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Connecting renewal age processes and M/D/1

processor sharing queues through stick breaking

J.S.H. van Leeuwaarden1 A.H. Löpker2 A.J.E.M. Janssen3

Abstract: The renewal age process increases linearly with slope one and is reset to zero
at points governed by a Poisson process. We present various results for the random vari-
ableHx that represents the first time the process hits the levelx. These results include
three characterizations of the distribution function and asymptotic expressions for the tail
distribution. The latter involve complex-valued solutions of the Lambert W function. We
further establish several connections to other probabilistic models. Using the theory of
uniform spacings, we show thatHx has the same distribution as the sojourn time of the
first customer in an M/D/1 processor sharing queue.
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1 Outline

The renewal age process is a piecewise deterministic Markovprocess that increases linearly
with slope one and is reset to zero at points governed by a Poisson process with rateλ. The
principal subject of this paper is the random variableHx that represents the first time the
renewal age process hits levelx, and that satisfies the stochastic equation

Hx
d
= 1{Z≥x}x+ 1{Z<x}(Hx + Z), (1)

where
d
= denotes equality in distribution, andZ is an exponentially distributed random

variable with mean1/λ, independent ofHx.
We show in Section 2 thatHx can be represented as a geometric sum of random vari-

ables, from which its Laplace-Stieltjes transform immediately follows. We also prove that
Hx has the same distribution as the sojourn time of the first customer in an M/D/1 proces-
sor sharing queue (with arrival rateλ and deterministic service timex). To establish this
equivalence, we strongly rely on results for the order statistics of uniform spacings, also
known as stick breaking (see [7, 13]). We further show that the stationary waiting time in
the M/D/1 first-come-first-served queue can be fully expressed in terms ofHx. We hence
establish a connection between each of these models throughthe first hitting time of the
renewal age process.

Further properties ofHx are reported in Section 3. ForHx, and two related random
variables, we provide stochastic recursive equations and scaling limits. Also, in Subsec-
tions 3.3-3.5, we provide three alternative expressions for the distribution function ofHx.
The first expression follows from the connection to stick breaking and uses Whitworth’s
formula for the maximal uniform spacing (see for instance [7, 13]). The second expres-
sion follows from the observation that the distribution function is the solution to a certain
differential-difference equation as studied in [2]. The third expression is obtained by using
the Laplace inversion formula and involves the infinitely many singularities of the Laplace
transform ofHx. These singularities are in fact expressible in terms of theLambert W
function (see [6]). The leading term, corresponding to the dominant singularity, leads to
a sharp asymptotic expression for the tail of the distribution ofHx, which is shown to be
different for the casesλx < 1, λx = 1 andλx > 1. The second and higher terms of
the expression involve the non-principal branches of the Lambert W function, for which
several results are presented in Section 4.

For a random variableX, we denote the mean byEX, the Laplace-Stieltjes transform
by ΦX(s) = E(e−sX), and the distribution function byFX(t) = P(X ≤ t) andFX(t) =
P(X > t).

2 Connecting two processes

In Subsection 2.1 we give a formal description of the renewalage process, as well as a
characterization of the first hitting timeHx in terms of a geometric sum and the Laplace-
Stieltjes transform. In Subsection 2.2 we first present several known results on uniform
spacings and then show that the sojourn time of the first customer in an M/D/1 processor
sharing queue is in distribution equal toHx.
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2.1 Renewal age process

Consider a renewal process with renewal epochst1, t2, . . . governed by a Poisson process
with rateλ, and letτn =

∑n
k=1 tk denote their partial sum. The associated renewal age

process(At)t≥0 measures the time since the last epoch, soAt = t − τNt whereNt =
sup{n ∈ N|τn ≤ t}.

For somex ∈ R let tKx be the first epoch with length greater or equal tox, i.e.,Kx =
inf{n ∈ N|tn ≥ x}. It immediately follows thatKx has a geometric distribution

P(Kx = k) = e−λx(1 − e−λx)k−1 , k = 1, 2, . . . . (2)

Let Tx = τKx−1 andRx = τKx denote the beginning and the end of the epochtKx; see
Figure 1. Note thatTx can be described as the geometric sum

Tx
d
=

Kx−1∑

i=1

Bi, (3)

whereKx is geometrically distributed as in (2), andB,B1, B2, . . . are i.i.d. exponential
random variables with rateλ truncated atx. Note that the distribution ofB depends on the
parametere−λx of the geometric distribution.

Due to the lack-of-memory property of the exponential distribution the random variable
Z = tKx−x has again an exponential distribution and is independent ofTx. LetHx denote
the first time that the age process(At)t≥0 hits the levelx. SinceRx = Tx + tKx it follows
that

Tx ≤ Tx + x = Hx ≤ Hx + Z
d
= Rx. (4)

Theorem 1.

