclude that the bounds in Theorem 1 have the same leading
term as in (1.2). However, changing β into α turns out to increase precision for
moderately large values of s. The accuracy of the bounds is improved further by the
first-order correction term 2

3 .
One attractive feature of the bounds is that they are expressed in just one param-

eter α, which is a simple function of λ and s. Hence, every pair (λ, s) is replaced
by one parameter α, which makes the bounds as simple as (1.2) but much more
effective.

While visual inspection of the bounds in Theorem 1 already suggests good accu-
racy, we present a framework within which even sharper bounds can be obtained.
These bounds, again just in terms of the parameter α, involve higher-order correc-
tion terms. As an aside, we shall indicate how our framework may lead to a proof
and sharpening of a conjecture of Ramanujan on the exponential function.

We structure the paper as follows. In Section 2 we present the quasi-Gaussian
form for the cdf of the Poisson distribution and derive an expansion for P(Aλ ≤ s)
in terms of Gaussian integrals. In Section 3 we derive bounds on P(Aλ ≤ s) valid
for all λ and s. In Section 4 we derive sharper bounds on P(Aλ ≤ s), separately for
λ ≥ s and λ < s. In Section 5 all results for Erlang’s B are presented and in Section
6 with provide a discussion on Ramanujan’s conjecture. Some concluding remarks
are made in Section 7. The appendix describes various ways to evaluate the crucial
function y.

2 Quasi-Gaussian form for the Poisson distribution

From the relation between the Poisson distribution and the incomplete gamma func-
tion we get

P(Aλ ≤ s) =
s
∑

j=0

e−λ λj

j!
=

1

s!

∫ ∞

λ
e−ttsdt

=
p(s)

√
s√

2π

∫ ∞

ρ
es(1−u+ln u)du (2.1)

with

p(s) =
sse−s

√
2πs

s!
. (2.2)

Then consider the equation

f(y) := −y − ln(1 − y) = 1
2x2, (2.3)

with x ∈ C from which y is to be solved. We note that

f(y) = 1
2y2 + 1

3y3 + 1
4y4 + . . . , (2.4)

whence there is an analytic solution y(x) around x = 0 that satisfies y(x) = x+O(x2)
as x → 0. We choose for x ∈ R the function y(x) to be the root of (2.3) with the
same sign as x. Clearly, by separate consideration of x ∈ (−∞, 0) and x ∈ (0,∞),
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we have that y increases in x ∈ R, from −∞ at x = −∞ to 1 at x = ∞, see Figure
1. Hence, for any x ∈ R there is a unique solution y(x) = y of (2.3). Let

α =
√

−2s(1 − ρ + ln ρ), sign(α) = sign(1 − ρ). (2.5)

Then, using s(1 − ρ + ln ρ) = −1
2α2, we arrive from (2.1) at the following result for

the Poisson distribution.

Lemma 1. For λ > 0 and s ∈ N the cdf of the Poisson distribution can be repre-

sented as

P(Aλ ≤ s) =
p(s)√

2π

∫ α

−∞
e−

1

2
x2

y′(x/
√

s)dx. (2.6)

In [15] we have proved that y admits the power series representation

y(x) =

∞
∑

n=1

anxn, |x| < 2
√

π, (2.7)

with a1 = 1 and the an’s recursively defined as

ak+2 =
−1

k + 3

(

ak+1 +

k
∑

n=1

(n + 1)an+1ak+2−n

)

, k = 0, 1, . . . . (2.8)

The first five coefficients an are given by

a1 = 1, a2 = −1

3
, a3 =

1

36
, a4 =

1

270
, a5 =

1

4320
. (2.9)

Combining the quasi-Gaussian form and the power series representation gives an
asymptotic expansion for the Poisson distribution.

Theorem 2. For s = λ+β
√

λ with β some fixed real number there exists as s → ∞
a representation of the form

P(Aλ ≤ s) ∼ p(s)
∞
∑

n=0

(n + 1)an+1χn(α)s−n/2, (2.10)

where

χn(α) =
1√
2π

∫ α

−∞
xne−

1

2
x2

dx, (2.11)

α as in (2.5) and an as in (2.8).

The ∼ in (2.10) is the commonly used symbol for asymptotic equivalence: for any
N = 0, 1, . . . we have P(Aλ ≤ s)−p(s)

∑N
n=0(n+1)an+1χn(α)s−n/2 = O(s−(N+1)/2),

s → ∞. In the present case it can be shown by elementary (but lengthy) computa-
tions, that O holds for s ≥ |α|/πa2 and that the constant implied by the O can be
bounded by

5

a(1 − a/2)

(

N + 1

πea2

)(N+1)/2

. (2.12)
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Figure 1: The function f(y).

Here a is any number in the interval (0, 2).
Note that with our conventions

s = λ + β
√

λ ⇔ λ = s + 1
2β2 − sign(β)β

√

s + β2/4. (2.13)

The expansion in (2.10) starts as

P(Aλ ≤ s) ∼ p(s)
(

Φ(α) +
2

3
√

s
φ(α) +

1

12s

(

Φ(α) − αφ(α)
)

)

(2.14)

and is fully described in terms of α and Gaussian integrals. In fact, the first six
values of χn (suppressing the α) are

χ0 = Φ(α), χ1 = −φ(α), χ2 = Φ(α) − αφ(α), χ3 = −(2 + α2)φ(α),

χ4 = 3Φ(α) − α(3 + α2)φ(α), χ5 = −(8 + 4α2 + α4)φ(α). (2.15)

3 General bounds

From the quasi-Gaussian form (2.6) we can conclude that bounds on y′ lead to
bounds on P(Aλ ≤ s). Figure 2 depicts y′ for x ∈ [−2, 3]. In this section we shall
derive bounds on y′ that hold for all x ∈ R and will lead to bounds on P(Aλ ≤ s) that
hold for every pair (λ, s). As shown by Theorem 4, the accuracy of some of these
bounds is closely related to shifting the mean in estimating the Poisson distribution
by a Gaussian distribution.

