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Abstract

We apply a new corrected diffusion approximation for the Erlang C formula to determine
server staffing levels in cost minimization and constraint satisfaction problems. These
problems are motivated by large customer contact centers that are modeled as an M/M/s

queue with s the number of servers or agents. The proposed server staffing levels are
refinements of the celebrated square root staffing rule, and have the appealing property
that they are as simple as the conventional square root staffing rule. In addition, we
provide theoretical support for the empirical fact that square root staffing works well for
moderate-sized systems.

1 Introduction

Customer contact centers, in particular call centers, play a dominant role in society. Customer
contact centers can be of any size and appear in a variety of places. Many call centers are
being managed by economic principles. In such a setting, it is desirable that agents are
highly utilized, answering calls almost 100 percent of the time; on the other hand, a large
fraction of customers should receive no or just a small amount of waiting. In their pioneering
paper, Halfin & Whitt (1981) showed that when the offered load λ is high, and an appropriate
number of agents are employed, a system can achieve a high agent utilization and yet deliver a
good service level by choosing the number of servers as λ+β

√
λ+o(

√
λ). If we omit the small

order term, we call this square root staffing. Since, under square root staffing and large λ,
the system operates both in heavy traffic and can serve a significant fraction of the customers
directly, the system is known to operate in the Quality-and-Efficiency-Driven (QED) regime.
See for example Borst et al. (2004), and the review Gans et al. (2003).

The emergence of large systems like customer contact centers makes the QED regime
practically relevant. This has generated an extensive research effort. Studies focusing on
obtaining limiting approximations for the steady-state distribution or for the time-dependent
process are Jelenkovic et al. (2004), Mandelbaum & Momčilovic (2007), Mandelbaum & Zeltyn
(2005), Puhalskii & Reiman (2000), Reed (2007) and Whitt (2005). Another body of work
is concerned with optimization issues and developing asymptotically control policies, see for
example Atar (2005), Borst et al. (2004), Dai & Tezcan (2007) and Mandelbaum & Zeltyn
(2007).
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The general idea behind square root staffing is as follows. A finite server system is modeled
as a system in heavy-traffic, where the number of servers is large, while at the same time,
the system is critically loaded. This can be achieved by setting s = λ + β

√
λ, and letting

λ→∞. In this way the system reaches the QED regime. For the M/M/s queue, it is shown
in Borst et al. (2004) that this procedure has certain asymptotic optimality properties. Main
ingredient of the optimization problems in Borst et al. (2004) is the Erlang C formula C(s, λ),
representing the probability that a customer is delayed. Halfin & Whitt (1981) showed that,
under square-root staffing, C(s, λ) converges to a nondegenerate limit C∗(β) as λ → ∞. In
the optimal staffing problems they consider, Borst et al. (2004) replace C(s, λ) by C∗(β),
reducing the problem to finding the optimal value β∗. This leads to an approximation s∗
for the optimal staffing level sopt. Based on the Halfin-Whitt limiting regime, one expects
the approximation s∗ to be accurate for large values of λ and s, i.e., large customer contact
centers. Errors or inaccuracies are expected to arise from the fact that the actual system is
finite-sized and has an occupation rate smaller than one.

Nevertheless, Borst et al. (2004) show by numerical experiments that the approximation
s∗ performs exceptionally well in almost all regimes. That is, s∗ usually differs not more than
one agent from the true optimum sopt, even for systems with moderate values of λ and s.
The results in Borst et al. (2004) suggest that any staffing rule of the form λ+β∗

√
λ+o(

√
λ)

is asymptotically optimal. It would therefore be useful to examine what o(
√
λ) really means.

In this paper we explore refinements of the square root staffing principle by utilizing a
new asymptotic expansion for the Erlang C formula. In particular, we characterize the above-
mentioned o(

√
λ) small order term for two staffing problems: we develop staffing rules of the

form
s• = λ+ β∗

√
λ+ β•, (1.1)

with β• a (non-negative) constant. An intriguing finding is that, for the staffing problems we
consider, the constant β• is as easy to compute as β∗. It is possible to evaluate the behavior of
β• in cases where the bulk of the costs is due to waiting costs (i.e. the quality driven regime),
and in the efficiency driven regime, where most costs are related to staffing costs.

These refinements also provide theoretical support for the above-mentioned experiments
in Borst et al. (2004): the precise value of the constant β• turns out to be smaller than one in
a large number of cases. In Section 3, we examine staffing under the constraint that the delay
probability should be smaller than ε. The correction term β• turns out to be smaller than
one for values of ε > 0.1. Only for very small values of ε, in the range of 10−3 and smaller,
it makes sense to include a correction term. We find that square root staffing is off by about
two servers if ε = 10−3 and by three to four servers if ε = 10−5. The corrected staffing level
s• is accurate well within one server in all cases.

Similar insights are obtained for a scenario with linear waiting and staffing costs, as
investigated in Section 4. In that section we establish that a suitable refinement of the form
s• is strongly optimal. In particular, we show that the associated costs are optimal up to
a factor O(1/

√
λ) with respect to the optimal value of the continuous relaxation. This is

stronger than the result in Borst et al. (2004), who obtained optimality up to a factor o(
√
λ).

