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On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary,
circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are
obtained by expanding the velocity distributions in terms of orthogonal polynomials R0

2n(σ/a) =
Pn(2(σ/a)2 − 1) with Pn the Legendre polynomials. The terms R0

2n give rise to a closed-form
expression for the pressure on-axis as well as for the far-field pressure. Furthermore, for a large
number of velocity profiles, including those associated with the rigid piston, the simply supported
radiator, and the clamped radiators as well as Gaussian radiators, there are closed form expressions
for the required expansion coefficients. In particular, for the rigid, simply supported and clamped
radiators, this results in explicit, finite-series expressions for both the on-axis and far-field pressure.
In the reverse direction, a method of estimating velocity distributions from (measured) on-axis
pressures by matching in terms of expansion coefficients is proposed. Together with the forward
far-field computation scheme, this yields a method for far-field loudspeaker assessment from on-axis
data (generalized Keele scheme). The forward computation scheme is extended to dome-shaped
radiators with arbitrary velocity distributions.

PACS numbers: 43.38 Ar, 43.20 Bi, 43.20 Px, 43.40 At
Keywords: Zernike expansion, piston sound radiation, non-uniform profile, on-axis pressure, directivity,
far-field approximation, loudspeaker

I. INTRODUCTION

In this paper a new analytic method for the calcula-
tion of on-axis and far-field sound pressure is presented.
The theory of sound radiation from a flat or dome-shaped
radiator in a rigid infinite baffle until 1980 is broadly re-
viewed by Harris1 while a whole set of analytic results for
the circular symmetric flat piston radiator has been given
by Greenspan2. Recent analytical and/or numerical ef-
forts have been undertaken by Mast and Yu3, Hansen4,
Mellow5, and Kelly and McGough6, to name just a few.
The point of view taken in the present paper viz. the ap-
plications to sound radiation of the analytical results as
developed in the diffraction theory of optical aberrations
by Nijboer7 and Zernike and Nijboer8 (also see Ref.9,10)
is, however, apparently new. Using this new approach,
many of the analytic results in Greenspan2, such as those
on on-axis pressure and those on reaction on radiator
and on radiated power, and the results in text books11
on far-field expressions and directivity can be presented
and extended in a systematic fashion. The aim of the
present paper is to work out this approach for the results
on on-axis pressure and far-field expressions for arbitrary
velocity distributions on both flat piston radiators and
dome-shaped radiators. The radiated pressure is given
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in integral form by the Rayleigh integral11,12 as

p(r, t) =
iρ0ck

2π
eiωt

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

where ρ0 is the density of the medium, c is the speed of
sound in the medium, k = ω/c is the wave number and
ω is the radial frequency of the vibrating surface S. Fur-
thermore t is time, r is a field point, rs is a point on the
surface S, r′ = |r − rs| is the distance between r and rs,
and v(rs) is the normal component of a (not necessarily
uniform) velocity profile on the surface S. The time vari-
able t in p(r, t) and the harmonic factor exp(iωt) in front
of the integral in Eq. (1) will be omitted in the sequel.
For transparency of exposition, the surface S is assumed
initially to be a disk of radius a, |rs| = rs ≤ a, with
average velocity Vs; later on, generalization to the case
of dome-shaped radiator surfaces S is done. See Fig. I
for the geometry and notations used in the case of a flat
piston. The volume velocity at the piston is

∫
S

v(rs) dS = Vsπa
2. (2)

Frankort13 has shown that loudspeaker cones mainly
vibrate in a radially symmetric fashion. Therefore the
attention in this paper is restricted to radially sym-
metric velocity distributions v, which are denoted as
v(σ), 0 ≤ σ ≤ a. Under an integrability condition, viz.
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FIG. 1. Set-up and notations.

rs = (xs, ys, 0) = (σ cosϕ, σ sinϕ, 0)
r = (x, y, z) = (r sin θ cosψ, r sin θ sinψ, r cos θ)

w = r sin θ = (x2 + y2)1/2, z = r cos θ

r = |r| = (x2 + y2 + z2)1/2 = (w2 + z2)1/2

r′ = |r − rs| = (r2 + σ2 − 2σw cos(ψ − ϕ))1/2.

∫
S
|v(rs)|2dS <∞, these v’s admit a representation

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a) , 0 ≤ σ ≤ a , (3)

in which

R0
2n(ρ) = Pn(2ρ2 − 1) , 0 ≤ ρ ≤ 1 , (4)

where Pn are the Legendre polynomials14. (The nota-
tion R0

2n(ρ) stems from the analytical theory of optical
aberrations7–9.) The main aim of the present paper is to
establish analytical results for the on-axis and far-field
pressure p(x) in Eq. (1) related to the coefficients un and
polynomials R0

2n occurring in the expansion in Eq. (3).
By orthogonality of the terms R0

2n(ρ), the coefficients
un in Eq. (3) can be found in integral form as

un =
2(2n+ 1)

Vs

∫ 1

0

R0
2n(ρ)v(aρ)ρdρ , n = 0, 1, · · · .