We first provide two lemmas that are useful in proving bounds on y and y′.

Lemma 2. Let I be an interval of the form (x1, x2), (−x1, 0] or [0, x2), where

x1, x2 > 0. Assume that F is smooth on I and that F (0) = 0, F (x) < 1, x ∈ I.
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Figure 2: The function y(x) and its derivatives.

Then
F ′(x)F (x)

1 − F (x)
≥ x, x ∈ I ⇒ y(x) ≤ F (x), x ∈ I, (3.1)

F ′(x)F (x)

1 − F (x)
≤ x, x ∈ I ⇒ y(x) ≥ F (x), x ∈ I. (3.2)

Proof. Consider the case that I = [0, x2) with x2 > 0. Then, for u ∈ I we have, see
Figure 1,

y(u) ≤ F (u) ⇔ 1

2
u2 ≤ −F (u) − ln(1 − F (u)). (3.3)

Since y(0) = F (0) = 0, the right member of (3.3) holds true for u ∈ I when

x =
d

dx

(1

2
x2
)

≤ d

dx
[−F (x) − ln(1 − F (x))] =

F ′(x)F (x)

1 − F (x)
, 0 ≤ x ≤ u. (3.4)

From this (3.1) follows and (3.2) follows similarly.
Next consider the case that I = (−x1, 0] with x1 > 0. Then for v ∈ I we have, see

Figure 1,

y(v) ≤ F (v) ⇔ 1

2
v2 ≥ −F (v) − ln(1 − F (v)). (3.5)

Since y(0) = F (0) = 0, the right member of (3.5) holds true for v ∈ I when

x =
d

dx

(1

2
x2
)

≤ d

dx
[−F (x) − ln(1 − F (x))] =

F ′(x)F (x)

1 − F (x)
, v ≤ x ≤ 0. (3.6)

From this (3.1) follows and (3.2) follows similarly. �
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Lemma 3. Let I be an interval of the form (x1, x2), (−x1, 0] or [0, x2), where

x1, x2 > 0. Assume that f is smooth on I and that f(0) = 1, f(x) > 0, x+f(x) > 0,
x ∈ I. Then

1 − xf ′(x)/f(x)

(x + f(x))2
≤ 1, x ∈ I ⇒ y′(x) ≤ f(x), x ∈ I, (3.7)

1 − xf ′(x)/f(x)

(x + f(x))2
≥ 1, x ∈ I ⇒ y′(x) ≥ f(x), x ∈ I. (3.8)

Proof. Consider the case that I = [0, x2) with x2 > 0. From (2.3) we get by
differentiation with respect to x and some rewriting the equation

y′(x) = x/y(x) − x. (3.9)

For u ∈ I the inequality y′(u) ≤ f(u) then becomes

y(u) ≥ u

u + f(u)
=: s(u). (3.10)

By our assumptions we have that s(u) ∈ (0, 1), hence by monotonicity of t ∈ (0, 1) 7→
−t − ln(1 − t) the inequality (3.10) is equivalent with

−s(u) − ln(1 − s(u)) ≤ 1

2
u2 = −y(u) − ln(1 − y(u)). (3.11)

Since s(0) = y(0) = 0, the inequality (3.11) holds true for u ∈ I when

d

dx

(

− s(x) − ln(1 − s(x))
)

=
s′(x)s(x)

1 − s(x)
≤ x, 0 ≤ x ≤ u. (3.12)

From this (3.7) follows and (3.8) follows similarly. The same results for the domain
I = (−x1, 0] with x1 > 0 follow along similar lines as the case dealt with above. �

Warning: When the condition F (x) < 1 in Lemma 2 or the conditions f(x)+x > 0,
f(x) > 0 in Lemma 3 hold in a disconnected set, the corresponding inequality for y
or y′ may fail to hold in the components not containing zero.

With the aid of Lemma 2 one easily shows that, for instance,

x − 1

2
x2 ≤ y(x) ≤ x − 1

3
x2, x ∈ R ; y(x) ≤ −1

2
x2, x ≤ 0. (3.13)

For y′ we find the following useful bounds.

Lemma 4.

1 − 2
3x ≤ y′(x) ≤ e−

2

3
x, x ∈ R. (3.14)

Proof. In Lemma 3 choose f(x) = e−
2

3
x. This f satisfies f(x) > 0, x+ f(x) > 0 and

f(0) = 1. We compute

1 − xf ′(x)/f(x)

(x + f(x))2
=

1 + 2
3x

(x + e−
2

3
x)2

, x ∈ R. (3.15)
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We want to verify that (3.15) is ≤ 1. To that end we can assume that 1 + 2
3x ≥ 0.