The results in this paper build on our recent work on bounds and corrected diffusion
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approximations in the Halfin-Whitt regime for the delay probability in the M/D/s queue and
the Erlang B queue, see Janssen et al. (2007, 2008). These papers lay the foundation for
the present work, but do not consider optimal staffing problems; we use some preliminary
results from these papers in Section 2.1. In that section we present bounds for the Erlang
delay formula that are valid for all parameter combinations, and are particularly sharp in the
Halfin-Whitt regime. Using these bounds, we derive a new corrected diffusion approximation
in Section 2.2, which can be used to determine staffing levels.

The rest of this paper is organized as follows. Several preliminary performance results are
developed in Section 2. The staffing problem with a delay constraint is analyzed in Section
3. Section 4 considers the staffing problem with linear waiting and staffing costs. We make
several concluding remarks in Section 5 and present additional proofs in Section 6.

2 Preliminaries: Bounds and expansions for Erlang C

The objective of this section is to present several preliminary results that are necessary in
this paper. Consider the Erlang C (M/M/s) queueing model with Poisson arrival rate λ,
exponential service times with mean 1, and s servers. Let ρ = λ/s < 1 be the system load.
The probability that an arriving customer experiences delay is denoted by C(s, λ). Although
explicit expressions for C(s, λ) exist (see for example Gross & Harris (1998)), these are not
very insightful and tractable if λ of s is large. This motivates to consider approximations that
are sharp for large systems.

To describe these approximations, we introduce the following key parameters:

α =
√
−2s(1− ρ+ ln ρ),

β = (s− λ)/
√
λ,

γ = (s− λ)/
√
s = (1− ρ)

√
s = β

√
ρ.

It has been shown in Lemma 7 of Janssen et al. (2008) that α < β. By expanding 1
2α

2 in
powers of (1− ρ), it easily follows that γ < α, so we have γ < α < β.

Let Φ(u) be the distribution function of the standard normal random variable, and let
φ(u) = 1

2πe
− 1

2
u2

be its density. The Halfin-Whitt approximation of the delay probability
C(s, λ), which is asymptotically exact if λ→∞ and β fixed, reads

C∗(β) =
[
1 +

βΦ(β)
φ(β)

]−1

. (2.1)

Sometimes the approximation C∗(γ) is used, see for example Whitt (1992). In Janssen et al.
(2008) it is shown that the usage of α in the Halfin-Whitt type approximation for the Erlang
B formula leads to a better approximation than the usage of β or γ.

In Section 2.1 we present upper and lower bounds for the Erlang C formula which have
similar structure as the Halfin-Whitt approximation. These bounds are based on our results
in Janssen et al. (2008) and are shown to hold for the continuous extension of the Erlang C
formula. These bounds are applied in Section 2.2, which presents a new corrected diffusion
approximation for the continued Erlang C formula. Proofs of the results in this section are
presented in Section 6.
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2.1 Bounds for the Erlang C formula

The next result provides bounds for the probability C(s, λ) that a customer has to wait in an
M/M/s queue as described above. It follows directly from a similar result for the Erlang B
formula, which is derived in [12], and the relation

C(s, λ)−1 = ρ+ (1− ρ)B(s, λ)−1. (2.2)

which holds for s > λ.

Theorem 1.

C(s, λ) ≤
[
ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

)]−1

, (2.3)

and

C(s, λ) ≥
[
ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

+
1

φ(α)
1

12s− 1

)]−1

. (2.4)

As mentioned in the introduction, the structure of these bounds is quite similar to the
Halfin-Whitt approximation, which is obtained by taking λ → ∞ while keeping β fixed. In
this asymptotic regime s→∞, one can see that α and γ both converge to β. With the above
theorem at hand, convergence of C(s, λ) towards the Halfin-Whitt function C∗(β) is obvious.
In particular, our bounds are sharp in the Halfin-Whitt regime. The difference between the
lower and upper bound is only O(1/s) (in fact, it is approximately 1/(12s − 1)). We take
the opportunity to illustrate the quality of these bounds in Table 1, of which the results are
self-explanatory.

s λ α (2.4) C(s, λ) (2.3) (2.3)−(2.4)
C(s,λ)

1 3.8197·10−1 8.2993·10−1 3.6571·10−1 3.8197·10−1 3.9437·10−1 7.5040·10−2

2 1.0000·100 8.7897·10−1 3.2678·10−1 3.3333·10−1 3.3936·10−1 3.7727·10−2

5 3.2087·100 9.2364·10−1 2.8886·10−1 2.9097·10−1 2.9328·10−1 1.5181·10−2

10 7.2984·100 9.4624·10−1 2.6937·10−1 2.7030·10−1 2.7142·10−1 7.6160·10−3

20 1.6000·101 9.6215·10−1 2.5565·10−1 2.5608·10−1 2.5663·10−1 3.8180·10−3

50 4.3411·101 9.7618·10−1 2.4361·10−1 2.4377·10−1 2.4398·10−1 1.5310·10−3

100 9.0488·101 9.8320·10−1 2.3761·10−1 2.3769·10−1 2.3779·10−1 7.6654·10−4

200 1.8635·102 9.8815·10−1 2.3340·10−1 2.3344·10−1 2.3349·10−1 3.8365·10−4

500 4.7813·102 9.9252·10−1 2.2969·10−1 2.2970·10−1 2.2972·10−1 1.5360·10−4

1000 9.6887·102 9.9472·10−1 2.2783·10−1 2.2783·10−1 2.2784·10−1 7.6836·10−5

Table 1: Results for the bounds on C(s, λ) for β = 1.

