
Digital In-line holography: e�ect of shifted objet in an

elliptical, astigmatic gaussian beam

N. Verrier, S. Coëtmellec, M. Brunel and D. Lebrun

Groupe d'Optique et d'Optoélectronique, UMR-6614 CORIA, Av. de l'Université,

76801 Saint-Etienne du Rouvray cedex, France

coetmellec@coria.fr, a.j.e.m.janssen@philips.com

A.J.E.M Janssen

Philips Research Laboratories-Building WO-02, Prof. Holstlaan 4, 5656 AA Eindhoven, The

Netherlands

We demonstrate in this paper that the e�ect of shifted objet in an elliptical, astigmatic

gaussian beam does not a�ect the optimal fractional orders to reconstruct the image of the

particle or an other opaque object. Simulations and experimental results are presented. c©

2007 Optical Society of America

OCIS codes: 090.0090, 070.0070, 100.0100

1. Introduction

Digital in-line holography (DIH) is widely used in the microscopy for biological applications,1,2

Particle Image Velocimetry (PIV)3 and refractometry.4 In the most DIH theoretical studies, the

optical systems or the used objects, for example particles, are considered centered on the optical

axis.5,6 Nevertheless, in many practical applications, the systems are not necessary centered and the

objects too. To reconstruct the image of an objet, a reconstruction parameter must be determine.

For the wavelet transformation, the parameter is the scale factor.7 For Fresnel transformation, the
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parameter is the distance z between the quadratic sensor and the object8 and in the case of the

fractional Fourier transformation, the parameters are the fractional orders.9,10 One consider that

the same parameter can be used for all positions of the object. Recently, an analytical solution of

scalar di�raction of an elliptical and astigmatic Gaussian beam (EAGB) by an centered opaque disk

under Fresnel approximation has been proposed. By using the fractional Fourier transformation, a

good particle image reconstruction is obtained.11 Neither can one �nd recent publications in DIH

method developments demonstrated that the parameter of the reconstruction is constant for all

positions of the object in the cross-plan.

In this publication, the aim is to demonstrate that the same fractional orders are necessary to

reconstruct an image of the particle. We exhibits the e�ect of the gaussian beam of the reconstructed

image. In the �rst part of this publication, the model of the analytical solution of scalar di�raction

of an EAGB by a centered opaque disk is revisited to take into account a decentered object. In the

second part, the de�nition of the fractional Fourier transformation is recalled and this transformation

is used to reconstruct the image of the particle. It is in this part that one demonstrate the same

orders are is necessary. Finally, we propose to illustrate our results by numerical experiments and

experimental result.

2. In-Line Holography with an elliptic and astigmatic Gaussian beam

The idea of the DIH consists to record by the CCD camera the intensity distribution of the di�raction

pattern of an objet illuminated by a continue or not wave. The basic model to describe the intensity

distribution recorded by the CCD camera of an objet is the integral of Kirchho�-Fresnel given by

the scalar integral:

A =
exp(i2π

λ z)
iλz

∫

R2
ET (ξ, η) exp

(
iπ

λz

[
(ξ − x)2 + (η − y)2

])
dξdη, (1)

in which ET (ξ, η) is the product of the optical incident beam, noted here by E(ξ, η), by the spatial

transmittance of the shifted opaque 2D-object, noted 1 − T (ξ − ξ0, η − η0), and A is the complex
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amplitude in the quadratic sensor plane. The quadratic sensor records the intensity de�ned by |A|2.

If we consider that the function ET is the product of an elliptic and astigmatic Gaussian beam by

an opaque disk of diameter D, then

ET (ξ, η) = exp
[
cξξ

2 + cηη2
]

︸ ︷︷ ︸
=E(ξ,η)

· [1− T (ξ − ξ0, η − η0)]︸ ︷︷ ︸
shifted object

. (2)

The complex coe�cients cξ and cη are

cξ = − 1
ω2

ξ

− i
π

λRξ
, cη = − 1

ω2
η

− i
π

λRη
(3)

Rq with q = ξ, η are the wavefront curvatures and ωq denote the beam widths along the ξ-axis and

η-axis. These four parameters are de�ned in the object plane. For an opaque disk centered at the

origin O, the transmittance function T (ξ, η) in the object plane is:

T (ξ, η) =





1, 0 <
√

ξ2 + η2 < D/2,

1/2, 0 <
√

ξ2 + η2 = D/2,

0,
√

ξ2 + η2 > D/2 > 0.