Now,

1 +
2

3
x ≤ (1 +

1

3
x)2; x + e−

2

3
x ≥ 1 +

1

3
x (3.16)

and it follows that

1 + 2
3x

(x + e−
2

3
x)2

≤
(

1 + 1
3x

1 + 1
3x

)2

= 1, (3.17)

as required.
The inequality 1 − 2

3x ≤ y′(x) was proved in [15] for x ≥ 0. To prove it for x ∈ R

we choose f(x) = 1 − 2
3x in Lemma 3. We compute

1 − xf ′(x)/f(x)

(x + f(x))2
=

1

1 − 2
3x

1

(1 + 1
3x)2

, (3.18)

which is to be considered for those x for which f(x) > 0 and x + f(x) > 0, i.e., for
x ∈ (−3, 3/2). This is sufficient since y′(x) > 0 ≥ 1 − 2

3x, x ≥ 3
2 and y′(x) ≥ −x >

1 − 2
3x, x ≤ −3. Note that

(1 − 2

3
x)(1 +

1

3
x)2 = 1 − 1

3
x2 − 2

27
x3 (3.19)

has derivative −2
3x(1 + 1

3x). Therefore, the maximum of (3.19) on x ∈ (−3, 3/2)
equals 1 (assumed at x = 0). Thus,

1 − xf ′(x)/f(x)

(x + f(x))2
≥ 1, x ∈ (−3, 3/2). (3.20)

By Lemma 3 this completes the proof. �

Theorem 3. For λ > 0 and s ∈ N the cdf of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ 1 − p(s)
(

Φ(−α) − 2

3
√

s
φ(α)

)

, (3.21)

P(Aλ ≤ s) ≥ p(s)
(

Φ(α) +
2

3
√

s
φ(α)

)

. (3.22)

Proof. Plugging the lower bound in (3.14) into the quasi-Gaussian form (2.6) leads
to

P(Aλ ≤ s) ≥ p(s)√
2π

∫ α

−∞
e−

1

2
x2
(

1 − 2

3
√

s
x
)

dx, (3.23)

which equals (3.22). The upper bound (3.21) follows from the identity

P(Aλ ≤ s) = 1 − p(s)√
2π

∫ ∞

α
e−

1

2
x2

y′(x/
√

s)dx, (3.24)

which, again using 1 − 2
3x ≤ y′(x), leads to (3.21). �
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Theorem 4. For λ > 0 and s ∈ N the cdf of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s) · e 2

9s · Φ(α +
2

3
√

s
), (3.25)

P(Aλ ≤ s) ≥ 1 − p(s) · e 2

9s ·
(

1 − Φ(α +
2

3
√

s
)
)

. (3.26)

Proof. The upper bound y′(x) ≤ e−
2

3
x in (3.14) together with (2.6) result in

P(Aλ ≤ s) ≤ p(s)√
2π

∫ α

−∞
e
− 1

2
x2− 2

3
√

s
x
dx, (3.27)

which equals (3.25). The upper bound y′(x) ≤ e−
2

3
x and (3.24) give (3.26). �

Table 1 displays some results for the above bounds for s = 10. While all bounds
are sharp for the case λ ≤ s, they tend to be less accurate for the case λ > s. This
is resolved in Section 4.

Table 1: Bounds on P(Aλ ≤ s) for s = 10.

λ α P(Aλ ≤ s) (3.22) (3.21) (3.26) (3.25)

1 5.2964 1.0000 0.9917 1.0000 1.0000 1.0140

2 4.0235 1.0000 0.9917 1.0000 1.0000 1.0140

3 3.1748 0.9997 0.9915 0.9998 0.9996 1.0136

4 2.5151 0.9972 0.9893 0.9976 0.9967 1.0107

5 1.9654 0.9863 0.9793 0.9876 0.9850 0.9990

6 1.4888 0.9574 0.9515 0.9598 0.9548 0.9688

7 1.0647 0.9015 0.8967 0.9050 0.8975 0.9115

8 0.6803 0.8159 0.8118 0.8201 0.8110 0.8250

9 0.3274 0.7060 0.7022 0.7105 0.7007 0.7147

10 0 0.5830 0.5793 0.5876 0.5777 0.5916

11 -0.3063 0.4599 0.4561 0.4644 0.4545 0.4684

12 -0.5946 0.3472 0.3437 0.3519 0.3415 0.3555

13 -0.8676 0.2517 0.2485 0.2568 0.2453 0.2592

14 -1.1272 0.1757 0.1729 0.1812 0.1683 0.1823

15 -1.3750 0.1185 0.1163 0.1246 0.1099 0.1239

16 -1.6124 0.0774 0.0757 0.0840 0.0677 0.0816

17 -1.8405 0.0491 0.0479 0.0562 0.0383 0.0523

18 -2.0602 0.0304 0.0295 0.0378 0.0187 0.0327

19 -2.2722 0.0183 0.0178 0.0260 0.0059 0.0199

20 -2.4773 0.0108 0.0104 0.0187 -0.0021 0.0119

Let us close this section with the following Berry-Esséen type result (compare with
(1.5)).
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Corollary 1. For λ > 0 and s ∈ N we have that

0 ≤ e
2

9s · Φ(α +
2

3
√

s
) − P(Aλ ≤ s) ≤ e

2

9s − 1, (3.28)

where e
2

9s − 1 = 2
9s−1 + O(s−2).

Proof. The bounds (3.25) and (3.26) immediately yield

0 ≤ p(s) · e 2

9s · Φ(α +
2

3
√

s
) − P(Aλ ≤ s) ≤ p(s) · e 2

9s − 1, (3.29)

where p(s) · e 2

9s − 1 = 5
36s−1 + O(s−2). Using p(s) ≤ 1 results in (3.28). �

4 More specific bounds

In this section we shall derive sharper bounds on P(Aλ ≤ s). In order to do so,
we derive bounds on y′ that only hold for x ≤ 0 and that will lead to bounds on
P(Aλ ≤ s), separately for λ ≥ s and λ < s.

Lemma 5. The function y is increasing and concave and its derivative y′ is positive,

decreasing and convex.

Proof. We first prove that y′′ < 0. From (2.7), (2.9) we see that y′′(0) = −2
3 < 0.