The Erlang delay formula C(s, λ) in its basic form is only defined for integer values of
s. Due to the close relation between the Poisson distribution and the incomplete Gamma
function, its continuous extended form that holds for all real s > λ is given by (see for
example Jagers & Van Doorn (1986))

C(s, λ)−1 = λ

∫ ∞
0

te−λt(1 + t)s−1dt. (2.5)
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A natural question is whether the bounds in Theorem 1 are also valid for this continuous
extension. Since the corresponding bounds for the Erlang B formula in Janssen et al. (2008)
are derived from a different continuous extension for the Erlang B formula, this is non-trivial
and needs to be addressed. This is taken care off by the following result.

Theorem 2. The bounds in Theorem 1 are valid for all real s > λ, for the extension of
C(s, λ) in (2.5).

The proof of this theorem is deferred to Section 6.1. As explained in Borst et al. (2004),
determining the optimal number of agents can be done by first solving a continuous opti-
mization problem involving the right-hand side of (2.5). Jagers & Van Doorn (1986) have
shown that C(s, λ) is convex in s. By convexity, the optimal number of agents is then deter-
mined by a round-up, or round-down, whichever leads to the most beneficial feasible solution.
Therefore, we can (and will) always focus on the continuous relaxation of a staffing problem.

2.2 A corrected diffusion approximation

The bounds in the previous section can be applied to obtain a two-term corrected diffusion
approximation of the delay probability in the case that λ→∞ and β is fixed. In this case, we
write C(s, λ) = Cλ(β). The results of Halfin & Whitt (1981) imply that Cλ(β)→ C∗(β). The
theorem in this section is a refinement of this result and appears to be new. For corrected
diffusion approximations for single-server queues, we refer to Blanchet & Glynn (2006) and
Siegmund (1979).

We need the following notation. A function f(β, λ) is said to be of UO(1/λ) if for any
0 < βg < βd <∞,

sup
λ>0,β∈[βg ,βd]

λ|f(β, λ)| <∞. (2.6)

This is a useful notion, since it allows one to vary β with λ, which we will do in the next
section, where we will optimize over β. All functions we will consider that are of O(1/λ) will
be UO(1/λ) as well.

Theorem 3. As λ→∞,

Cλ(β) = C∗(β) + C•(β)
β√
λ

+ UO(1/λ), (2.7)

with

C•(β) = C∗(β)2

[
1
3

+
β2

6
+

Φ(β)
φ(β)

(
β

2
+
β3

6

)]
. (2.8)

The proof of this result is based on Theorem 1, and is presented in Section 6.2. Although
this result may be interesting in itself, its main purpose in this paper is that it serves as
departure point for determining refined staffing levels of the form (1.1). To evaluate the
performance, we recommend using the bounds in Theorem 1, or the series expansions in
Janssen et al. (2008). Refining the square root staffing levels will be the topic of the next
two sections.
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3 Corrected staffing under a delay constraint

A classical problem is to determine the number of servers necessary to ensure that the fraction
of customers that need to wait is below a certain threshold, say ε.

Borst et al. (2007) propose to determine the number of servers as a round-up of s∗ =
λ + β∗(ε)

√
λ, with β = β∗ the solution of C∗(β(ε)) = ε. A natural question is how well

this approximation performs. To obtain more insight, we propose to replace β∗(ε) with
β∗(ε) + β•(ε)/

√
λ, giving rise to the corrected staffing level s• = λ+ β∗(ε)

√
λ+ β•(ε), where

β•(ε) needs to be determined. Surprisingly, as will be shown below, β•(ε) can be written
explicitly in terms of β∗(ε) so that the additional computational requirement for this staffing
level is negligible.

The goal is to determine an approximation of β such that

Cλ(β) = C∗(β) + C•(β)
β√
λ

+ UO(1/λ) = ε. (3.1)

It therefore makes sense to consider the equation

C∗(β) + C•(β)
β√
λ

= ε. (3.2)

We fix ε and write β∗ = β∗(ε). Replace β by β∗+g(λ) in (3.2). Apply a Taylor approximation
for C∗(β) to obtain

C∗(β∗) + g(λ)C ′∗(β∗) +O(g(λ)2) + C•(β∗)
β∗√
λ

+O(g(λ)/
√
λ) = ε. (3.3)

By definition, the first term equals ε, which yields

g(λ) = −C•(β∗)
C ′∗(β∗)

β∗√
λ

+O(1/λ). (3.4)

We thus define
β•(ε) = −C•(β∗(ε))

C ′∗(β∗(ε))
β∗(ε). (3.5)

This expression can be simplified by using the identity C∗(β∗(ε)) = ε, which implies

β∗(ε)Φ(β∗(ε))
φ(β∗(ε))

=
1
ε
− 1. (3.6)

In addition, observe that

C ′∗(β) = −C∗(β)2

(
Φ(β)
φ(β)

+
β

C∗(β)

)
. (3.7)

Applying these results several times we obtain the following theorem.

Theorem 4.