(4)

From Eqs (1) and (2), the expression of A(x, y) can be can splited in two integral terms, noted A1

and A2, such as:

A(x, y) =
exp(i 2π

λ z)
i

[A1 −A2] . (5)

2.A. Expression for the amplitude distribution A1

The development of integral A1, versus E(ξ, η), is given in a previous paper by11 :

A1 = KξKη exp
(
− π

λz
ρTNρ

)
exp

(
i

π

λz
ρTMρ

)
(6)

where ρT represents the vector (x y) and the factors Kq with q = ξ, η in Eq.(6) are de�ned by

Kq =




πω2
q

λz

1 + i
πω2

q

λz

(
z

Rq
− 1

)



1/2

(7)

3



and the diagonal matrices N and M by

N =




Nx 0

0 Ny


 , M =




Mx 0

0 My


 , (8)

with

Nq = π

ω2
q

λz

1 + π2 ω4
q

(λz)2

(
z

Rq
− 1

)2 , Mq = 1 + π2

ω4
q

(λz)2

(
z

Rq
− 1

)

1 + π2 ω4
q

(λz)2

(
z

Rq
− 1

)2 . (9)

2.B. Expression for the amplitude distribution A2

To develop the second integral of A2, only versus the product between E(ξ, η) by T (ξ − ξ0, η − η0),

i.e.:

A2 =
exp

[
iπ
λz (x2 + y2)

]

λz

∫

R2
E(ξ, η)T (ξ − ξ0, η − η0) exp

[
iπ

λz
(ξ2 + η2)

]
exp

[
−i

2π

λz
(xξ + yη)

]
dξdη,

(10)

�rstly ξ is replaced by ξ + ξ0 and η by η + η0, then we have:

A2 =
exp

[
iπ
λz (x2 + y2)

]

λz

∫

D
E(ξ + ξ0, η + η0) exp

[
iπ

λz
((ξ + ξ0)2 + (η + η0)2)

]
×

exp
[
−i

2π

λz
(x(ξ + ξ0) + y(η + η0))

]
dξdη. (11)

By considering that cz = π/(λz) and by restating A2 in cylindrical coordinates as follows: ξ =

Dσ cos(ϕ)/2 and η = Dσ sin(ϕ)/2 for the object plane, we obtain:

A2 =
D2

4λz
exp

[
cξξ

2
0 + cηη2

0 + icz

[
(x− ξ0)2 + (y − η0)2

]] ·
∫ 1

0

∫ 2π

0

exp
[
iγσ2

]
exp

[
iδσ2 cos(2ϕ)

]
exp [iaσ cos ϕ + ibσ sin ϕ] σdσdϕ (12)

with

γ =
D2

4
cz − i

D2

8
(cξ + cη), δ = i

D2

8
(cη − cξ),

a = Dcz [ξ0 (1− icξ/cz)− x] , b = Dcz [η0 (1− icη/cz)− y] .

(13)

By writing that:

a cos ϕ + b sin ϕ = r cos(ϕ− θ) (14)
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for which we have the condition

a = r cos θ, b = r sin θ (15)

with complex r and θ. This representation is discussed in some detail in Appendix A. By means of

the following equalities in [12], 4.9.3 - 4.9.6 on p. 210-211:

exp
[
iδσ2 cos (2ϕ + 2θ)

]
= J0

(
δσ2

)
+ 2

+∞∑

k=1

ikJk

(
δσ2

)
cos 2k(ϕ + θ), (16)

and

1
2π

∫ 2π

0

exp(inθ) exp[ix cos θ]dθ = inJn(x), (17)

The expression of A2 becomes:

A2 =
πD2

λz
exp [Φ(ξ0, η0)] · exp

(
icz

[
(x− ξ0)2 + (y − η0)2

]) ·
∞∑

k=0

(−i)kεk Tk(r, γ) cos(2kθ), (18)

with εk = 1/2 if k = 0 and 1 otherwise. The parameter noted Φ(ξ0, η0) is equal to
[
cξξ

2
0 + cηη2

0

]
.

The function Tk(r, 2γ) is de�ned as:

Tk(r, γ) =
∞∑

p=0

β2k
2k+2p(δ)V

2k
2k+2p(r, γ), (19)

where the coe�cients β2k
2k+2p are given by the analytical development of Tk in Appendix of [11].