So assume x 6= 0. From y′ = x/y − x we have

y′′ =
(1

y
− 1
)(

1 − x2

y2

)

. (4.1)

Clearly, 1/y − 1 > 0 when x ∈ (0,∞) (i.e., y ∈ (0, 1)) and 1/y − 1 < 0 when
x ∈ (−∞, 0) (i.e., y ∈ (−∞, 0)). Therefore, y′′ < 0 is equivalent with y(x) < x and
this is one of the bounds noted in (3.13) for y.

We shall now prove that y′′′ > 0. Again, by (2.7), (2.9) we see that y′′′(0) = 1
6 > 0,

so we assume x 6= 0. From (4.1) and y′ = x/y − x we compute

y′′′ = −3x

y4

(1

y
− 1
)(

y2 − x2 +
2

3
x2y
)

. (4.2)

Noting that the factor −3x
y4 ( 1

y − 1) is negative, it remains to show that

y2 − x2 +
2

3
x2y =

(

y +
1

3
x2
)2

−
(

x2 +
1

9
x4
)

< 0. (4.3)

Again we distinguish between x > 0 and x < 0. For x > 0 we have y > 0, and we
should show that

y < −1

3
x2 +

(

x2 +
1

9
x4
)1/2

=: r(x). (4.4)

We have, see Figure 1,

y(x) < r(x) ⇔ f(r(x)) > f(y(x)) =
1

2
x2. (4.5)
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With v = x2 > 0 the latter inequality can be formulated as

−
(

v +
1

9
v2
)1/2

+
1

3
v − ln

(

1 −
(

v +
1

9
v2
)1/2

+
1

3
v

)

>
1

2
v, v > 0. (4.6)

There is equality at v = 0 so it is enough to check that the derivative of the left-hand
side of (4.6) is ≥ 1/2, which after some manipulation, can be shown to be equivalent
with

1

9
v2 − 1

3
v
(

v +
1

9
v2
)1/2

< 0. (4.7)

This is indeed true. For the case x < 0, we must check (since y < 0) that

y > −1

3
x2 −

(

x2 +
1

9
x4
)1/2

. (4.8)

A sufficient condition for this to hold can be found in a similar fashion as above and
reads

1

9
v2 +

1

3
v
(

v +
1

9
v2
)1/2

> 0, (4.9)

with v = 1
2x2 > 0. The latter inequality indeed holds which completes the proof. �

Lemma 6. Let α ≤ 0. Then

y′(α) + (x − α)y′′(α) ≤ y′(x) ≤ y′(α) − (x − α), x ≤ α. (4.10)

Proof. Since y′ is convex, the first inequality holds for all x ∈ R. As to the second
inequality in (4.10), we first take α < 0. Now

y′(x) + x = x
( 1

y(x)
− 1
)

+ x =
x

y(x)
≤ α

y(α)
= y′(α) + α, x ≤ α. (4.11)

The inequality in (4.11) follows from

y(α) = y
(α

x
x + (1 − α

x
) · 0

)

≥ α

x
y(x) +

(

1 − α

x

)

y(0) =
α

x
y(x), (4.12)

where we used concavity of y and y(0) = 0. Note that α < 0 so that y(α) ≥ α
xy(x) ⇔

x
y(x) ≤ α

y(α) . The case α < 0 is settled now. The case α = 0 follows from continuity

of all functions involved in (4.10) and letting α ↑ 0. �

Substituting the bounds in (4.10) into the quasi-Gaussian form (2.6) leads to the
following theorem.

Theorem 5. For λ ≥ s ∈ N, and hence α ≤ 0, the cdf of the Poisson distribution

is bounded by

P(Aλ ≤ s) ≤ p(s)y′(α)Φ(α) + p(s)[αΦ(α) + φ(α)], (4.13)

P(Aλ ≤ s) ≥ p(s)y′(α)Φ(α) − p(s)y′′(α)[αΦ(α) + φ(α)]. (4.14)
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The difference between the two bounds is given by

p(s)(1 + y′′(α))[αΦ(α) + φ(α)]. (4.15)

Using the tail estimate for the Gaussian distribution

x

x2 + 1
φ(x) ≤ Φ(−x) ≤ 1

x
φ(x), x ≥ 0, (4.16)

this difference can be bounded by

0 ≤ p(s)(1 + y′′(α))[αΦ(α) + φ(α)] ≤ p(s)(1 + y′′(α))√
2π(1 + α2)

e−
1

2
α2

. (4.17)

The factor 1+y′′(α) at the right-hand side of (4.17) can furthermore be bounded as
follows. We have 0 ≤ 1+y′′(α) ≤ 1/3, α ≤ 0, and 1+y′′(α) = O(1/α2) as α → −∞.
Indeed, y′′′ > 0, so 1 + y′′(−∞) ≤ 1 + y′′(α) ≤ 1 + y′′(0) = 1/3, and from (4.1) and
the inequalities in (3.13) for y we get y′′(−∞) = −1 and 1 + y′′(α) = O(1/α2).

From (2.7) it follows that y′ has the power series representation

y′(x) = 1 − 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 + . . . , |x| < 2

√
π, (4.18)

from which we see that (4.10) for α = 0 leads to

1 − 2

3
x ≤ y′(x) ≤ 1 − x, x ≤ 0. (4.19)

We now use the coefficients of the power series in (4.18) to guess and prove bounds
on y′ in terms of polynomials of larger degrees.

