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ABSTRACT

In this paper we introduce a new mask imaging algorithm that is based on the source point integration method
(or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the
through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of diffraction. An introduction
to ENZ-theory and its application in general imaging is provided after which we describe the mask imaging
scheme that can be derived from it. The remainder of the paper is devoted to illustrating the advantages of the
new method over existing methods (Hopkins-based). To this extent several simulation results are included that
illustrate advantages arising from: the accurate incorporation of isolated structures, the rigorous treatment of the
object (mask topography) and the fully vectorial through-focus image formation of the ENZ-based algorithm.
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1. INTRODUCTION

Mask technology has always been essential in optical lithography and is expected to be even more critical for
future nodes. Driven by Moore’s law, the amount of information placed on a mask grows exponentially and
this trend is only intensified by the introduction of reticle enhancement techniques such as optical proximity
correction (OPC).1 Consequently, reticles can no longer be considered as simple binary representations of the
desired wafer pattern and have evolved to very complex structures that shape both the amplitude and phase of
the transmitted or, for EUV, reflected light. Contemporary reticles contain features that are of the same order
of magnitude as the wavelength and often show more resemblance with diffractive optical elements than with
the wafer pattern they tend to produce.

As an essential part of the lithographic process, mask technology is under constant pressure to perform better.
The complexity and information density of the reticle has been increasing with every node in the lithographic
roadmap, while at the same time error margins have become more and more narrow. This poses a great challenge
for the mask making community, not only in terms of manufacturability, but also for the mask design process
itself. Nowadays, this process consists of an iterative procedure because the complex relation between the reticle
and desired wafer pattern does not allow for a direct design approach.

An important aspect of the mask design process is the ability to predict the resulting image for a given mask
object in an accurate and reliable manner. The vast majority of mask imaging algorithms used by the mask
making community today, are based on Transmission Cross-Coefficients (TCC) computations,2 using the so-called
Hopkins approximation.3 Although this approach can be very computationally efficient it is based on certain
approximations and assumptions that do not necessarily hold for the complex mask geometries encountered in
the present and future nodes of the lithographic roadmap. The problems related to the applicability of the TCC-
method have been recognized for quite some years now, and have attracted a large interest by the lithographic
community. In this paper we present an alternative to the established algorithms that in principle can deal with
these complex mask objects in a more accurate manner.
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In Section 2 of this paper we will briefly introduce the Extended Nijboer-Zernike (ENZ) theory of diffraction
and describe the mask imaging algorithm that can be constructed from it. In Section 3 we will identify and
discuss some of the specific areas in which the ENZ-based mask imaging algorithm is beneficial compared to
those based on the Hopkins approach. Subsequently, some examples are included in Section 4 to illustrate our
findings and we will end this paper with some concluding remarks in Section 5.

2. METHODOLOGY

The imaging algorithm we present here can be categorized as a source point integration method (also called
Abbe’s method). The difference with existing algorithms based on this method lies in the fact that our algorithm
applies a pupil diffraction routine that is based on the Extended Nijboer-Zernike theory of diffraction. Below we
give a short introduction into the ENZ-theory followed by a description of the mask imaging scheme that can be
constructed from it.

2.1 The Extended Nijboer-Zernike theory of diffraction

The ENZ-theory of diffraction originates from two papers4,5 published in 2002. In these papers a semi-analytic
solution to the Debye diffraction integral for the imaging of a point source by a general optical system, was
introduced. The development of the ENZ-theory was intended to provide a method to characterize optical
systems by means of intensity measurements in the focal region.6 In order to achieve this, it was fundamental to
have both an accurate and fast algorithm to compute the point-spread function for a general aberrated system. In
terms of computations, this comes down to computing the point-spread function from the otherwise uniform exit-
pupil, for an exit-pupil that is influenced by a general aberration. Although the non-uniformities, present in the
pupil due to aberrations, are usually small and should be relatively small in order to make ENZ-characterization
possible, the pupil diffraction method itself is not limited by the size of the deformations and can be applied to
general pupils. Recognizing the fact that in mask imaging one also needs to produce an image from an exit-pupil
distribution that is in general very complex, both in amplitude and phase, we believe that this appealing feature
of ENZ-theory is well suited to be exploited in the field of mask imaging.

2.2 The ENZ-based mask imaging scheme

For imaging systems that satisfy, for example, the Abbe-sine condition,7 one can construct an ENZ-based mask
imaging scheme as follows:

1. As we are applying a source point integration method, we start by discretizing the illumination source.
The light coming from a single source-point is collected by the illumination optics and gives rise to a plane
wave incident on the mask. Here, the angle of incidence of the plane wave is determined by the spatial
position of the source point under consideration.