Recall here that the expression of V 2k
2k+2p(r, γ) is:

V 2k
2k+2p(r, γ) = exp(iγ/2)

∞X
m=0

(2m + 1)imjm(γ/2) ·
m+pX

l=max(0,m−2k−p,p−m)

(−1)lωml
J2k+2l+1(r)

r
. (20)

Finally, the expression of A1 contents only the characteristics of the incident beam and A2 contents

a shifted linear chirp function linked to the decentered of the object. The previous function is modu-

lated by a summation of bessel function which constitutes the envelop of the amplitude distribution

of A2.

Now, to obtain the desired accuracy, we would analyse the number of terms necessary in the series

over k in (18) and over p in (19). The series which would be analyse are in the Eq.(20). The �rst

upper bound that one can be considered is13�15

∣∣∣jm

(γ

2

)∣∣∣ ≤ 1
(2m + 1)1/2

min
(

1,
(π

2

)1/2 |γ/4|m
m!

)
. (21)
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The evaluation of the function
∣∣jm

(
γ
2

)∣∣ is versus the rough estimate of the variable γ. As D ≈ 10−4m,

λ ≈ 10−6m, z ≈ 10−1m, Rq ≈ 0.5 · 10−1 then γ ≈ 0.785 · 10−1 + 0.816 · 10−3i. All the quantities

in (21) are less than 0.142 · 10−1 for m ≥ 1. The second upper bound is link to the Bessel function

such as from [16], 9.1.62 on p.362 and [13], one have

∣∣∣∣
J2k+2l+1(r)

r

∣∣∣∣ ≤ min
(

1,
1
2
|r|2k+2l exp(|r|2)
(2k + 2l + 1)!

)
(22)

The evaluation of the accuracy is versus the following product of the Eqs. (21) and (22):

∣∣∣jm

(γ

2

)∣∣∣
∣∣∣∣
J2k+2(m+p)+1(r)

r

∣∣∣∣ (23)

With the previous values, all the quantities in (23) are less than 0.142 · 10−1 for all (k, p, m) ≥ 1.

Finally, we only consider the case where k = p = m = 0. The function V 2k
2k+2p(r, γ) which will be

used with a good accuracy in our case is de�ned by:

V 0
0 (r, γ) ' exp(iγ/2)j0(γ/2)

J1(r)

r
. (24)

The amplitude A2 becomes then

A2 =
πD2

2λz
β0

0(δ) exp [Φ(ξ0, η0)] exp
(
icz

[
(x− ξ0)2 + (y − η0)2

]) · V 0
0 (r, γ), (25)

2.C. Intensity distribution of the di�raction pattern

The intensity distribution of the di�raction pattern in the quadratic sensor plane, noted I, is evalu-

ated from the Eqs. (5) (6) and (25) in the following way:

I = AA = [A1 −A2]
[
A1 −A2

]
=

[|A1|2 + |A2|2
]− 2<{

A1A2

}
(26)

where the over line denotes the complex conjugate, < denotes the real part. Thus, the intensity

distribution recorded by the CCD sensor is described by the Eq. (26). As one can see from the

relation of I is that the �rst and second terms, i.e. |A1|2 and |A2|2, not generate interference fringes

with a linear chirp in the plane of the CCD. But the third term exhibits a phase which composed of a

constant and linear instantaneous frequencies. This fact is important because the fractional Fourier
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transform is an e�ciency operator to analyse the linear instantaneous frequency. From Eq. (26) we

write

A1A2 = |A1A2| exp
[
i arg

(
A1A2

)]
(27)

where arg
(
A1A2

)
= φ− φ0 with

φ = cz

(
x2(Mξ − 1) + y2(Mη − 1)

)
+ 2cz (xξ0 + yη0)− arg

(
J1(r)

r

)
, (28)

and

φ0 =
<(γ)

2
+ =(Φ(ξ0, η0)) + arg

(
j0

(γ

2

))
+ arg

(
β0

0(δ)
)− arg (KξKη) , (29)

where < and = represent the real and imaginary parts of a complex number. The �rst term in (28) is

versus a quadratic phase and the second is a linear phase. Recall that the aim of the reconstruction

by means of the FRFT is precisely to analyze a linear chirp and only the terms versus of x and y.