ΦTx(s) =
λ+ s

λe−sx + seλx
. (5)

Proof. The Laplace-Stieltjes transform ofB is

ΦB(s) =
1

1 − e−λx

∫ x

0
e−suλe−λu du =

λ

λ+ s

1 − e−(λ+s)x

1 − e−λx
.

From (2) we getΦTx(s) =
∑∞

k=1 e
−λx(1− e−λx)k−1(ΦB(s))k−1, which leads to (5). �

Tx Hx Rx

x

Figure 1: The renewal age process(At)t≥0, with hitting timeHx and associated random
variablesTx andRx.
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It follows from (4) and (5) that

ΦRx(s) =
λ

λ+ se(λ+s)x
, ΦHx(s) =

λ+ s

λ+ se(λ+s)x
. (6)

Remark 2. There is another way to deriveΦHx(s). The Markov process(At)t≥0 has an
infinitesimal generator given by

A f(x) = f ′(x) − λf(x) + λf(0).

It is known thatf(Xt) exp(−
∫ t
0 A f(Xs)/f(Xs) ds) is a martingale (see [11]) and it is

easy to show that the functionfs(x) = 1/ΦHx(s) fulfills A fs(x) = sfs(x). Conse-
quently,fs(Xt)e

−st is a martingale. Optional stopping atHx then leads toE(e−sHx) =
1/fs(x) = ΦHx(s) as required. Note that by using this approach we can derive

Ea(e
−sHx) = fs(a)/fs(x) =

λ+ se(λ+s)a

λ+ se(λ+s)x
, a < x,

whereEa denotes the conditional expectation if we start the processAt ata.

2.2 M/D/1 processor sharing queue

In this section we establish a connection between the renewal age process and the M/D/1
processor sharing queue. In order to do so, we first state someknown results for uniform
spacings.

Consider a stick of lengtht that is broken inton pieces, where the breaking points are
given by a sample of sizen−1 from the uniform distribution on[0, t]. Denote the breaking
points byU1 < U2 < . . . Un−1 and define the length of the pieces byS1 = U1, S2 =
U2 − U1, . . . , Sn = t − Un−1. Throughout we letZ,Z1, Z2, . . . denote independent and
exponentially distributed random variables with mean1/λ andNt a Poisson process with
rateλ. LetZ(1), . . . , Z(n) denote the order statistics such thatZ(k) is thekth smallest value
amongZ1, . . . , Zn, and letXn =

∑n
k=1 Zk.

The following result, that shows the tight connection between uniform stick breaking
and sampling of exponential random variables, can be found in [7].

Lemma 3. (Sukhatme [22])

(Z1, Z2, . . . , Zn)
d
= (Yn, Yn−1, . . . , Y1) (7)

where Yk = (n− k + 1)
(
Z(k−2) − Z(k−1)

)
for 1 ≤ k < n and Yn = nZ(1).

LetS∗
n = max{S1, . . . , Sn} denote the largest piece. The following is then an immedi-

ate consequence of Lemma 3.

Lemma 4.

S∗
n
d
=

n∑

i=1

Si
i
. (8)

Proof. We need the well known property of uniform spacings that

(S1, . . . , Sn)
d
= (Z1/Xn, . . . , Zn/Xn). (9)

It then follows from Lemma 3 that
n∑

i=1

Si
i

d
=

n∑

i=1

Zi/Xn

i
=

∑n
i=1

Zi

i

Xn

d
=

∑n
i=1

Yn−i+1

i

Xn

d
=
Z(n)

Xn

d
= S∗

n. �
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Now consider an M/D/1 processor sharing queue (see [19]), where customers arrive
according to a Poisson process(Nt)t>0 at times(τn)n∈N. All customers have a determin-
istic service requirementx. When there aren customers in the system, each customer is
served with rate1/n. Consider the already finished workVt at timet of the first customer
(the customer entering an empty system). Letκx denote the total sojourn time of the first
customer in the system, which is given by the first hitting time ofVt of the levelx.

Theorem 5.
κx

d
= Hx. (10)

Proof. Since the server equally distributes its capacity we have

dVt =
1

Nt + 1
dt

for τi < t < τi+1. Thus

Vt =

∫ t

0

1

Ns + 1
ds =

Nt∑

i=1

Zi
i

+
t− τNt

Nt + 1
, (11)

andτNt

d
= XNt . We know that, givenNt = n,

(S1, S2, . . . , Sn+1)
d
= (Z1, Z2, . . . , Zn, t− Zn) (12)

where theSk are the lengths of the pieces of a stick of lengtht broken randomly. From (8),
(11) and (12) we obtain

Vt
d
=

Nt+1∑

i=1

Si
i

d
= S∗

Nt+1 (13)

LetMt = max0≤s≤tAs be the running maximum of the renewal age process. Given that
Nt = n it follows thatMt is equal tomax{Z1, Z2, . . . , Zn, t − Zn}. Using the property
(12) again it follows thatMt has the same distribution asVt. Since both processes are
increasing, we conclude that for allt ≥ 0

P(κx ≤ t) = P(Vt ≥ x) = P(Mt ≥ x) = P(Hx ≤ t),

proving the result. �

In [8] a derivation of the Laplace-Stieltjes transform forκx is given using a connec-
tion to theYule process, leading to the geometric representation ofτx. A similar result
is obtained in [18] for the more general class ofM/G/1 queues with symmetric service
disciplines (of which processor sharing is a special case).