2. A rigorous electromagnetic solver is applied to compute the near-field resulting from the interaction between
the incident plane wave and the mask. For the examples found in this paper we have used an in-house
developed FDTD implementation,8 but, in principle, any rigorous solver can be used.

3. The near-field at the mask resulting from the electromagnetic computations is subsequently propagated to
the entrance pupil. As the active region of the mask is very small compared to the aperture of the projection
optics, it is allowed to apply the Fraunhofer approximation, where in the general case the entrance pupil
is given as a spherical surface.

4. Having the field in the entrance pupil of the imaging system available, this allows us to apply the imaging
algorithm provided by ENZ-theory and obtain the aerial-image contribution due to a single illumination
point-source.

5. Finally, step 1-4 should be repeated for every point source present in the light source and their contributions
are summed incoherently to obtain the aerial-image of the mask produced by the imaging system.



In the scheme above, steps 1-3 are common to all source point integration methods. This method is not widely
used by the mask making community because it is far less computationally efficient compared with methods based
on the Hopkins approach.2 Nevertheless, the scheme given above enables a large gain in computational efficiency
that stems from a highly structured use of basic functions in the ENZ imaging routine. Although speed is critical
in mask simulation, it is not this feature of the ENZ scheme that is most important. The fact that this method
does not presume periodicity in the object and allows a full vectorial treatment (a vectorial version of ENZ-theory
is available for the mask imaging process9,10,11), will result in greater accuracy as compared to the established
algorithms. A more extensive discussion on this is presented in the next section.

3. HOPKINS VERSUS ENZ

The method presented in this paper has some fundamental differences compared to the established methods
that are based on the Hopkins approach.3 First of all, our method deals with isolated structures instead of
infinitely repeated objects that are required by most other methods. As an infinitely periodic object is merely a
mathematical construction that enhances computational efficiency, it of course has no physical relevance in the
lithographic process itself. As a matter of fact, the established methods require significant ‘zero padding’ around
the mask-region of interest in order to obtain accurate simulation results for the image of an isolated structure.
Based on these observations it seems only natural to favor a method that presumes a realistic isolated object in
order to obtain the highest possible simulation accuracy.

In addition, many algorithms commonly used by the mask making community still apply the thin mask
approximation. In this approximation, one assumes that the field transmitted by the mask changes abruptly
according to the transmittance of the mask. Although physically incorrect, this approach has proved to be
sufficient in the past for most lithographic simulations. Nevertheless, the feature sizes and relative mask thickness
encountered in simulations today, do no longer allow for the thin mask approximation to be applied. As a result,
the Hopkins approximation, which states that the diffraction orders of a mask that is illuminated under an
oblique angle can be obtained by a simple shift of the spectra of the mask under normal incidence, also no
longer holds. Instead, for every illumination angle a rigorous electromagnetic solver should be used to accurately
describe the interaction between the incident illumination and the mask, after which the resulting complex vector
field at the mask should serve as the input for the remainder of the computation scheme. This is exactly the
approach taken in the scheme presented in Section 2.2.

The third advantage of our method is the fact that it can straightforwardly be extended to operate fully
vectorially. As already mentioned in the previous section, a fully vectorial version of the ENZ-formalism is
available. This means that, for a given complex vector field in the entrance pupil, one can compute both the
electric and magnetic vector fields in the image region of the imaging system. Note that in the computation of
these quantities the radiometric effect12 and possible aberrations (both amplitude and phase) are included in the
ENZ-theory. Especially for the hyper-NA systems encountered in immersion lithography, a vectorial treatment
of the imaging process is indispensable. For the Hopkins based methods, several attempts have been undertaken
to expand them vectorially, but none of them have been totally satisfactory.

One might argue that the points discussed above are of little importance. After all, methods based on
the Hopkins approach have proven to be applicable to lithographic simulations in several decades of succesful
operation. However, the ongoing drive for further miniaturization of electronic circuits has resulted in mask
designs that currently contain features with a size equal or smaller then the wavelenght of the light used in the
lithographic process.1 Despite the fact that the contributions discussed above are small, they are significant in
this regime and tend to get even more important in future lithographic practice. Based on these observations
we believe that the method presented here can be a valuable contribution to existing algorithms as it provides
a more physical computation approach which in principle is far more accurate.

4. SIMULATIONS

In this section we present some mask simulations performed with the calculation scheme as introduced in Section
2.2. The examples presented here aim on illustrating some of the advantages of the ENZ-based scheme over more
conventional methods.
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Figure 1. This figure illustrates the difference between periodic and non-periodic mask imaging. A period p = 360nm is
clearly unsufficient to image the 180nm contact hole. Doubling the period to p = 720nm helps (RMS ≈ 2%), but a period
as large as p = 900nm is required to obtain an accurate (RMS < 1%) quasi-isolated image (imaged by a lithographic
immersion system; λ = 193nm, NA = 2.2, reduction 4x).