To give two di�erent examples, it is necessary to �x the values of the parameters (ωξ, ωη), (Rξ, Rη)

and (D, λ, z). The �gure (1) represents the numerical and experimental set-up where all parameters

are identi�ed. The �rst four parameters are de�ned in the plane of the object. To do this, it is

necessary to specify the values of (∆, δ) which are the algebraic distance between the cylinder lens

(CL) and the particle and the distance between the beam waist and the particle.

In the �rst case, the values are de�ned by (7mm, 1.75mm) for the beam waists, (−∞,−50mm) for

the wave's curvatures and the diameter D of the particle is equal to 150µm and located at 120mm of

the CCD sensor. The wavelength of the laser beam is 632.8nm. The distance between the cylinder lens

and the particle is δ = 250mm. The shifted-particle from the origin is (ξ0, η0) = (0.5mm, 0.2mm).

The �gure (2) illustrates the di�raction pattern which recorded by the camera. Note that the shift

(x0, y0) in the plane of the camera don't equal to the shift (ξ0, η0). If the particle is considered far

from the waist then we have the formula:

y0 =
| ∆ | ±z

| ∆ | η0 (30)
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The sign of z depends of the position of the particle compared to the position of the waist. If the

particle is next the waist, the sign is positive. If it is before the waist, the sign is negative. In the

case of x-axis, the parameter ∆ is in�nite so that in the plane of the camera x0 = ξ0 = 0.5mm and

in the case of y-axis, ∆ = 50mm thus y0 = 0.68mm.

Now, In the second case, the values are de�ned by (7mm, 1.75mm) for the beam waists,

(−∞, 50mm) for the wave's curvatures and the diameter D of the particle is equal to 150µm and

located at 120mm of the CCD sensor. The wavelength of the laser beam is 632.8nm. The distance

between the cylinder lens and the particle is δ = 150mm. The shifted-particle from the origin is

(ξ0, η0) = (0.5mm, 0.2mm). The �gure (3) illustrates the di�raction pattern which recorded by the

camera. In the plane of the camera, from the equation (30), x0 = ξ0 = 0.5mm and in the case of

y-axis, ∆ = 50mm thus y0 = −0.28mm. The di�raction pattern changes from elliptical fringes to

hyperbolical fringes. These di�raction patterns will be used to reconstruct the image of the particle

by the FRFT.

3. Fractional Fourier transformation analysis of in-line holograms

3.A. Two-dimensional Fractional Fourier transformation

The FRFT is an integral operator where it �nd a lot of application in signal processing, image

processing. Its principal advantage is to transform a linear chirp into a Dirac impulse. Its mathe-

matical de�nition is as follows:17�19 the two-dimensional fractional Fourier transformation of order ax

for x-cross-section and ay for y-cross-section with 0 ≤ |αx| ≤ π/2 and 0 ≤ |αy| ≤ π/2, respectively,

of a 2D-function I(x, y) is de�ned as (with αp = apπ
2 )

Fαx,αy [I(x, y)](xa, ya) =
∫

R2
Nαx(x, xa)Nαy (y, ya)I(x, y) dx dy (31)

where the kernel of the fractional operator is de�ned by

Nαp(x, xa) = C(αp) exp
(

iπ
x2 + x2

a

s2
p tanαp

)
exp

(
− i2πxax

s2
p sin αp

)
, (32)
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and

C(αp) =
exp(−i(π

4 sign(sinαp)− αp

2 ))
|s2

p sin αp|1/2
. (33)

Here p = x, y. Generally, the parameter sp is considered as a normalization coe�cient. It can take any

values. This incertitude is not acceptable in our case. So, its value is de�ned from the experimental

set-up such as

s2
p = Np · δ2

p (34)

This de�nition is presented in Appendix B. Np is the dimension of the image I(x, y) along x and

y-cross axis. The constant δq is the sampling period along the two previous axis of the image. In

our case the size of the image and the sampling period are the same along the two axis. So that the

parameters sp are equal to s. The energy-conservation law is ensured by the coe�cient C(αp) which

is a function of the fractional order.

3.B. Reconstruction: optimal fractional orders

To reconstruct the image of the particle, the following transform must be calculated:

Fαx,αy [I] = Fαx,αy

[|A1|2
]−Fαx,αy

[
2|A1A2| cos(φ− φ0)

]
+ Fαx,αy

[|A2|2
] (35)

The terms |A1|2 and |A2|2 are not versus linear chirp thus they do not have an e�ect on the optimal

fractional order to determine. But the second term, noted St is expressed versus the linear chirp.