Lemma 7.

y′(x) ≤ 1 − 2

3
x +

1

12
x2, x ≤ 0. (4.20)

Proof. We apply Lemma 3 with f(x) = 1 − 2
3x + 1

12x2. We have f(x) + x > 0,
f(x) ≥ 0 for x ≤ 0. The inequality to be shown becomes

(

1 +
1

3
x +

1

12
x2
)2(

1 − 2

3
x +

1

12
x2
)

≥ 1 − 1

12
x2, x ≤ 0. (4.21)

An elementary computation shows that the left-hand side of (4.21) equals

1 − 1

12
x2 − x3

[

2

27
+

1

144
x − 1

1728
x3

]

, x ≤ 0, (4.22)

where the expression in brackets has its minimum value, 7
216 , at x = −2. This

completes the proof. �

Lemma 8.

y′(x) ≥ 1 − 2

3
x +

1

12
x2 +

2

135
x3, x ≤ 0. (4.23)

Proof. Let w(x) = x − 1
3x2 + 1

36x3 + 1
270x4. For the bound in (4.23) to hold it is

sufficient to show that

13



(i) y′(x) ≥ w′(x) for −2 ≤ x ≤ 0.

(ii) y′′(−2) ≤ w′′(−2).

(iii) y′′′(x) ≥ w′′′(x) for x ≤ −2.

Evidently, (iii) follows from w′′′(x) = 1
6 + 4

45x ≤ − 1
90 ≤ 0 ≤ y′′′(x) for x ≤ −2. For

proving (i) we apply Lemma 3 with f(x) = w′(x). Note that f(x) ≥ f(x)+x, x ≤ 0
and (f(x)+x)′ = 1

3 + 1
6x+ 2

45x2 ≥ 0 so f(x)+x ≥ f(−2)−2 = 74
135 > 0, −2 ≤ x ≤ 0.

The inequality to be shown becomes (for −2 ≤ x ≤ 0)

(

1 +
1

3
x +

1

12
x2 +

2

135
x3
)2(

1− 2

3
x +

1

12
x2 +

2

135
x3
)

≤ 1− 1

12
x2 − 4

135
x3. (4.24)

The left-hand side of (4.24) can be written as

1− 1

12
x2 − 4

135
x3 − 1

144
x4 +

( 1

12

)3
x6 + ε

(1

6
x2 +

1

48
x4
)

+ ε2
(

3+
1

4
x2
)

+ ε3, (4.25)

with ε = 2
135x3, and so it remains to be shown that, for −2 ≤ x ≤ 0,

− 1

144
+
( 1

12

)3
x2+

2

135

(1

6
x+

1

48
x3
)

+
( 2

135

)2(

3x2+
1

4
x4
)

+
( 2

135

)3
x5 ≤ 0. (4.26)

This follows from the fact that the positive terms of (4.26) at x = −2 add up to
1
3( 1

12 )2 + ( 8
135 )2 which is smaller than 1

144 . Finally, in proving (ii) we first observe
that w′′(−2) = −37

45 ≈ −0.8222 and that (see (4.1))

y′′(−2) =
( 1

y(−2)
− 1
)(

1 − 4

y2(−2)

)

. (4.27)

Next, we use that y(−2) ∈ [−3.5,−4.0] as follows from −y − ln(1 − y) = 1
2x2 and

3.5− ln 4.5 < 2 < 4− ln 5. The cubic (t− 1)(1− 4t2) has a negative derivative when
t ∈ [−1

3.5 , −1
4.0 ]. Therefore,

y′′(−2) ≤
( 1

−3.5
− 1
)(

1 − 4

(−3.5)2

)

= −297

343
≈ −0.8659. (4.28)

This completes the proof. �

We arrive at another theorem on the Poisson distribution by substituting (4.20)
and (4.23) into the quasi-Gaussian form (2.6).

Theorem 6. For λ ≥ s ∈ N the cdf of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s)
(

Φ(α) +
2

3
√

s
φ(α) +

1

12s

(

Φ(α) − αφ(α)
)

)

. (4.29)

P(Aλ ≤ s) ≥ p(s)
(

Φ(α) +
2

3
√

s
φ(α) +

1

12s

(

Φ(α) − αφ(α)
)

− 2

135s3/2
(2 + α2)φ(α)

)

. (4.30)
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For the case n = λ = s, we have that α = 0 and

P(An ≤ n) =
p(n)√

2π

∫ 0

−∞
e−

1

2
x2

y′(x/
√

n)dx. (4.31)

From Theorem 6 we get

P(An ≤ n) ≤ p(n)
(1

2
+

2

3
√

2πn
+

1

24n

)

. (4.32)

P(An ≤ n) ≥ p(n)
(1

2
+

2

3
√

2πn
+

1

24n
− 4

135
√

2πn3/2

)

. (4.33)

In case λ < s, we have that α > 0 and

P(Aλ ≤ s) =
p(s)√

2π

∫ 0

−∞
e−

1

2
x2

y′(x/
√

s)dx +
p(s)√

2π

∫ α

0
e−

1

2
x2

y′(x/
√

s)dx. (4.34)

The second integral in (4.34) can thus be bounded using (3.14) and

1√
2π

∫ α

0
e−

1

2
x2
(

1 − 2

3
√

s
x
)

dx = Φ(α) − 1

2
− 2

3
√

s

( 1√
2π

− φ(α)
)

, (4.35)

1√
2π

∫ α

0
e
− 1

2
x2− 2

3
√

s
x
dx = e

2

9s

(

Φ
( 2

3
√

s
+ α

)

− Φ
( 2

3
√

s

))

. (4.36)

Combination of (4.32)-(4.36) gives the following result.

Theorem 7. For λ < s the cdf of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s)
(1

2
+

2

3
√

2πs
+

1

24s
+ e

2

9s

(

Φ
( 2

3
√

s
+ α

)

− Φ
( 2

3
√

s

)))

, (4.37)

P(Aλ ≤ s) ≥ p(s)
(

Φ(α) +
2

3
√

s
φ(α) +

1

24s
− 4

135
√

2πs3/2

)

. (4.38)

5 The Erlang B formula

We shall now use the results on P(Aλ ≤ s) to derive similar results for the Erlang B
formula. From (1.1) we see that the probability P(Aλ = s) needs to be written in a
different form. That is,

P(Aλ = s) = e−λ λs

s!
= es(1−ρ+ln ρ) s

se−s

s!