3 Further properties of the random variables

In Section 2 we have introduced the random variablesHx, Tx andRx that are associated
with the hitting time of the renewal age process. In this section we derive various properties
for these random variables, including stochastic recursive equations, scaling properties,
and three characterizations of the distribution functions.

5



3.1 Stochastic recursive equations

Lemma 6. We have

Rx
d
= Z + 1{Z<x}Rx, (14)

Tx
d
= 1{Z<x}(Tx + Z), (15)

Hx
d
= 1{Z≥x}x+ 1{Z<x}(Hx + Z), (16)

where Z denotes an independent exponential random variable.

Proof. If Z1 < x thenRx = Z1, elseRx = Z1 + R∗ whereR∗ d
= Rx is independent of

Z1, thus (14) follows. A similar argument leads to (15), and thethird relation follows from
(15) andHx = Tx + x. �

We rewrite the relations in Lemma 6 into the stochastic recursive equations

Rnx
d
= Zn + 1{Zn<x}R

n−1
x , (17)

T nx
d
= 1{Zn<x}(T

n−1
x + Zn), (18)

Hn
x

d
= 1{Zn≥x}x+ 1{Zn<x}(H

n−1
x + Zn). (19)

ThenRx, Tx andHx can be seen as limiting variables of the Markov chains(Rnx)n∈N,
(T nx )n∈N and(Hn

x )n∈N on the state space[0,∞).

Lemma 7. We have that

(Rnx , T
n
x ,H

n
x )

d
→ (Rx, Tx,Hx).

Proof. From (18) we obtain

ΦTn
x
(s) = E(1{Z<x}e−sZ)ΦTn−1

x
(s),

whereZ is some independent exponential random variable. Since

ΦTx(s) = E(1{Z<x}e−sZ)ΦTx(s),

it follows that

∣∣ΦTn
x
(s) − ΦTx(s)

∣∣ = E(1{Z<x}e−sZ)
∣∣∣ΦTn−1

x
(s) − ΦTx(s)

∣∣∣

= E(1{Z<x}e−sZ)n−1
∣∣ΦT 1

x
(s) − ΦTx(s)

∣∣ ,

so that
∣∣ΦTn

x
(s) − ΦTx(s)

∣∣ → 0. The other assertions can be proved similarly. �

Consider again the renewal process, but now inserting additional renewal epochs when-
ever the age process(At)t≥0 passes the levelx. In doing so we form a new renewal process
with truncated exponential epochs. Let(Ãt)t≥0 be the age process of the new renewal pro-
cess. ThenT nx can be interpreted as the time since the last additional renewal epoch was
inserted.
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3.2 Scaling properties

In this section we writeRx,λ, Tx,λ andHx,λ instead ofRx, Tx andHx to stress the depen-
dence on bothx andλ. Again we letZ denote an independent exponentially distributed
random variable with mean1/λ.

Let K denote a geometric random variable withP(K = 1) = q and letAi denote
i.i.d. random variables withλ = EAi < ∞. Rényi’s theorem for geometric sums (see, for
instance, [3, 17]) states that, asq → 0,

q

K∑

k=1

Ai
d
→ Z. (20)

In our situationTx,λ is a geometric sum where the summands depend on the parameter
q = e−λx, so that Rényi’s theorem is not applicable. Kalashnikov [17] has generalized the
theorem for the case where theAi depend on the parameterq, showing that if

lim
q→0

∫ ∞

ε/q
P(A1 > u) du→ 0 (21)

for all ε > 0 then (20) remains true. For our geometric sumTx,λ condition (21) is clearly
satisfied sinceA1 is a truncated exponential random variable andε/q > x if x is suffi-
ciently large. We give a short and stand-alone proof for this.

Theorem 8(Kalashnikov [17]).
Rx,λ
eλx

d
→ Z. (22)

as λx→ ∞. The same is true for Tx,λ and Hx,λ.

Proof. We have

ΦRx(λs/eλx) =
λ

λ+ λs · exp (λxse−λx)
→

1

1 + s
.

Sinceλe−λx = λxe−λx/x → 0 we getλ/(λ + λse−λx) → 1. UsingλZ/eλx → 0, we

conclude from (4) thate−λxTx,λ
d
→ Z ande−λxHx,λ

d
→ Z. �

We now state an interesting scaling property that leads to limit results for the case that
λx converges to some finite number.