It will be considered for the image reconstruction of the particle. By noting that 2 cos(φ − φ0) =

exp(−i(φ− φ0)) + exp(i(φ− φ0)), the second term of Eq. (35) becomes :

Fαx,αy

[
2|A1A2| cos(φ− φ0)

]
= exp

(
iπ

x2
a

s2 tan αx

)
exp

(
iπ

y2
a

s2 tan αy

)
{I− + I+} (36)

with

I± = C(αx)C(αy)
∫∫

R2

∣∣A1A2

∣∣ exp [i (φa ± (φ− φ0))] exp
[
−2iπ

s2

(
xax

sin αx
+

yay

sin αy

)]
dxdy (37)
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The quadratic phase term of the FRFT is noted by φa = π
s2

(
x2 cot αx + y2 cot αy

)
. Let us recall

that the FRFT allow us to analyze a linear chirp. For I−, if

π cot αopt
x

s2
= cz(Mx − 1),

π cot αopt
y

s2
= cz(My − 1), (38)

then, the FRFT is only a classical Fourier transformation such as

I− = χ · F
[
J1(r)

r
· exp

(
− π

λz
ρTNρ

)]
(u, v), (39)

with χ = πD2

2λz C(αx)C(αy)KξKη exp [Φ(ξ0, η0)] β0
0(δ) exp

(
iγ
2

)
j0

(
γ
2

)
. The operator F is the 2D-

Fourier transformation. The spatial frequencies u and v are equal to:

u =
xa

s2 sin(αopt
x )

+
czξ0

π
v =

ya

s2 sin(αopt
y )

+
czη0

π
(40)

As Fourier transform of the multiplication of two functions means convolution of their transforms

then

I− = χ · F
[
J1(r)

r

]
∗ F

[
exp

(
− π

λz
ρTNρ

)]
, (41)

Recall here that the variables ρ and r are versus the same coordinates (x, y). With the shift theorem

for the Fourier transform, the Hankel transform and the discontinuous Weber-Schafheitlin integral

on [16], 11.4.42 on p.487, we have:

F
[
J1(r)

r

]
= 2π

(
λz

πD

)2

exp [−i2π(uX0 + vY0)]×





1, 0 <
√

u2 + v2 < D/2
λz ,

1/2, 0 <
√

u2 + v2 = D/2
λz ,

0,
√

u2 + v2 > D/2
λz > 0,

(42)

with X0 = ξ0 (1− icξ/cz) and Y0 = η0 (1− icη/cz). The function de�ned by the right term of (42),

versus the spatial coordinates (xa, ya), has the aperture of the pinhole equal to the diameter D of

the opaque particle. The shifting of the object does not modify the fractional order. This point is

important because in the case of particle �eld one fractional order along x-cross axis and y-cross

axis is necessary to reconstruct the image of the particles. If one want to determine the position of

10



the center of the di�raction patterns in the plan (xa, ya), the coordinates that could be considered

must be:
(

s2(u− czξ0

π
) tanαopt

x , s2(v − czη0

π
) tanαopt

x

)
(43)

This correction is necessary because the fractional Fourier transformation is non linear by translation.

Note that the nature of the gaussian beam implies that the reconstructed image of the object is

convoluted by Gaussian. The opaqueness of the object is retrieved by applying an inversion of I−

that is realized by the minus in front of the second term of the equation (35). The dynamic of the

amplitude of the signal as in the Eq. (4) is ensured by the gaussian function de�ned by the �rst term

of (35).

3.C. Numerical experiments

The simulations of the reconstruction of the image of a particle are realized from the di�raction

patterns illustrated by the Figs. (2) and (3). The di�raction patterns consist of 512 × 512 array

of 11µm × 11µm size pixels. Consider the di�raction pattern presented in Fig. (2) of diameter

D = 150µm particle located at z = 120mm. The optimal fractional orders obtained from Eqs. (38)

are aopt
x = −0.564 and aopt

y = −0.850. The image of the reconstructed image is shown in Fig. (4).