β•(ε) = β∗(ε)
(1− ε)

(
1
2β∗(ε) + 1

6β∗(ε)
3
)

+ ε
(

1
3β∗(ε) + 1

6β∗(ε)
3
)

1− ε+ β∗(ε)2
. (3.8)
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If ε ↓ 0, it can be shown by taking logarithms in (3.6) that β∗(ε) ∼
√
−2 ln ε. We therefore

see that
β•(ε) ∼

1
6
β∗(ε)2 ∼ 1

3
ln(1/ε). (3.9)

Based on this expansion, one could conclude that standard square root staffing may produce
rather optimistic estimates of the required number of servers when ε is small. Since ln 10 ≈
2.3 < 3, a safe choice is to add n more servers to s∗ if the delay requirement is 10−n. If ε→ 1,
then β∗(ε) ∼ (1− ε)

√
2/π, implying that

β•(ε) ∼
2

3π
(1− ε). (3.10)

This suggests that the conventional square root staffing algorithm is sharp when the delay
constraint is not too severe. This is further illustrated by the Figure 1, which plots β•(ε).

0.2 0.4 0.6 0.8 1
delay probability

0.25

0.5

0.75

1

1.25

1.5

1.75

2
correction

Figure 1: The correction term β• as function of the delay probability ε

Figure 1 clearly shows why square root staffing works so well: the next term in the expan-
sion indicates that square root staffing is off by less than one server if the delay requirement
is not too stringent. If the delay requirement becomes very strict, it seems worthwhile to add
a correction term.

We now compare the staffing levels s∗ and s• with the optimal staffing level sopt, which
is the solution of C(s, λ) = ε (before roundoff). For values of ε around 0.5 we find that the
difference between the optimal staffing level and s∗ (or s•) is well within one server. It is
therefore more interesting to show the results for smaller values of ε. Tables 2, 3 and 4 report
results for ε = 10−1, 10−3 and 10−5. In all of these cases, the corrected staffing level produces
very accurate results; in all cases s• is within one server of sopt. If the desired probability of
delay is 10 percent, s∗ is not off by more than one server. As the desired delay probability
gets smaller, the square root staffing level s∗ underestimates the correct staffing level - up to

7



3 servers for ε = 10−5. In all cases β• accurately predicts the deviation of s∗ from the optimal
staffing level.

λ sopt s∗ s∗ − sopt s• s• − sopt

1 2.9315·100 2.4202·100 -5.1134·10−1 2.9868·100 5.5299·10−2

2 4.5328·100 4.0084·100 -5.2435·10−1 4.5751·100 4.2293·10−2

5 8.7134·100 8.1756·100 -5.3775·10−1 8.7423·100 2.8892·10−2

10 1.5036·101 1.4491·101 -5.4534·10−1 1.5058·101 2.1304·10−2

20 2.6902·101 2.6351·101 -5.5110·10−1 2.6918·101 1.5537·10−2

50 6.0599·101 6.0042·101 -5.5653·10−1 6.0609·101 1.0109·10−2

100 1.1476·102 1.1420·102 -5.5939·10−1 1.1477·102 7.2537·10−3

200 2.2065·102 2.2008·102 -5.6146·10−1 2.2065·102 5.1831·10−3

500 5.3232·102 5.3176·102 -5.6333·10−1 5.3232·102 3.3089·10−3

1000 1.0455·103 1.0449·103 -5.6429·10−1 1.0455·103 2.3509·10−3

Table 2: Results for ε = 10−1; β∗ = 1.4202 and β• = 0.5666.

λ sopt s∗ s∗ − sopt s• s• − sopt

1 5.7408·100 4.1153·100 -1.6256·100 6.0350·100 2.9412·10−1

2 8.0910·100 6.4056·100 -1.6854·100 8.3253·100 2.3433·10−1

5 1.3718·101 1.1966·101 -1.7516·100 1.3886·101 1.6811·10−1

10 2.1643·101 1.9851·101 -1.7917·100 2.1771·101 1.2796·10−1

20 3.5756·101 3.3932·101 -1.8239·100 3.5852·101 9.5831·10−2

50 7.3884·101 7.2028·101 -1.8556·100 7.3948·101 6.4077·10−2

100 1.3303·102 1.3115·102 -1.8730·100 1.3307·102 4.6688·10−2

200 2.4594·102 2.4406·102 -1.8859·100 2.4598·102 3.3751·10−2

500 5.7156·102 5.6966·102 -1.8979·100 5.7158·102 2.1783·10−2

1000 1.1004·103 1.0985·103 -1.9041·100 1.1004·103 1.5565·10−2

Table 3: Results for ε = 10−3; β∗ = 3.1153 and β• = 1.9197.