Proposition 9. For all c ∈ R
+,

Rx,λ
c

d
= Rx

c
,λc. (23)

Proof. The results follows immediately from

ΦRx(s/c) =
λ

λ+ s
ce

(λ+ s
c
)x

=
cλ

cλ+ se(cλ+s)x
c

.

�

Theorem 10. If λx→ γ ∈ (0,∞) then
(
Rx,λ
x

,
Tx,λ
x
,
Hx,λ

x

)
d
→ (R1,γ , T1,γ ,H1,γ) .

Proof. Follows immediately from (23), sinceRx,λ

x
d
= R1,λx. �
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3.3 Distribution function I

From the geometric sum representation (3) we immediately get a characterization for the
distribution function ofHx in terms of infinite convolutions of the distribution ofB. In
this subsection, and the next two subsections, we show that more explicit characterizations
can be obtained. In Subsection 2.2 we proved an equivalence result for the renewal age
process and the M/D/1 processor sharing queue. We now use this connection to obtain a
first characterization of the distribution function ofHx.

The distribution of the largest pieceS∗
n, also known as maximal uniform spacing, is

given by Whitworth’s formula (see [7, 13])

P(S∗
n ≤ x) = t1−n

n∑

k=0

(
n

k

)
(−1)k (t− kx)n−1

+ , (24)

wherex+ = max{0, x}. It is readily seen from (9) that the conditional distribution of the
running maximumMt given thatNt = n is the same as the distribution ofS∗

n+1, and hence

Mt
d
= S∗

Nt+1.

UsingP(Hx > t) = P(Mt ≤ x) and conditioning on the number of events in[0, t] leads
to a first representation of the distribution ofHx.

Theorem 11. For t ≥ 0,

FHx(t) = e−λt1{t≤x} + e−λt
∞∑

n=1

n+1∑

k=0

(λt)n

n!

(
n+ 1

k

)
(−1)kt−n (t− kx)n+ . (25)

Remark 12. Formula (24) has another interpretation. Locaten points randomly on a
circle with circumferencet. We can represent the gaps between the points on the circle by
uniformly chosen random variablesSi, i = 1, . . . , n − 1 in [0, t]. Attach to each random
point an arc of lengthx such that the point lies in the middle of the arc. The probability
that the circle is completely covered by the arcs is given by

P( max
i=1,...,n

Si ≤ x) = P(S∗
n ≤ x),

(see [15], or [12], Theorem I.2). In this connection Whitworth’s formula (24) is sometimes
called Steven’s formula (see [14]).

3.4 Distribution function II

We now present explicit characterizations for the distribution functions ofRx, Tx andHx

in terms of finite series. The proof is purely analytical and builds upon earlier work of
Bellman and Cooke [2] on differential-difference equations.

Theorem 13. We have

FRx(t) =

⌊t/x⌋∑

j=0

(−λe−λx)j
(t− jx)j

j!
, t ≥ x, (26)

with ⌊a⌋ the integer part of a. Moreover

FHx(t) = FRx(t) − e−λxFRx(t− x), t ≥ x, (27)

and F Tx(t) = FHx(t+ x), t ≥ 0.
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Proof. Denote the right-hand side of (26) byω(t), which is continuous fort > 0 and
continuously differentiable fort > 0 except att = x; at t = x we haveω′(x−) = 0,
ω′(x+) = −λe−λx. We also note thatω(t) = 1 for 0 ≤ t ≤ x and thatω(t) = 0 for t < 0.
One readily obtains that fort > x, t not a multiple ofx,

ω′(t) = −λe−λxω(t− x), (28)

with initial conditionω(t) = 1, 0 ≤ t ≤ x. Equation (28) is also valid whent is a multiple
of x by continuity ofω′(t) for t > x. The equation (28) is a differential-difference equation
(see [2], Chapter 3). According to the theory in [2], Sections 3.7 and 4.4), we have to
consider the rootss of the characteristic equation

s+ λe−(λ+s)x = 0. (29)

Note that these roots are in fact the singularities ofΦHx(s). In the appendix we show
that all characteristic roots lie in the half-planeRe(s) < 0. By [2], Corollary 4.2 on
p. 115 it follows thatFRx(t) → 0 as t → ∞. Hence, the Laplace transformω(s) =∫ ∞
0 e−stFRx(t) dt is well-defined and analytic inRe(s) > 0. By direct calculation from

(26) or (28) we get

ω(s) =
1

s+ λe−(λ+s)x
, Re(s) > 0. (30)

A computation then shows that the Laplace transform ofFRx(t) − e−λxFRx(t − x) is
given by

1 − e−(λ+s)x

s+ λe−(λ+s)x
, Re(s) > 0. (31)

Finally, we note that the ordinary Laplace transform ofFHx(t) is equal tos−1(1−Ee−sHx),
and by (6) it is seen thatFHx(t) andFRx(t) − e−λxFRx(t − x) have the same Laplace
transform. The proof is completed by [2], Theorem 1.1 on p. 7. �

Equation (27), which can be written as

FHx(t) = FRx(t) + e−λxFRx(t− x), t ≥ x, (32)

expresses an interesting relation between the random variablesHx andRx. This relation
can be derived probabilistically. LetMt = max0≤s≤tAt be the running maximum of the
renewal age process, i.e.,Hx = inf{s > 0|Ms = x}. SinceHx ≤ t occurs either if
the process hitsx beforeNt or if it hits x afterNt and there are no epochs ending during
[t− x, t], we obtain

P(Hx ≤ t) = P(MNt ≥ x) + P(MNt < x,Nt −Nt−x = 0). (33)

It follows from the properties of Poisson processes and{MNt < x,Nt − Nt−x = 0} =
{MNt−x

< x,Nt −Nt−x = 0} that

P(MNt < x,Nt −Nt−x = 0) = P(MNt−x
< x)P(Nt −Nt−x = 0).

SinceP(Nt −Nt−x = 0) = e−λx and{MNt ≥ x} = {Rx ≤ t} we get (32).
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Remark 14. We can also obtain the inverse ofω(s) by writing

Φ(s) =

∞∑

j=0

(−λe−λx)je−sxjs−(j+1), (34)

providedRe(s) is sufficiently large. Then, using
∫ ∞

0
(t− jx)j+e

−stdt =
e−sjxj!

sj+1
(35)

and the uniqueness of the Laplace transform, we arrive at (26). For the formal arguments
that go with this approach we refer to [2], Section 4.7.

3.5 Distribution function III

In this section we represent the distribution functions ofRx, Tx andHx as series that
involve the infinitely many poles ofΦRx . These poles are in fact the complex roots of

sesx = −λe−λx (36)

and can be expressed in terms of the branches of the Lambert W function (see Section 4).
Equation (36) has two real rootss∗ ands0 on the negative real axis which we order as
s0 ≤ s∗ < 0. In Section 4.1 we prove the following result.

Lemma 15. For λx < 1 we have s∗ = −λ. For λx > 1 we have s0 = −λ and

s∗ = −
1

x

∞∑

n=1

nn−1

n!

(
λxe−λx

)n
. (37)

For λx = 1 we have s∗ = s0 = −λ.

For the caseλx < 1 a simple characterization ofs0 is not available (see [5], Section
2.4), buts0 can be determined numerically using the method of Newton-Raphson. The
root s∗ of (36) is the only one lying in the closed disk|s| ≤ 1/x. All other roots lie in the
half-planeRe(s) ≤ s0, and, more particular, on the set

{s ∈ C : Re(s) ≤ s0 , |se
sx| = λe−λx}. (38)

We order the rootssk, k ∈ Z lying on (38) in conjugate pairs̄sk = s−k and according
to the value ofarg(sesx) = arg(s) + xIm(s), so that

arg(sk) + x Im(sk) = 2π(k + 1/2).

In this way, the roots ares0, s1, s2, . . . are arranged in order of decreasing real parts.
The following lemma will be shown in Section 4.2.

Lemma 16. The roots sk with |sk| > 1/x are obtained in the form

sk = −
rk
x
e−iψk ; s−k = sk , k = 0, 1, . . . , (39)

where rk and ψk simultaneously satisfy (with d = λxe−λx)

rk cosψk − ln(rk/d) = 0, (40)

rk sinψk − ψk − 2kπ = 0, (41)

and where we restrict to rk ≥ x|s0|, ψk ∈ [0, π/2).
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Lemma 16 gives a complete characterization of all complex roots, where each root is
described in terms of the two equations (40) and (41). For solving these equations, a
highly efficient procedure using two-dimensional Newton-Raphson is given in Subsection
4.3. Lemma 16 is used in Subsection 3.6 to obtain asymptotic information on the roots.

Theorem 17. Assume λx 6= 1. We have

FRx(t) =
es∗t

1 + xs∗
+

∞∑

k=−∞

eskt

1 + xsk
, (42)

and

FHx(t) =
λ+ s∗

λ(1 + xs∗)
es∗t +

∞∑

k=−∞

λ+ sk
λ(1 + xsk)

eskt, (43)

with absolute convergence when t > x.

Proof. By the Laplace inversion formula we have forb > s∗ that

FRx(t) =
1

2πi
lim
B→∞

∫ b+iB

b−iB

est

s+ λe−(λ+s)x
ds. (44)

Shifting the integration contourRe(s) = b further and further to the left yields a series
representation forFRx(t) involving all rootssk of (36). We refer to [2], Sections 4.1 and
4.2, where this process of shifting the integration path to the left is treated rigourously.