In this representation, the squared modulus of the FRFT, i.e. |Fαx,αy [I]|2, is taken. The shape of

the image of the particle is not modify: the width of the gaussian function in the Eq.(41) is greater

than the diameter D of the particle (typically 679µm along x-cross axis and 490µm along y-cross

axis). Now, the reconstruction of the image of the particle from the di�raction pattern illustrated

by the Fig. (3), is realized by a fractional Fourier transformation of optimal orders aopt
x = −0.564

and aopt
y = 0.664. The Fig. (5) illustrates the result of the reconstruction. Note that the apertures

of the result of the Eq. (41) and the image of the reconstructed particle have been veri�ed and give

the same diameter D.
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3.D. Experimental result

The previous theoretical developments and numerical experiments have been tested by using an

RS-3 standard reticle (Malvern Equipment). This reticle is an optical glass plate with a pattern of

the word LASER photographically deposited on the surface. This reticle is localized at δ = 249mm

from the cylindrical lens (CL). The distance z between the CCD camera and the reticle is equal to

117mm. The opaque word "LASER" is next the waist of the beam. The intensity distribution of the

EAGB di�racted by the the word "LASER" is shown in Fig. (6). The reconstruction of the image

of the word "LASER" is realized by the fractional Fourier transformation of approximatively orders

aopt
x = 0.559 and aopt

y = 0.848. The two previous orders allows to reconstruct all parts of the image

of the object.

4. Conclusion

The e�ect of shifted objet in an elliptical, astigmatic gaussian beam does not a�ect the optimal

fractional orders to reconstruct the image of the particle or an other opaque object. In this publication

an analytical model has been developed to prove that. In this development, the object is an opaque

particle and in the experimental result, the particle is replaced by the word "LASER". The advantage

of the "LASER" word is that it is spread out over all the image's �eld.
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A. Appendix A : Elaboration of condition (15)

With u = a + ib, v = a− ib, we should �nd τ and ω = exp(iθ) such that

τω = u, τ/ω = v (44)

Assume that u 6= 0, v 6= 0, and write u = r exp(iα), v = s exp(iβ) with r, s > 0 and α, β ∈ R then

we see that ω = exp(iθ) such that

τ = (rs)1/2 exp (i(α + β)/2) , ω = exp(iθ) =
(r

s

)1/2

exp (i(α− β)/2) (45)

satisfy the relations (44). This does not work in the case that u = 0 or v = 0. Indeed, when a = 1,

b = i we get from (15) and cos2 θ + sin2 θ = 1 that r = a + ib = 0, i.e. r = 0.

B. Appendix B : De�nition of sp

To determine the value of sp, it is necessary to write the de�nition of the one dimensional fractional

Fourier transformation in the particular case of α = π/2:

Fπ/2[I(x)](xa) = C(π/2)
∫ +∞

−∞
I(x) exp

(
−i2π

xxa

s2

)
dx. (46)

Its discrete version is

Fπ/2[I(m)](k) = C(π/2)
N/2−1∑

m=−N/2

I(m) exp
(
−i2π

mδx kδxa

s2

)
δx, (47)

where δx and δxa are the sampling periods of I(x) and its transform. The sampling periods are equal

to δx. N is the number of sampling of I(x) and its transform. The relation (47) can be written as

the discrete Fourier transformation of I(m) such as:

Fπ/2[I(m)](k) = C(π/2)
N/2−1∑

m=−N/2

I(m) exp
(
−i2π

mk

N

)
δx. (48)

By identi�cation of Eqs. (48) and (47), one obtain:

δxδxa

s2
=

1
N
⇒ s2 = Nδxδxa = Nδ2

x (49)

In the case of bidimensional function one �nally have s2
p = Np · δ2

p with p = ξ, η
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Fig. 1. Numerical and Experimental optical set-up.
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Fig. 2. Di�raction pattern with , ωξ = 7mm, ωη = 1.75mm, Rξ = ∞, Rη = −50mm,

D = 150µm, λ = 632.8nm, z = 120mm, δ = 250mm, ξ0 = 0.5mm and η0 = 0.2mm
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Fig. 3. Di�raction pattern with , ωξ = 7mm, ωη = 1.75mm, Rξ = ∞, Rη = −50mm,

D = 150µm, λ = 632.8nm, z = 120mm, δ = 150mm, ξ0 = 0.5mm and η0 = 0.2mm
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Fig. 4. Fractional Fourier transform of the di�raction pattern with aopt
x = −0.564 and

aopt
y = −0.850
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Fig. 5. Fractional Fourier transform of the di�raction pattern with aopt
x = −0.564 and

aopt
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Fig. 6. Di�raction pattern of the world "LASER"
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Fig. 7. Fractional Fourier transform of the di�raction pattern with aopt
x = 0.559 and aopt

y =

0.848
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