4 Corrected staffing under a linear cost structure

The second staffing problem we consider determines the number of servers s in such a way
that a certain cost function is minimized. As in the previous section, this is equivalent to
choosing β. It is obvious that optimizing total costs using C∗(β) is more tractable than using
Cλ(β). Extensive numerical experiments conducted in Borst et al. (2004) show that optimal
agent staffing based on C∗(β) rather than Cλ(β) lead to staffing levels which are usually not
more off than a single agent. The cost structure we consider is a special case of that in Borst
et al. (2004), and is as follows. Waiting costs are assumed to be w per customer per time
unit, and service costs are assumed to equal q per agent per time unit. The expected waiting
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 8.0194·100 5.2758·100 -2.7436·100 8.6388·100 6.1943·10−1

2 1.0907·101 8.0468·100 -2.8602·100 1.1410·101 5.0281·10−1

5 1.7555·101 1.4561·101 -2.9937·100 1.7924·101 3.6935·10−1

10 2.6598·101 2.3521·101 -3.0773·100 2.6884·101 2.8571·10−1

20 4.2268·101 3.9122·101 -3.1460·100 4.2485·101 2.1703·10−1

50 8.3450·101 8.0234·101 -3.2157·100 8.3597·101 1.4735·10−1

100 1.4601·102 1.4276·102 -3.2547·100 1.4612·102 1.0833·10−1

200 2.6375·102 2.6047·102 -3.2842·100 2.6383·102 7.8861·10−2

500 5.9892·102 5.9561·102 -3.3118·100 5.9897·102 5.1241·10−2

1000 1.1385·103 1.1352·103 -3.3263·100 1.1386·103 3.6746·10−2

Table 4: Results for ε = 10−5; β∗ = 4.2758 and β• = 3.3631.

time is equal to C(s, λ)/(s(1−ρ)). The expected total costs K(s, λ) per unit of time becomes

K(s, λ) = w
λ

(1− ρ)s
Cλ(β) + qs (4.1)

= w
√
λ
Cλ(β)
β

+ qλ+ qβ
√
λ (4.2)

= qλ+
√
λ

(
wCλ(β)

β
+ qβ

)
(4.3)

=: qλ+
√
λKλ(β). (4.4)

The structure of this cost function is illuminating, since it can be decomposed into two terms.
The first term, qλ, is the amount of costs necessary to keep the system stable, and it is
independent of β. To optimize (that is, minimize) the second term over β, the idea is to
replace Kλ(β) by a simpler cost function. To explain the general procedure outlined in Borst
et al. (2004) in the present case, let β∗ correspond to the optimal staffing level found by
optimizing the function

K∗(β) =
w

β
C∗(β) + qβ. (4.5)

Let s∗ = λ+ β∗
√
λ and let Kopt be the optimal cost level of the continuous relaxation. It is

obvious that Kopt ≤ K(s∗, λ). In Borst et al. (2004) it is shown that the staffing level s∗ is
asymptotically optimal in the sense that

K(s∗, λ) = Kopt + o(
√
λ). (4.6)

This brings us to the goal of the present section. Our aim is to find a staffing level s• such
that the stronger result

K(s•, λ) = Kopt + o(1) (4.7)

holds. Again, this staffing level is of the form

s• = λ+ β∗
√
λ+ β• = s∗ + β•. (4.8)

As in the previous section, we shall give an explicit characterization of β•.
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4.1 A corrected optimization problem

Theorem 3 provides an approximation for Cλ(β) that is correct up to UO(1/λ). It is clear
that we can write

Kλ(β) = K∗(β) +
w√
λ
C•(β) + UO(1/λ). (4.9)

This motivates us to consider the cost function

K•(β) = K∗(β) +
w√
λ
C•(β). (4.10)

Let β∗(λ) be the optimal point of this cost function. It is clear that β∗(λ) is the solution of
the equation

K ′∗(β) = − w√
λ
C ′•(β). (4.11)

Write β∗(λ) = β∗ + ε(λ). From the last equation, and since C ′• is continuous, it follows that
ε(λ) ↓ 0. Since K ′∗(β∗) = 0, and by invoking Taylor’s theorem, we observe that

K ′∗(β∗(λ)) = ε(λ)K ′′∗ (β∗) +O(ε(λ)2). (4.12)

In addition, we have

w√
λ
C ′•(β∗(λ)) +O(1/λ) =

w√
λ
C ′•(β∗) +O(

ε(λ)√
λ

) +O(1/λ). (4.13)

Combining the last three displays, we conclude that

ε(λ) = −wC
′
•(β∗)

K ′′∗ (β∗)
1√
λ

+O(1/λ), (4.14)

Define β• = −wC′•(β∗)
K′′∗ (β∗)

. This formula for β• can be simplified by noting that

K ′′∗ (β) =
w

β

[
C ′′∗ (β)− 2

β
C ′∗(β) +

2
β2
C ′′∗ (β)

]
. (4.15)

This yields

β• = − β∗C
′
•(β∗)

C ′′∗ (β∗)− 2
β∗
C ′∗(β∗) + 2

β2
∗
C∗(β∗)

= − β∗C
′
•(β∗)

C ′′∗ (β∗) + 2q/w
. (4.16)

We are now ready to prove the main result of this section.

Theorem 5. Let s• = s∗ + β• with β• defined by (4.16). Then

K(s•, λ) = Kopt +O(1/
√
λ). (4.17)

Proof. Let β̄(λ) be the optimizing value of Kλ(β) and observe that

Kopt = λq +
√
λKλ(β̄(λ))

= λq +
√
λ
(
K•(β̄(λ)) + UO(1/λ)

)
.

≥ λq +
√
λK•(β∗(λ)) +O(1/

√
λ).

10



The third step follows from the property K•(β̄(λ)) ≥ K•(β∗(λ)) and the result β̄(λ) → β∗,
which is shown below. From the relation between β∗(λ) and β∗ + β•/

√
λ, it follows that

K•(β∗(λ)) = K•(β∗ + β•/
√
λ) +O(1/λ). (4.18)

This yields
K(s•, λ) ≤ Kopt +O(1/

√
λ). (4.19)

The proof is completed by noting that K(s•, λ) ≥ Kopt.