4.1 Periodic versus non-periodic computations

As already discussed above, one of the most apparent differences between conventional and ENZ-based methods
is the fact that one is periodic and the other is non-periodic. Now, since many mask simulations investigate the
printability of a certain specific mask structure, this means that one mostly deals with an isolated non-periodic
mask object. The way in which such structures are dealt with in the periodic methods involves a large increase
of the period by means of zero-padding around the region of interest. Of course a large period is undesired as
it will increase the computational burden. In Fig.1 we illustrate the effects introduced by a periodic treatment
of the object. We have computed the image produced by a mask with a 180nm contact hole that is illuminated
by 193nm x-polarized light at normal incidence. The top-left figure shows the resulting image for the isolated
structure (imaged by a lithographic immersion system; NA = 2.2, reduction 4x) computed with the non-periodic
ENZ-algorithm. The top-right picture shows a simulation of the same contact hole, except that the object is
quasi-periodic with a unit cell of 360x360nm. (Note that we speak of quasi-periodicity as we consider a mask
with a 3x3 formation of the unit cell, instead of a real periodic object which can not be treated directly by
our simulation tool.) It is clear from this image that the period should be increased to obtain an accurate
prediction for the image for a single hole. In the bottom-left picture the exercise has been repeated for the
same contact hole, but now with a doubled period (unit cell is 720x720nm). Finally, the bottom-right picture
shows the image for a unit cell of 900x900nm. Although, the bottom-left image is far better than the top-right
image, there are still distinct differences with the isolated case (top-left image). One should consider a unit cell
as large as 900x900nm to closely resemble the isolated case. This effectively means that for an equally accurate
periodic treatment of this contact hole, we have to consider a computational domein that is at least 4 times larger



than what it should be for an ENZ-based computation. This exercise has shown that the ENZ-based algorithm
requires a far smaller mask area to be considered in order to obtain accurate images of isolated structures and
that if a periodic methods is used, great care should be taken in defining a large enough unit cell in order to
achieve realistic results.
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Figure 2. This figure illustrates the breakdown of the Hopkins approximation induced by topography effects. The top
and bottom row of pictures represent the |Ex| and |Ez| components of the electric field in the spherical entrance pupil,
projected onto the xy-plane. (Note that we have used normalized pupil coordinates.) Especially in the z-component one
can observe that the field obtained at an oblique angle can not simply be represented by a shifted version of the normal
incidence field (angle = 0o).

4.2 Mask topography effects

The second and third difference discussed in Section 3 are both closely related to possible issues arising from the
complex mask topography presently encountered in mask technology. The sub-wavelength features on the mask
place a serious limitation on the Kirchhoff boundary conditions, that replace the field on the mask openings by
the incident field, since this approximation fails to account for the increasingly important topographical effects
(thick mask effects) in the computation of the lithographic image. Closely related to the limitations of the
Kirchhoff boundary conditions is the applicability of the Hopkins approach, as it is based on this approximation.
As a result the Hopkins approximation is also violated when masks with a complex topography are considered.13

In Fig. 2 we illustrate the breakdown of the Hopkins approximation. In this figure we show the |Ex| and |Ez| field
components in the entrance pupil, produced by a 3x3 array of 180nm contact holes mask object. The columns
is this figure pertain to three different illumination states incident on the mask, all of them x-polarized but with
different incidence angles of 0, 5 and 10 degrees in the x-direction. Whereas the Hopkins approach predicts that
the field in the entrance pupil should be equal for all incidence angles apart from a lateral shift, this is clearly not
the case in this example. Especially the z-component shows a distinct non-lineair dependence on the incidence
angle.



The limitations of the Hopkins approach, as illustrated in Fig 2, are well known and have caused a large
concern by the lithographic community in recent years14,15,16 . In fact, extensions have been developed to
accomodate for these mask topography effects17,18 . Although, the most appropriate way to deal with this issue
would be to replace the Kirchhoff boundary conditions approach by a rigorous treatment of the electromagnetic
boundary problem, there remains a large threshold in applying this approach due to the large computational
implications. As a result, many alternative model-based methods have been proposed that try to include the
main topography effects19,20 . Although these methods have proven to be sufficient for the time being, we see
them merely as temporary solutions as the ongoing shrinkage of mask features demands for more and more
topography effects to be included. For this reason we have chosen to adhere to the full rigorous treatment in the
ENZ mask imaging algorithm.