= e−
1

2
α2 1√

2πs
p(s) = φ(α)p(s)

1√
s
. (5.1)

5.1 Expansions for Erlang’s B

Combining (1.1), (5.1) and the expansion for P(Aλ ≤ s) yields the following result.
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Theorem 8. For s = λ + β
√

λ with β some fixed real number there is as s → ∞
the representation

B(s, λ)−1 ∼
√

s

φ(α)

∞
∑

n=0

(n + 1) · an+1 · χn(α) ·
( 1√

s

)n

=

√
sΦ(α)

φ(α)
+

2

3
+

1

12
√

s

(

Φ(α)

φ(α)
− α

)

+ . . . . (5.2)

Jagerman [17] derived a related expansion:

Theorem 9. ([17], Theorem 14) For λ = s + γ
√

s with γ some fixed real number

there is as s → ∞ the representation

B(s, λ)−1 ∼
∞
∑

n=0

υn(γ) ·
( 1√

s

)n−1
, (5.3)

where

υ0(γ) =
Φ(−γ)

φ(γ)
,

υ1(γ) =
2

3
+

1

3
γ2 − 1

3
γ3υ0(γ),

υ2(γ) = − 1

18
γ5 − 7

36
γ3 +

1

12
γ +

( 1

18
γ6 +

1

4
γ4 +

1

12

)

υ0(γ). (5.4)

There are some marked differences between our expansion and that of Jagerman.
First, Jagerman sets the arrival rate λ according to λ = s + γ

√
s whereas we set the

number of servers according to s = λ + β
√

λ. The constants β and γ are very much
related, though, since

β =
s − λ√

λ
, γ =

λ − s√
s

= −βρ
1

2 , (5.5)

so that γ ↓ −β as ρ tends to one. Perhaps a more important difference is that we
change our constant β into α. Since

1
2α2 = s

∞
∑

n=2

(1 − ρ)n

n
, (5.6)

we have for large values of s that α ≈ √
s(1 − ρ) = −γ ≈ β. A comparison between

(5.2) and (5.3) is made in Table 2 for s = λ+β
√

λ and β = 1. We denote by (5.2)-1
and (5.2)-3 the approximations that follow from the first and first three terms of
the asymptotic expansion in (5.2). The leading term (5.2)-1 is generally closer to
B(s, λ) than the leading term (5.3)-1. Both expansions benefit from taking larger
values of s. When three terms are included, both expansions give excellent results,
although for moderate values of s, expansion (5.2) seems slightly more accurate.

If s = λ/c for some c < 1, then α → ∞ as λ → ∞. The approximation (5.2)-1
behaves as φ(α)/

√
s as s → ∞. It is easy to see that also B(s, cs) ∼ φ(α)/

√
s in

this case. Consequently, (5.2)-1 is not only sharp in the QED regime, but also in the
regime where the system load stays fixed, which is also known as the quality driven
regime [6]. This is another reason why using α is preferable over β or γ.
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Table 2: Asymptotic expansions for B(s, λ) with s = λ + β
√

λ and β = 1.

s λ α γ B(s, λ) (5.2)-1 (5.3)-1 (5.2)-3 (5.3)-3

1 0.3820 0.8299 -0.6180 0.2764 0.3548 0.4504 0.2739 0.2889

2 1.0000 0.8790 -0.7071 0.2000 0.2366 0.2890 0.1993 0.2057

3 1.6972 0.9012 -0.7522 0.1645 0.1880 0.2243 0.1642 0.1679

5 3.2087 0.9236 -0.8011 0.1282 0.1417 0.1642 0.1280 0.1298

10 7.2984 0.9462 -0.8543 0.0910 0.0974 0.1090 0.0909 0.0915

20 16.0000 0.9622 -0.8944 0.0644 0.0675 0.0734 0.0644 0.0646

30 25.0000 0.9692 -0.9129 0.0526 0.0546 0.0586 0.0526 0.0527

50 43.4113 0.9762 -0.9318 0.0407 0.0419 0.0443 0.0407 0.0408

100 90.4875 0.9832 -0.9512 0.0288 0.0294 0.0306 0.0288 0.0288

200 186.3490 0.9881 -0.9653 0.0204 0.0206 0.0213 0.0204 0.0204

300 283.1723 0.9903 -0.9715 0.0166 0.0168 0.0172 0.0166 0.0166

500 478.1337 0.9925 -0.9779 0.0129 0.0130 0.0132 0.0129 0.0129

5.2 Bounds for Erlang’s B

We have already shown Theorem 1, in which the lower bound (1.7) follows imme-
diately from (3.22) and (5.1). The upper bound (1.6) requires (3.21), (5.1) and the
inequality p(s) ≥ 1 − 1/(12s).

Theorem 4 gives the following result.

Theorem 10. For λ > 0 and s ∈ N the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤
Φ(α + 2

3
√

s
)e

2

9s

√
s

φ(α)
, (5.7)

B(s, λ)−1 ≥
Φ(α + 2

3
√

s
)e

2

9s

√
s

φ(α)
−

√
s(e

2

9s − 1)

φ(α)
. (5.8)

The next result follows immediately from Theorem 6 and sharpens Theorem 1 for
λ ≥ s.