In the proof above we have used the following fact.

Lemma 1. β̄(λ)→ β∗.

We could not find a proof of this result in the literature, therefore we include it for
completeness.

Proof. We first note that lim supλ→∞ β̄(λ) < ∞ as shown in Borst et al. (2004). Next we
show that lim infλ β̄(λ) > 0. For this, we derive a lower bound on the delay probability that
is explicit in β, using the lower bound in Theorem 1, and using that γ < β and also α < β,
cf. [11], Lemma 7. Combining these bounds yields

Cλ(β)−1 ≤ 1 +
12
11

√
2πβ exp{1

2
β2} =: Ĉλ(β)−1.

Replace Cλ(β) with Ĉλ(β) in the cost optimization problem, and call the corresponding cost
function K̂λ(β). If there would exist a subsequence (λn) such that β(λn)→ 0 as n→∞, this
would imply that the cost Kλ(β(λn)) would be lower bounded by K̂λ(β(λn)), which diverges
along the chosen subsequence. This violates the fact that Kλ(β(λn)) → K∗(β∗) which is
shown in Borst et al. (2004).

Now assume that λ → ∞ along a subsequence such that β(λ) → β̃ for some β̃. By the
above considerations, β̃ ∈ (0,∞). By Theorem 3, Cλ(β) converges to C∗(β) uniformly in a
neighborhood of β̃, which implies that Kλ(β(λ)) → K∗(β̃). Since also Kλ(β(λ)) → K∗(β∗),
we conclude that K∗(β̃) = K∗(β∗). Since K∗ is strictly convex, we arrive at β∗ = β̃. This
holds for any converging subsequence, from which the statement follows.

Like in the previous section, we can estimate the behavior of the correction term β•(q/w)
as the ratio q/w becomes small or large, although the analysis is more involved here. Set
t = q/w. Remark 6.4 of Borst et al. (2004) implies that β∗(t) ∼

√
−2 ln t as t ↓ 0 and

β∗(t) ∼ 1/
√
t as t→∞.

Proposition 1. In the quality driven regime (i.e. as t ↓ 0):

β•(t) ∼
1
9

ln(1/t). (4.20)

In the efficiency driven regime (as t ↑ ∞):

β•(t) ∼
1

3
√

2π
t−3/2. (4.21)
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The proof of this result is presented in Section 6.3.

The asymptotic estimates are illustrated by Figure 2, which plots β• as function of q/w.
Again, the moderate size of our correction term shows why square root staffing works so well
for almost every value of q/w. Only for large values of w (with respect to q), it is necessary
to include a correction term.

0.5 1 1.5 2 2.5 3

q
����

w

0.2

0.4

0.6

0.8

1

correction

Figure 2: The correction term β• as function of q (for w = 1)

We close this section with a numerical illustration of our results. For values of q/w that
are moderate, the difference between the optimal staffing level, square root staffing, and cor-
rected staffing is within a single agent. Here we restrict to presenting numerical results for
q/w = 10−1, 10−3 and 10−5, see Tables 5–7. The conclusions are similar to those in the
previous section: while the corrected staffing algorithm is accurate for all cost structures,
conventional square root staffing tends to underestimate the optimal number of agents as
waiting costs become higher.

5 Concluding remarks

This paper established a corrected diffusion approximation for the Erlang delay formula,
that yields refinements of square root staffing levels as considered by Borst et al. (2004).
These refinements enable an analytical assessment of the accuracy of square root staffing. If
the fraction of customers that have to wait is not too small (say 0.05 or higher), then the
correction term β• is well within one server. This indicates that the speed of convergence of
the optimal safety staffing factor to its limiting value is fast, which explains why square root
staffing works so well for moderate-sized systems. If the costs of delay are more stringent,
then including a correction term makes sense.
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 2.9239·100 2.6674·100 -2.5645·10−1 3.0059·100 8.2069·10−2

2 4.6328·100 4.3581·100 -2.7469·10−1 4.6966·100 6.3828·10−2

5 9.0226·100 8.7284·100 -2.9411·10−1 9.0670·100 4.4410·10−2

10 1.5578·101 1.5273·101 -3.0540·10−1 1.5611·101 3.3117·10−2

20 2.7771·101 2.7457·101 -3.1415·10−1 2.7795·101 2.4369·10−2

50 6.2113·101 6.1790·101 -3.2252·10−1 6.2129·101 1.5994·10−2

100 1.1700·102 1.1667·102 -3.2698·10−1 1.1701·102 1.1533·10−2

200 2.2391·102 2.2358·102 -3.3018·10−1 2.2392·102 8.3396·10−3

500 5.3762·102 5.3728·102 -3.3322·10−1 5.3762·102 5.2957·10−3

1000 1.0531·103 1.0527·103 -3.3476·10−1 1.0531·103 3.7525·10−3

Table 5: Results for q/w = 10−1; β∗ = 1.6674 and β• = 0.3385.