�

Lemma 18. For λx = 1 we have that

FRx(t) =
2t

x
e−t/x +

∑

k 6=0

eskt

1 + xsk
, t > x, (45)

and subsequently,

FHx(t) = 2e−t/x +
∑

k 6=0

eskt, t > x. (46)

Proof. In caseλx = 1, we have thats∗ = s0 = −λ. Then, the integrand in (44) has a
second order pole ats = s∗ = s0 = 1/x with residue2(t/x) exp(−t/x). This yields
(45) and (46). An alternative derivation is by taking the limits λ ↑ 1/x and/orλ ↓ 1/x
in equations (42) and (43), which requires an analysis of thetwo rootss∗ ands0 when
λx→ 1. �

3.6 Asymptotics for the tail distribution

We obtain from (43) the asymptotic expression

FHx(t) ∼
λ+ s∗

λ(1 + xs∗)
es∗t +

λ+ s0
λ(1 + xs0)

es0t, t→ ∞, (47)

which can serve as an approximation toFHx(t) for larger values oft. Note that the term
involving s∗ vanishes whenλx < 1 and the term involvings0 vanishes whenλx > 1, and
that (47) is consistent with (46) forλx = 1.

From (40) and (41) it is not hard to get asymptotic information onrk andψk ask → ∞.

11



Lemma 19. We have

rk = qk −
ln(qk/d)

qk
+

ln2(qk/d)

2qk
+O

(
ln4(qk/d)

q3k

)
, (48)

ψk =
π

2
−

ln(qk/d)

qk
+O

(
ln3(qk/d)

q3k

)
. (49)

in which qk = 2π(k + 1/4) and d = λxe−λx.

Proof. We have from (40) and (41) that fork = 1, 2, . . .

rk ≥ 2πk , ψk ≥ arccos

[
1

2πk
ln(2πk/d)

]
, (50)

sincer−1 ln(r/d) decreases inr ≥ d · e ∈ (0, 1). Some further iterations with (40) and
(41) yield the result. �

Lemma 19 shows thatsk grows like2π(k + 1/4). Then, from

eskx =
−λe−λx

sk
, (51)

we conclude that there is a decay of the terms in the series at the right-hand sides of (43)
and (47) likek−t/x. This rapid decrease of the higher-order terms makes (47) a highly
accurate approximation, even for moderate values oft. Some numerical evidence for this
statement is presented in Tables 1 and 2, in which we denote by(43)j the approximation
obtained from (43) by including the termsk = −j,−j + 1, . . . , j.

t FHx(t) (47) (43)1 (43)2
1 3.0301e-001 4.2424e-001 3.7279e-001 3.1492e-001
2 4.4709e-002 4.5769e-002 4.4073e-002 4.4678e-002
3 4.9883e-003 4.9378e-003 4.9936e-003 4.9882e-003
4 5.3264e-004 5.3271e-004 5.3260e-004 5.3264e-004
5 5.7444e-005 5.7471e-005 5.7444e-005 5.7444e-005
6 6.2007e-006 6.2002e-006 6.2007e-006 6.2007e-006
7 6.6891e-007 6.6890e-007 6.6891e-007 6.6891e-007
8 7.2164e-008 7.2164e-008 7.2164e-008 7.2164e-008
9 7.7853e-009 7.7853e-009 7.7853e-009 7.7853e-009

10 8.3992e-010 8.3992e-010 8.3992e-010 8.3992e-010

Table 1: Results forFHx(t) whenλ = 0.45, x = 0.9.

Note that (47) is consistent with (22). To see this, first observe from (37) thats∗ ∼
−λe−λx asλx→ ∞. Hence, (47) yields

FHx( 1
λe

λxt) ∼
λ+ s∗

λ(1 + xs∗)
es∗

1
λe

λxt ∼ e−t, λx→ ∞. (52)

ForRx we obtain from (42) the asymptotic expression (forλx 6= 1)

FRx(t) ∼
es∗t

1 + xs∗
. (53)

In [18], Proposition 1, a related result is presented for themore general class of symmetric
M/G/1 queues. Forλx > 1 (53) sharpens the result in [18].

12



t FHx(t) (47) (43)1 (43)2
1 7.6648e-001 7.9871e-001 7.8759e-001 7.7073e-001
2 4.2690e-001 4.2734e-001 4.2667e-001 4.2688e-001
3 2.2867e-001 2.2865e-001 2.2867e-001 2.2867e-001
4 1.2233e-001 1.2233e-001 1.2233e-001 1.2233e-001
5 6.5454e-002 6.5454e-002 6.5454e-002 6.5454e-002
6 3.5020e-002 3.5020e-002 3.5020e-002 3.5020e-002
7 1.8737e-002 1.8737e-002 1.8737e-002 1.8737e-002
8 1.0025e-002 1.0025e-002 1.0025e-002 1.0025e-002
9 5.3638e-003 5.3638e-003 5.3638e-003 5.3638e-003

10 2.8699e-003 2.8699e-003 2.8699e-003 2.8699e-003

Table 2: Results forFHx(t) whenλ = 1.8, x = 0.9.