Theorem 11. For λ ≥ s ∈ N the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤ Φ(α)
√

s

φ(α)
+

2

3
+

Φ(α) − αφ(α)

12φ(α)
√

s
, (5.9)

B(s, λ)−1 ≥ Φ(α)
√

s

φ(α)
+

2

3
+

Φ(α) − αφ(α)

12φ(α)
√

s
− 4 + 2α2

135s
. (5.10)

Likewise, for λ < s, a sharper version of Theorem 1 can be obtained from Theorem
7.

Table 3 presents some results for increasing values of s = λ + β
√

λ with β = 1.
In this regime, all bounds are sharp, even for smaller values of s. As expected,
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Erlang’s approximation (1.2) requires s to be large. The precision of the bounds
is partly due to changing β into α. Moreover, the bounds (1.6), (1.7) include the
first-order correction term 2

3 , while the bounds (5.7), (5.8) shift the mean of the
Gaussian distribution with 2

3
√

s
; both corrections seem beneficial.

Table 3: Bounds on B(s, λ) with s = λ + β
√

λ and β = 1.

s λ B(s, λ) (1.2) (1.6) (1.7) (5.7) (5.8)

1 0.3820 0.2764 0.4653 0.2627 0.2870 0.2427 0.3086

2 1.0000 0.2000 0.2876 0.1953 0.2044 0.1882 0.2127

3 1.6972 0.1645 0.2208 0.1620 0.1671 0.1582 0.1718

5 3.2087 0.1282 0.1606 0.1270 0.1294 0.1253 0.1317

10 7.2984 0.0910 0.1065 0.0906 0.0914 0.0900 0.0923

20 16.0000 0.0644 0.0719 0.0643 0.0646 0.0641 0.0649

30 25.0000 0.0526 0.0575 0.0525 0.0527 0.0524 0.0529

50 43.4113 0.0407 0.0437 0.0407 0.0408 0.0407 0.0409

100 90.4875 0.0288 0.0302 0.0288 0.0288 0.0288 0.0289

200 186.3490 0.0204 0.0211 0.0204 0.0204 0.0204 0.0204

300 283.1723 0.0166 0.0171 0.0166 0.0166 0.0166 0.0166

500 478.1337 0.0129 0.0132 0.0129 0.0129 0.0129 0.0129

In Table 4 we present some results for B(s, λ) and s = 10. The bounds (1.6), (1.7)
perform well, although in the case λ ≥ s, the bounds (5.9), (5.10) are much sharper.
Hence, in this regime it seems beneficial to include the second-order correction term.

6 A conjecture of Ramanujan

We now indicate how our framework for obtaining bounds on P(Aλ ≤ s) may deal
with a conjecture of Ramanujan. In 1911 Ramanujan set the problem of showing
that

ξ(n) =
n!

nn

(

1

2
en −

n−1
∑

k=0

nk

k!

)

, n = 1, 2, . . . (6.1)

lies between 1
2 and 1

3 . A solution was outlined by Ramanujan in 1912 and complete
proofs were published by Szegö in 1928 and Watson in 1929. In his first letter to
Hardy dated 16 January, 1913, Ramanujan made the stronger assertion that

ξ(n) =
1

3
+

4

135(n + τ(n))
where

8

45
≤ τ(n) ≤ 2

21
. (6.2)

This was finally proved by Flajolet et al. [10] in 1995 using singularity analysis.
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Table 4: Bounds on B(s, λ) for s = 10.

λ B(s, λ) (1.2) (1.6) (1.7) (5.9) (5.10)

1 0.0000 0.0000 0.0000 0.0000 - -

2 0.0000 0.0000 0.0000 0.0000 - -

3 0.0008 0.0001 0.0008 0.0008 - -

4 0.0053 0.0022 0.0053 0.0053 - -

5 0.0184 0.0148 0.0184 0.0185 - -

6 0.0431 0.0452 0.0430 0.0434 - -

7 0.0787 0.0910 0.0784 0.0792 - -

8 0.1217 0.1445 0.1210 0.1223 - -

9 0.1680 0.1995 0.1669 0.1689 - -

10 0.2146 0.2523 0.2129 0.2160 0.2145 0.2146

11 0.2596 0.3013 0.2570 0.2617 0.2594 0.2596

12 0.3019 0.3459 0.2978 0.3051 0.3016 0.3019

13 0.3412 0.3862 0.3344 0.3456 0.3407 0.3412

14 0.3773 0.4225 0.3656 0.3833 0.3766 0.3773

15 0.4103 0.4552 0.3901 0.4181 0.4094 0.4104

16 0.4406 0.4847 0.4057 0.4503 0.4393 0.4406

17 0.4682 0.5114 0.4089 0.4801 0.4666 0.4683

18 0.4935 0.5356 0.3959 0.5077 0.4914 0.4936

19 0.5167 0.5576 0.3629 0.5332 0.5141 0.5169

20 0.5380 0.5778 0.3098 0.5570 0.5348 0.5383

The connection with our framework is easily seen from

ξ(n) =
1

2P(An = n)
− B(n, n)−1 + 1

=

√
2πn

2

( 1

p(n)
− 1
)

− B(n, n)−1 + 1 +

√
2πn

2
. (6.3)

Hence, in order to prove (6.2) we need to bound 1/p(n) − 1 and B(n, n)−1. The
former causes no problems, because sufficiently sharp bounds can be obtained from
truncating the Stirling series for ln(1/p(n)). For B(n, n)−1 we have from (4.32) and
(4.33) the bounds

B(n, n)−1 ≤
√

2πn

2
+

2

3
+

√
2π

24
√

n
, (6.4)

B(n, n)−1 ≥
√

2πn

2
+

2

3
+

√
2π

24
√

n
− 4

135n
. (6.5)

As it turns out, these bounds are not sharp enough to prove (6.2). Our framework
then prescribes the search for sharper bounds on y′. The ones eventually leading to
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a new proof (and actually sharpening) of (6.2) are

y′(x) ≤ 1 − 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 − 1

2835
x5, x ≤ 0, (6.6)

y′(x) ≥ 1 − 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 − 1

2835
x5 − 139

777600
x6

− 1

25515
x7 − 571

261273600
x8 +

281

151559100
x9, x ≤ 0. (6.7)

The proof of these bounds relies on Lemma 3 that yields a sufficient condition in
terms of inequalities for (finite-degree) polynomials. Since the proof is rather tedious,
it is not included here.