(5)
An expansion of the type as in Eq. (3) is usually referred
to as a Zernike0 expansion; in this paper only azimuthal
order m = 0 occurs, and so the superscript 0 is dropped.
There is an impressive amount of cases where one can
explicitly find the un in Eq. (5); some of these appear in
the present paper and include the rigid, simply supported
and clamped radiators

v(`)(σ) = (`+ 1)Vs(1− (σ/a)2)` , ` = 0, 1, · · · , (6)

and the Gaussian velocity profile

v(σ;α) =
αVs

1− e−α
e−α(σ/a)2 (7)

(to be considered for 0 ≤ σ ≤ a).
The relevance of the Zernike terms R0

2n for the pur-
poses of the present paper is the existence of closed-form
formulas, involving spherical Bessel and Hankel functions
and Bessel functions of the first kind, respectively, for the
on-axis pressure and for the far-field pressure due to a ve-
locity profile described by the term R0

2n. Thus, by linear-
ity in Eq. (3), one can compute the on-axis and far-field
pressure due to a velocity profile v, once its expansion co-
efficients un are available. For instance, the radiators in
Eq. (6) give rise to an on-axis pressure expansion in the
form of a series of n+ 1 terms u`j`(kr−)h(2)

` (kr+), with
r± argument values directly related to the axial position
(0, 0, r), while the far-field pressure expansion is a similar
series involving terms u`J2`+1(ka sin θ)/(ka sin θ). In the
reverse direction, the forward computation schemes for
the on-axis and far-field pressures can be complemented
by an inverse method with potential use in far-field loud-
speaker assessment. Here one estimates the expansion
coefficients un of a velocity profile v by matching with a
measured on-axis pressure data set and then one predicts
the far-field sound radiation using the far-field forward
formula. Because the on-axis pressure data can be col-
lected in the (relative) near-field of a loudspeaker, this
avoids the use of anechoic rooms that would be neces-
sary if the far-field were to be assessed directly. The fact
that Zernike series are so efficient in representing veloc-
ity profiles is very instrumental here: a smooth velocity
profile can already be represented adequately by as few
as 2–5 terms (see Appendix A2 where this is shown for
the truncated Gaussian as an example).

An issue that must be addressed is the following one.
The set of velocity profiles in Eq. (6) is well known and
has been studied in considerable detail, and has in prin-
ciple the same potential for the purposes of this paper
as the set of profiles associated with the Zernike terms.
Indeed, closed form expressions for the far-field pressure
due to v(n) were found by Stenzel15, and analytical ex-
pressions for the on-axis pressure due to the first few
v(n) are given by Dekker et al.16 and by Greenspan2.
However, the formulas for the on-axis pressure in the ref-
erences given become quite complicated, even for values
of n as low as 1 or 2. Furthermore, while Greenspan2

has noted that any polynomial or power series in (σ/a)2
can be expanded as a linear combination of the func-
tions (1 − (σ/a)2)n, these expansions require relatively
large coefficients due to nearly linear dependence of the
expansion functions. Because the Zernike terms are or-
thogonal, it can be expected that the Zernike expansions
behave much better with this respect. Indeed, according
to Appendix A, the nth coefficient of the expansion into
(1−(σ/a)2)n is roughly a factor 4n larger than the nth co-
efficient in the Zernike expansion (note that the functions
(1− (σ/a)2)n and R0

2n(σ/a) have the same mean square
value). This point is of particular importance for the in-
verse problem, formulated above, of estimating velocity
profiles from the on-axis pressure data by matching series
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representation coefficients. For these two reasons, com-
plicated on-axis pressure expressions and nearly linear
dependence, the expansion of velocity profiles in terms
of Zernike terms is preferred in this paper.

II. PAPER OUTLINE

In Sec. III the definition and basic properties of the
Zernike terms R0

2n are given, and some of the expan-
sion results that are relevant for this paper are presented.
Furthermore, the Hankel transform of R0

2n is presented
in closed form. The latter result is of importance both
for the forward computation scheme for the far-field and
for establishing results on reaction on radiator, radiated
power, etc., that are related to King’s integral. More
information on Zernike expansions is contained in Ap-
pendix A.