3.7 M/D/1 first-come-first-served queue

A.K. Erlang’s 1909 paper [10] introducing the M/D/1 queue isgenerally considered to be
the starting point of queueing theory. For Poisson arrivalswith rateλ, deterministic service
requirementsx, and first-come-first-served, Erlang’s results on the stationary waiting time
W reads (assumingλx < 1 for stability)

FW (t) = (1 − λx)eλt
⌊t/x⌋∑

j=0

(−λe−λx)j
(t− jx)j

j!
, t ≥ 0. (54)

Hence, the waiting time distribution can be expressed in terms of our functionFRx as
FW (t) = (1 − λx)eλtFRx(t). Using (42) ands∗ = −λ (sinceλx < 1) then yields

FW (t) =

∞∑

k=−∞

λx− 1

1 + xsk
e(λ+sk)t. (55)

It is remarkable that the approximation

FW (t) ≈
λx− 1

1 + xs0
e(λ+s0)t, (56)

for large values oft, was already stated (without proof) in Erlang’s paper [10] (see also
[20], p. 54).

Remark 20. The probabilitypn thatn customers are served during a busy period of the
M/D/1 queue (λx < 1) is given by (already found by Borel in 1942 [4])

pn =
1

λx

nn−1

n!
(λxe−λx)n.

This confirms the fact that formula (37) is valid forλx < 1, sinces∗ = −
∑∞

n=1 λpn =
−λ.

4 Analysis of the characteristic roots

We consider for positiveλ andx the rootss of the equation

sesx = −λe−λx, (57)

13



v0 v∗

d

−d

−e−1

−1
0

Figure 2: Plot ofv 7→ vev.

which are required at several places in the main text. Usingv = sx andµ = λx simplifies
(57) to

vev = −µe−µ. (58)

The multi-valued inverse of the functionv 7→ vev has a long history in mathematics. It is
treated as one of the key examples in the book of De Bruijn [5] (Sections 2.3-4), and since
the overview paper of Corless et al. [6] it is known as the Lambert W function. The analysis
presented in this section can in part be found in [2], Section12.7 on pp. 406-10, where the
emphasis lies on roots of (57) of large modulus. The series representations in Section 3.5,
which we use to approximateFHx(t), let us focus more on the roots of small(er) modulus,
and how to compute them.

4.1 Proof of Lemma 15

Let d = µe−µ, c = µ− lnµ; d = e−c. We havec ≥ 1, d ≤ e−1 with equality if and only if
µ = 1. We letv∗ andv0 be the two real roots of (58), withv0 ≤ −1 ≤ v∗ < 0, see Figure
2 (v∗ = v0 = −1 if and only if d = 1/e, i.e.,µ = 1).

Clearly, the rootsv of (58) all lie in the set

{v ∈ C : |vev | = d}. (59)

With reference to Subsection 4.2 and in particular Figure 3,we note that this set consists
of two parts, viz. a part contained in the unit disk|v| ≤ 1 and a part contained in the set
|v| ≥ 1 (in [2], Section 12.7 attention is limited to the latter set). We consider first the part
contained in|v| ≤ 1. The mappingv 7→ vev is invertible aroundv = 0, with the inverse
given by Lagrange’s theorem as (see [5], Sec. 2.3)

vev = w ; v(w) =

∞∑

n=1

(−1)n−1nn−1

n!
wn, (60)
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v0 v∗

|vev | = d

0 1

1

Figure 3: The roots ofvev = −µe−µ for µ = 0.7. The two real roots arev0 = −1.3755
andv∗ = −0.7000. Other roots arev1 = −3.1475 + 7.4545i, v2 = −3.7215 + 13.8751i,
v3 = −4.0834 + 20.2211i andv4 = −4.3486 + 26.5411i.

and where by Stirling’s formula the series converges absolutely in |w| ≤ 1/e. Accordingly,

v(−d) = v∗ = −

∞∑

n=1

nn−1

n!
dn (61)

is the only root of (58) in the disk|v| ≤ |v∗|. The set{v(deiα) : α ∈ [0, 2π)}, which is
obviously contained in|v| ≤ |v∗| by (60) and (61), coincides with the part of the set in (59)
contained in the unit disk.