7 Concluding remarks and outlook

We took the Erlang B formula as a vehicle for presenting bounds on the Poisson
distribution. Our primary motivations to do so were the historical relevance of the
Erlang B formula, and the recent interest in the Halfin-Whitt regime and square-root
staffing. Obviously, the Erlang B formula is just one example to which the bounds
for the Poisson distribution can be applied. One other example is the Erlang C
formula, representing the steady-state delay probability in the M/M/s queue. The
bounds and series expansion for the Erlang B formula carry over to the Erlang C
formula since C(s, λ)−1 = ρ+(1−ρ)B(s, λ)−1. In a companion paper [16], we apply
this connection and the results of this paper to analyze the accuracy of server staffing
algorithms in the Halfin-Whitt regime, cf. [6]. We are also currently applying our
methodology to obtain sharp bounds for the normalization constant in loss networks,
cf. Kelly [20].

Since we started our analysis from (2), all the results presented in this paper for
the Poisson distribution also hold for the incomplete gamma function. In particular,
our bounds complement the work of Temme on asymptotic expansions and inversion
of the incomplete gamma function in [25, 26, 27].

Finally, let us mention that our function y, which is closely related to the Lambert
W function, has many applications in pure and applied mathematics; see [8]. In some
of these applications, bounds on y, that can be derived from Lemma 2, might be
helpful.

A Numerical evaluation of the function y

In this appendix we discuss several approaches for evaluating the function y (and
its derivative through y′ = x/y − x) defined as the solution to

−y(x) − ln(1 − y(x)) = 1
2x2, (A.1)

for real values of x. This is needed in the evaluation of the quasi-Gaussian form for
the cdf of the Poisson distribution in (2.6). There is the result

y(x) = 1 + W (−e−(1+x2/2)), (A.2)
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where W is Lambert’s function, given for small |X| as the solution W = W (X) of
WeW = X.

The power series representation (2.7) is valid for |x| < 2
√

π. For values of x larger
than 2

√
π one can use the representation

y(x) = 1 −
∞
∑

m=1

mm−1

m!em
e−

1

2
mx2

, |arg(x)| ≤ π/4, (A.3)

obtained in [15]. We next discuss two methods that can be used to evaluate y for
x ≤ 0.

1.1 Newton iteration

We have
y(x) = −1

2x2 − ln(1 − y(x)) = −1
2x2 + O(ln 1

2x2), (A.4)

and by one more iteration

y(x) = −1
2x2 − ln(1 + 1

2x2) + O
( ln 1

2x2

1
2x2

)

. (A.5)

The Newton iteration for (A.4) is given by

yn+1 = 1 + (1/yn − 1)[ln(1 − yn) + 1
2x2], n = 0, 1, . . . . (A.6)

We use for x ≤ 0 the starting value y0 = −1
2x2 − ln(1 + 1

2x2). For the case that
x = −1 we find y4 = −1.357676674 to be correct in 9 decimal places. For the case
x = −10 we find y2 = −54.00746898 to be correct in 9 decimal places.

1.2 Double series expansion valid for x < −√
π

Jeffrey et al. [18] consider, for ν ∈ R and w large and positive, the positive solution
z = Ψν(w) of the equation

zνez = w. (A.7)

It is shown in [18] that Ψν(x) has an expansion

Ψν(w) = L1 − νL2 + ν
∞
∑

n=1

νn

Ln
1

n
∑

m=1

(−1)n+m

[

n

n − m + 1

]

Lm
2

m!
, (A.8)

where L1 = lnw, L2 = ln ln w and
[n
m

]

are Stirling cycle numbers, and the double

series converges when w > (|ν| · e)|ν| in the case that |ν| ≥ 1. Now it holds for x < 0

y(x) = 1 − 1

e
Ψ−e

(

e
1

2
ex2
)

, (A.9)

hence the theory in [18] can be used to compute y(x) for exp(1
2ex2) > exp(2e),

i.e., for x < −2. In fact, we have been able to sharpen the convergence results in
[18]. In particular, for the case α = −e that we have here, we can show that (A.8)
converges exponentially if and only if w > exp(1

2πe), i.e., if and only if x < −√
π.
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Figure 3: Relative error on a log-scale in estimating y(x) for x ∈ [−8,−√
π) through

(A.10) truncated at n = N .

With u = 1
2x2, and τ = (1 + ln u)/u we get from (A.9) and (A.8) that

y(x) = −u − ln u −
∞
∑

n=0

n
∑

m=0

dn,n−mu−mτn−m. (A.10)

Table 5 displays some of the coefficients and Figure 3 shows some numerical results
of (A.10) for several truncation levels n = N .

Table 5: First few coefficients dk,l.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

k = 0 0 1 −1/2 1/3 −1/4 1/5

k = 1 0 1 −3/2 11/6 −25/12 137/60

k = 2 0 1 −3 35/6 −75/8 203/15

k = 3 0 1 −5 85/6 −245/8 1241/22

k = 4 0 1 −15/2 175/6 −245/3 7483/40

k = 5 0 1 −21/2 161/3 −189 21091/40
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