λ sopt s∗ s∗ − sopt s• s• − sopt

1 5.3309·100 4.1678·100 -1.1631·100 5.6809·100 3.4999·10−1

2 7.7131·100 6.4800·100 -1.2331·100 7.9931·100 2.8000·10−1

5 1.3395·101 1.2083·101 -1.3111·100 1.3597·101 2.0196·10−1

10 2.1376·101 2.0018·101 -1.3588·100 2.1531·101 1.5430·10−1

20 3.5564·101 3.4167·101 -1.3967·100 3.5680·101 1.1638·10−1

50 7.3835·101 7.2400·101 -1.4351·100 7.3913·101 7.7988·10−2

100 1.3313·102 1.3168·102 -1.4560·100 1.3319·102 5.7085·10−2

200 2.4627·102 2.4480·102 -1.4715·100 2.4631·102 4.1617·10−2

500 5.7232·102 5.7083·102 -1.4855·100 5.7235·102 2.7606·10−2

1000 1.1017·103 1.1002·103 -1.4921·100 1.1017·103 2.1011·10−2

Table 6: Results for q/w = 10−3; β∗ = 3.1678 and β• = 1.5131.

We are currently carrying out a similar program for the Erlang model with abandonments.
Mandelbaum & Zeltyn (2007) report less favorable numerical results on conventional square
root staffing in this setting; it therefore makes sense to include a correction term in this case.

6 Additional Proofs

6.1 Proof of Theorem 2

The bounds in Theorem 1 are based on similar bounds for Erlang B, which in turn are based
on a continuous extension of the Erlang B formula, derived in Janssen et al. (2008). This
extension reads

C(s, λ)−1 = ρ+ (1− ρ)
1

φ(α)
√

2π

∫ α

−∞
e−

x2

2 y′(x/
√
s)dx, (6.1)
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λ sopt s∗ s∗ − sopt s• s• − sopt

1 7.5224·100 5.2985·100 -2.2239·100 8.2139·100 6.9140·10−1

2 1.0432·101 8.0790·100 -2.3525·100 1.0994·101 5.6280·10−1

5 1.7112·101 1.4612·101 -2.4998·100 1.7527·101 4.1549·10−1

10 2.6186·101 2.3593·101 -2.5929·100 2.6508·101 3.2238·10−1

20 4.1894·101 3.9224·101 -2.6702·100 4.2139·101 2.4509·10−1

50 8.3146·101 8.0395·101 -2.7505·100 8.3311·101 1.6480·10−1

100 1.4578·102 1.4299·102 -2.7962·100 1.4590·102 1.1915·10−1

200 2.6358·102 2.6079·102 -2.7904·100 2.6371·102 1.2491·10−1

500 5.9897·102 5.9612·102 -2.8528·100 5.9903·102 6.2537·10−2

1000 1.1388·103 1.1359·103 -2.8635·100 1.1388·103 5.1818·10−2

Table 7: Results for q/w = 10−5; β∗ = 4.2985 and β• = 2.9153.

where y is the function that solves the equation

y(x) + ln(1− y(x)) = −1
2
x2, y(0) = 0.

Our next result states that this continuous extension is identical to the expression in the
right-hand side of (2.5)

Lemma 1. For all s > λ,

ρ+ (1− ρ)
1

φ(α)
√

2π

∫ α

−∞
e−

x2

2 y′(x/
√
s)dx = λ

∫ ∞
0

e−λtt(1 + t)s−1dt. (6.2)

Proof. The continuous extension for C(s, λ)−1 on the right-hand side of (6.2) is similar to the
continuous extension of the Erlang B (loss) formula B(s, λ), which reads

B(s, λ)−1 = λ

∫ ∞
0

e−λt(1 + t)sdt. (6.3)

In Janssen et al. (2008), the following identity is shown:

1
φ(α)

√
2π

∫ α

−∞
e−

x2

2 y′(x/
√
s)dx =

ses

φ(α)
√

2π

∫ ∞
ρ

use−usdu. (6.4)

Finally, note that, using the definition of φ and α in the first step and the change of variables
v = u/ρ in the second,

ses

φ(α)
√

2π

∫ ∞
ρ

use−usdu = seλρ−s
∫ ∞
u=ρ

e−ususdu

= λe−λ
∫ ∞
v=1

e−vλvsdv

= λ

∫ ∞
t=0

e−tλ(t+ 1)sdt.

Combining this with (6.3) and (2.2) concludes the proof.
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6.2 Proof of Theorem 3

From Theorem 1 it can be seen that

Cλ(β)−1 = ρ+ γ

(
Φ(α)
φ(α)

+
2
3

1√
s

)
+ UO(1/λ). (6.5)

Simple computations show that

ρ = 1− β√
λ

+ UO(1/λ), (6.6)

1/
√
s = 1/

√
λ+ UO(1/λ), (6.7)

α2 = β2 − 1
3
β3 1√

λ
+ UO(1/λ), (6.8)

α = β − 1
6
β2 1√

λ
+ UO(1/λ), (6.9)

γ = β − 1
2
β2 1√

λ
+ UO(1/λ). (6.10)

These relations will be used several times. The property in (2.6) for the remainder terms
follows from the estimate for the remainder term in the corresponding Taylor series expan-
sions, combined with the fact that all second derivatives are continuous (and therefore locally
bounded) functions. A similar argument holds for the computations below. Next, we write

Φ(α)
φ(α)

=
Φ(β)
φ(β)

+
Φ(α)− Φ(β)

φ(β)
+ Φ(α)

(
1

φ(α)
− 1
φ(β)

)
. (6.11)

Number the terms on the right hand side by I, II, III. We see that, using Φ(α) − Φ(β) =
(α− β)φ(β) + UO(1/λ),

II = φ(β)−1(α− β)φ(β) + UO(1/λ)

= α− β +O∗(1/λ) = −1
6
β2 1√

λ
+ UO(1/λ).