Simply treating the mask rigourously is not enough to incoporate mask topography effects completely. One
should also be able to accurately image the vector field resulting from the rigourous computation. Over the
years, extensions to the TCC method have been developed that perform imaging of the exit pupil in a fully
vectorial manner, making it possible to do so-called resist imaging.21 Although lithographic simulations based
on this extended TCC approach are generally considered to be fully vectorial this is not necessarily the case. In
the original paper by Flagello et al.22 , the z-component of the electric field transmitted by the mask is neglected.
At the time this simplified treatment was allowed as the object side numerical-aperture remained relatively small
(NAobj < 0.2). Nevertheless, in contemporary lithographic systems the object side numerical-aperture can be
considerably larger. Combined with the fact that lithographic printing has become very critical, making even
the smallest contributions significant, it has become important to include even the small contribution introduced
by the z-component of the electric field originating from the mask. In the ENZ-based mask imaging algorithm
this z-component is correctly included, allowing the statement that this algorithm is truly a fully vectorial mask
imaging method.
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Figure 3. This figure illustrates the error due to discarding the z-component of the field originating from the mask.

In the final example presented in this section, we illustrate the influence of correctly including the z-component
of the electric field. For the simulation of the images shown in Fig. 3 we have again taken the object to be a
3x3 array of 180nm contact holes. The aerial image of this mask object, when illuminated by x-polarized light
under normal incidence, is computed for imaging by an immersion lithographic system (λ = 193nm, NA = 2.2
and reduction 4x). In the left-most figure the image computed with the ENZ-algorithm is shown. For the
computation of the image in the middle figure the same algorithm was used, only this time the z-component of
the electric field emerging from the mask was neglected. The error induced by this simplification is displayed
in the third figure. For this merely academic example, with a numerical aperture value that most propably will
never be reached, the error introduced by neglecting the z-component is as large as 8 percent of the maximum
peak intensity in the image, but also for systems with a more realistic numerical aperture value, say NA = 1.44,
the corresponding error will still exceed a few percent. In advanced lithography, contributions of this magnitude
are certainly significant and therefore one should include the z-component during simulations. Note that the
ENZ-based algorithm does not pay an additional computational penalty upon including this component.



5. CONCLUSIONS

In this paper we have presented a new mask imaging algorithm that can be categorized as a source-point in-
tegration (Abbe) method. Compared to the more conventional transmission cross-coefficient (Hopkins) based
methods, the Abbe method relies on less approximations and is therefore expected to be more accurate. Unfortu-
nately, this enhanced accuracy comes at the cost of a far larger computational burden and this is the main reason
why the Hopkins based methods have dominated the mask simulation community for the past decades. The
ENZ-based algorithm presented in this paper, although a variant of the Abbe method, does allow for a significant
reduction of the computational burden. This reduction originates from ENZ-theory, where the structured use
of basic functions can be exploited to do many computations in advance and store the results in look-up tables.
Although, this reduction still does not allow the ENZ-method to compete on speed with the Hopkins method, it
does enable the execution of accurate Abbe-based simulations within an acceptable time-scale.

The most attractive feature of the ENZ-based method remains its accuracy. Especially, for advanced litho-
graphic systems that intend to image masks with a high topography, the ENZ-method is clearly more accurate
than the standard Hopkins approach. Compared to the more advanced implementations of the TCC-method
the differences are less pronounced but, nonetheless, some of the advantages of the ENZ-method remain. For
example, to accurately include mask topography effects, advanced TCC-methods also rely on a rigorous treat-
ment of the mask. But as the TCC-method assumes a periodic object, it was shown that it requires a far larger
computational domain (or unit cell) than the ENZ-method which operates on isolated objects. This clearly
results in a reduction of computational burden and hardware requirements.

The most important feature of the ENZ-algorithm is its fully vectorial treatment of the through-focus image
formation. The vector field resulting from the rigorous treatment of the mask serves as the input of the ENZ-
imaging algorithm without any simplifications. This in contrast to most advanced TCC-methods that discard
the z-component of the electric field transmitted/refracted by the mask. As was shown in Sec. 4, this can have a
significant effect on the obtained image. In the ENZ-algorithm the z-components is naturally included, without
any implications on the computational efficiency.

Altogether, we believe that the ENZ-method discussed in this paper is a valuable addition to the mask
imaging algorithms available to the lithographic community. Unlike conventional methods, the ENZ-method is
not based on the Hopkins approach. Therefore it provides an independent alternative that, combined with its
high accuracy, is especially attractive for benchmarking purposes, which is included in our plans for the coming
year. In addition, by exploiting ENZ-theory it was possible to mostly remove the computational implications of
the original Abbe approach. So far, this did not allow the ENZ-method to compete with any commercial mask
design solution on speed. Nonetheless, the ENZ-algorithm is still in its early stages of development and does
show potential te be further developed into a mask imaging solution that can face the competition in the future.
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