4.2 Proof of Lemma 16

We now also consider pointsv of the set (59) with|v| ≥ |v∗|, and we first consider the case
thatµ 6= 1. We note that for anya ∈ R the function

b ≥ 0 7→ |(a+ ib)ea+ib| = ea(a2 + b2)1/2 (62)

is strictly increasing. Therefore, see Figure 2, the equation |(a + ib)ea+ib| = d has: no
solutionb ≥ 0 whena > v(d), one solutionb ≥ 0 whenv∗ = v(−d) ≤ a ≤ v(d), no
solutionb ≥ 0 whenv0 < a < v∗, one solutionb ≥ 0 whena ≤ v0. Also observe that the
set in (59) is symmetric with respect to the real axis.
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We shall now consider in more detail the roots of (58) that liein Re(v) ≤ v0, i.e., that
are located on the curve depicted in Figure 3 that crosses thereal axis ata = v0. In terms
of polar coordinatesv = reiϕ, we have for this curve

vev = rer cosϕeiϕ+ir sinϕ (63)

in which we chooseϕ ∈ (π/2, 3π/2). There is thus the parametrization

ln r + r cosϕ = ln d = −c , r ≥ |v0| , ϕ ∈ (π/2, 3π/2) (64)

of the considered curve.
We shall now analyze this parametrization somewhat further. To that end letψ = π −

ϕ ∈ [0, π/2), and write (64) as

r cosψ = ln(r/d) , r ≥ |v0| , ψ ∈ [0, π/2). (65)

Here we have restricted toψ ≥ 0 for reasons of symmetry. It is easy to see that (65) has for
anyψ ∈ [0, π/2) exactly one solutionr(ψ) ≥ |v0| > 1 that increases from|v0| atψ = 0
to ∞ asψ ↑ π/2. We also compute (withv = −re−iψ)

arg(vev) = π − ψ + r sinψ. (66)

Lemma 21. The argument arg(vev) increases in ψ ∈ [0, π/2).

Proof. From (65) we have

r′(ψ) =
r(ψ) sinψ

cosψ − 1/r(ψ)
. (67)

Therefore,

d

dψ
[π − ψ + r sinψ] = −1 + r′(ψ) sinψ + r(ψ) cosψ

= −1 +
r(ψ) sin2 ψ

cosψ − 1/r(ψ)
+ r(ψ) cosψ

=
1/r(ψ) + r(ψ) − 2 cosψ

cosψ − 1/r(ψ)
> 0, (68)

where we have used that

r(ψ) cosψ = ln(r(ψ)/d) ≥ ln(r(0)/d) = r(0) = |v0| > 1, (69)

so that1/r(ψ) + r(ψ) − 2 cosψ > 0 andcosψ − 1/r(ψ) > 0. Hence,arg(vev) indeed
increases inψ ∈ [0, π/2) and does so fromπ atψ = 0 to∞ asψ ↑ π/2. �

We conclude from Lemma 21 that fork = 0, 1, . . . there is a uniqueψk ∈ [0, π/2) such
thatπ − ψk + r(ψk) sinψk = 2kπ + π.

Until now we have assumed thatµ 6= 1. In the case thatµ = 1, we have thatv0 = v∗ =
−1 andd = 1/e. The two parts of the set (59) inside and outside the unit disknow meet at
the pointv = −1 and together constitute the well-known Szegö curve (see [23] and [16]),
mirrored about the imaginary axis. However, for the analysis of the roots outside the unit
disk, the developments just given for the caseµ 6= 1 remain equally valid.

This gives us Lemma 16.

16



4.3 Computation of the roots

The sk ’s with k = 1, 2, . . . can be computed by writing (40) and (41) ina + ib = reiψ

notation as

κ(a) =

[
0
0

]
; a =

[
a
b

]
; κ(a) =

[
a− 1

2 ln(a2 + b2) + ln d
b− arctan(b/a) − 2πkπ

]
(70)

and solving (70) by using a two-dimensional Newton-Raphsoniteration. Thus we iterate
according to

an+1 = an − J−1(an)f(an), n = 0, 1, . . . , (71)

in whichJ−1 is the inverse of the matrixJ whose entries are the partial derivatives of the
two components of the vector functionκ and that is in the present case given as

J(a) =

[
1 − a

a2+b2
−b

a2+b2
b

a2+b2
1 − a

a2+b2

]
. (72)

It is seen thatJ(a) is in all cases of interest close to the identity matrix, which is why the
Newton-Raphson method has excellent convergence properties. A manifestation of this
is the fact that we can start for anyk in (70) with the same starting valuea0 = [0, 2π]T

(although more sophisticated starting values may be taken).
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curves, and Spitzer’s formula.International Journal of Wavelets, Multiresolution and Information Pro-
cessing 3: 361-387.

[17] Kalashnikov, V. (1997). Geometric Sums: Bounds for Rare Events with Applications, Kluwer Academic
Publishers, Dordrecht.

[18] Kella, O., Zwart, B. and Boxma, O.J. (2005). Some time-dependent properties of symmetricM/G/1
queue.J. Appl. Probab. 42: 223-234.

[19] Ott, T.J. (1984). The sojourn-time distribution in theM/G/1 queue with processor sharing.J. Appl.
Probab. 21: 360-378.

[20] Riordan, J. (1962).Stochastic Service Systems, Wiley, New York.

[21] Ross, S.M (1996).Stochastic Processes, Wiley, New York.

[22] Sukhatme, P.V. (1937). Tests of significance for samples of the chi-square population with two degrees
of freedom.Ann. Eugen. London 8: 52-56.
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