For the third term, observe that the derivative of 1/φ(x) equals x/φ(x). Therefore,

1
φ(α)

− 1
φ(β)

= (α− β)
β

φ(β)
+ UO((α− β)2)

= − 1
φ(β)

1
6
β3 1√

λ
+ UO(1/λ).

This yields

III = −Φ(α)
φ(β)

1
6
β3 1√

λ
+ UO(1/λ) = −Φ(β)

φ(β)
1
6
β3 1√

λ
+ UO(1/λ). (6.12)

Inserting these estimates for II and III in (6.5), we obtain
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Cλ(β)−1 = ρ+ γ
Φ(α)
φ(α)

+
2
3
γ

1√
λ

+ UO(1/λ)

= ρ+ γ
Φ(α)
φ(α)

+
2
3
β

1√
λ

+ UO(1/λ)

= 1− β

3
√
λ

+ γ
Φ(α)
φ(α)

+ UO(1/λ)

= 1− β

3
√
λ

+ γ
Φ(β)
φ(β)

− γβ2

6
√
λ
− γΦ(β)

φ(β)
β3

6
√
λ

+ UO(1/λ)

= C∗(β)−1 − β

3
√
λ
− Φ(β)
φ(β)

β2

2
√
λ
− β3

6
√
λ
− Φ(β)
φ(β)

β4

6
√
λ

+ UO(1/λ)

= C∗(β)−1 − 1√
λ

[
β

3
+
β3

6
+
βΦ(β)
φ(β)

(
β

2
+
β3

6

)]
+ UO(1/λ).

The expansion for Cλ(β) then easily follows.

6.3 Proof of Proposition 1

We first need to work out the expressions for C ′∗ and C ′′∗ . Since the derivative of Φ(β)/φ(β)
equals 1/C∗(β), it follows that

C ′∗(β) = −C∗(β)2 Φ(β)
φ(β)

− βC∗(β). (6.13)

To get a convenient form for the second derivative, note that

C ′′∗ (β) = −2C∗(β)
Φ(β)
φ(β)

C ′∗(β)− 2C∗(β)− βC ′∗(β)

= 2C∗(β)3

(
Φ(β)
φ(β)

)2

+ 2βC∗(β)2 Φ(β)
φ(β)

− 2C∗(β) + βC∗(β)2 Φ(β)
φ(β)

+ β2C∗(β)

= C∗(β)

[
2
(

Φ(β)
φ(β)

)2

+ 2βC∗(β)
Φ(β)
φ(β)

− 2 + C∗(β)
βΦ(β)
φ(β)

+ β2

]

= C∗(β)
[

2
β2

(1− C∗(β))2 + 1− 3C∗(β) + β2

]
.

In the last step we used the identity C∗(β)βΦ(β)
φ(β) = 1− C∗(β).

We now use these expressions to find the limiting behavior of these quantities at 0 and
∞. Using C(β) ∼ φ(β)/β as β →∞, it follows that

C ′∗(β) ∼ −φ(β),

C ′′∗ (β) ∼ βφ(β),

as β →∞. When β ↓ 0, observe that 1− C(β) ∼ 1, which implies

C ′∗(β) → −
√
π/2

C ′′∗ (β) → π − 2.
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Finally, rewrite C•(β) into

C•(β) = C∗(β)
(

1
2

+
β2

6

)
− 1

6
C∗(β)2, (6.14)

which implies that

C ′•(β) = C ′∗(β)
(

1
2

+
β2

6

)
+ C∗(β)

β

3
− 1

3
C∗(β)C ′∗(β). (6.15)

From this expression and the above results, it easily follows that

C ′•(β) ∼ −β
2

6
φ(β) (6.16)

as β →∞, and that

C ′•(β)→ −1
6

√
π/2 (6.17)

as β ↓ 0.
Replace now β with β∗(t) in the above expressions. Suppose first that t → 0, in which

case β∗(t)→∞. Combining all the above we see that

β•(t) ∼
1
6
β∗(t)

β∗(t)2φ(β∗(t))
β∗(t)φ(β∗(t)) + 2t

=
1
6
β2
∗(t)

1
1 + 2 t

β∗(t)φ(β∗(t))

.

Since β∗(t) satisfies the first order condition

t =
C∗(β)
β∗(t)2

+ C∗(β∗(t))2 Φ(β∗(t))
φ(β∗(t))

+ β∗(t)C∗(β∗(t)), (6.18)

we conclude that t
β∗(t)φ(β∗(t))

→ 1 as t ↓ 0. This implies

β•(t) ∼
1
18
β∗(t)2 ∼ 1

9
ln(1/t). (6.19)

Next, consider the case that t→∞, in which case β∗(t)→ 0. Combining the above results
once more we arrive at

β•(t) ∼ β∗(t)
1

6
√
π/2

1
π − 2 + 2t

∼ 1
3
√

2π
t−3/2. (6.20)
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