In Sec. IV the basic formulas for the flat piston are
highlighted and discussed. Thus, the closed form involv-
ing a spherical Bessel and Hankel function for the on-axis
pressure associated with a single term R0

2nis presented,
with comments on both near-field and far-field behav-
ior and on behavior for small and large values of ka.
Also, in Sec. IV, the far-field expression, in terms of a
Bessel function of the first kind, of the pressure associ-
ated with a single term R0

2n is presented with particular
attention given to the case that n gets large or that ka
gets large, etc. In Sec. V the inverse method of estimating
the Zernike expansion coefficients of the velocity profile
from the on-axis (measured, sampled) pressure data is
considered. Together with the forward scheme for com-
puting far-field pressures from Zernike expansions, this
yields a loudspeaker assessment method that generalizes
a well-known method in audio engineering for estimating
the far-field of a loudspeaker from near-field on-axis data
in the case of a rigid piston (Keele scheme17). In this
paper only a few measurements and simulation results
will be shown with attention given to more fundamental
issues such as the choice of the on-axis sampling scheme
and possible ill-posedness of the inversion method.

In Sec. VI the analytic expression for the on-axis pres-
sure developed for the flat piston is extended to dome-
shaped radiators. This extension is feasible due to a
unique property of the assumed dome profiles, and forms
the basis for the characterization of velocity profiles on
dome-shaped radiators from on-axis pressure data.

III. THE ZERNIKE TERMS R0
2n

The Zernike terms R0
2n are polynomials of degree 2n

given by

R0
2n(σ/a) = Pn(2(σ/a)2 − 1) =∑n
s=0(−1)s

(
2n− s
n

)(
n
s

)
(σ/a)2n−2s ,

(8)

where Pn is the Legendre polynomial of degree n, see
Ref.14 (22.3.8 and 22.5.42). The first few R0

2n are given
in Table I, and in Fig. 2 some of them are plotted as
a function of ρ = σ/a ∈ [0, 1]. The R0

2n cannot be
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FIG. 2. The Zernike terms R0
2n vs. σ/a for various values of

n.

interpreted directly in physical terms, unlike the velocity
profiles v(n) in Eq. (6) in which n has the interpretation
of a smoothness parameter for the transition from the
non-zero values on the piston (σ < a) to 0 outside the
piston (σ > a). Rather, their significance for loudspeaker
analysis stems from the following facts.

• They are very efficient and convenient in represent-
ing a general velocity profile v. This is due to the
orthogonality property∫ a

0

R0
2n1

(ρ)R0
2n2

(ρ) ρ dρ =
δn1n2

2(2n1 + 1)
(9)

(where δ is Kronecker’s delta), as well as the fact
that many velocity profiles considered in loud-
speaker analysis can be represented as a Zernike
series. In Appendix A, a number of cases are listed,
such as the expansion

(1− (σ/a)2)` =

∑`
n=0 (−1)n 2n+1

n+1

(
`
n

)
(
`+ n+ 1

`

) R0
2n(σ/a) , (10)

which are relevant for the rigid and simply sup-
ported (` = 0, 1) and the clamped radiators (` ≥ 2)
in Eq. (6), and the expansion

e−ασ
2

=
e−

1
2α
∑∞
n=0(−1)n(2n+ 1)

√
π
α In+1/2(α/2)R0

2n(σ/a) ,
(11)

which is relevant for the truncated Gaussian radi-
ator in Eq. (7).

• An expansion result of direct relevance to the
Rayleigh integral for on-axis field points is the for-
mula

e−iλ(T2+xρ2)1/2

−iλ(T 2+xρ2)1/2
=∑∞

n=0(2n+ 1)(−1)njn(λT−)h(2)
n (λT+)R0

2n(ρ) ,
(12)
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in which x ∈ R T > 0 , T 2 + x > 0 and

T± =
1
2

[(T 2 + x)1/2 ± T ] . (13)

This result can be applied to both flat radiators
(Sec. IV.A) and dome-shaped radiators (Sec. VI).
See Appendix A for the proof of Eq. (12) and
Sec. IV.A for more details on the spherical Bessel
functions jn and spherical Hankel functions h(2)

n oc-
curring in Eq. (12).

• The Hankel transform of 0th order of the R0
2n has

a closed form, viz.∫ a

0

J0(uσ)R0
2n(σ)σdσ = (−1)n

a

u
J2n+1(ua) . (14)

This formula has been proved in Ref.7 as a special
case of a formula expressing the mth order Hankel
transform of Zernike polynomials of azimuthal or-
der m in terms of Bessel functions of the first kind.
This formula is very important for the development
of explicit analytic results in the spirit of Ref.2. For
the purposes of the present paper, the result is im-
portant since it gives the far-field expression for the
pressure due to a single term R0

2n in the velocity
profile, see Sec. IV.B and Appendix B.

TABLE I. Zernike polynomials

n R0
2n(σ/a)

0 1

1 2(σ/a)2 − 1

2 6(σ/a)4 − 6(σ/a)2 + 1

3 20(σ/a)6 − 30(σ/a)4 + 12(σ/a)2 − 1

IV. ON-AXIS AND FAR-FIELD EXPRESSIONS FOR THE
FLAT PISTON

The velocity profile v(σ) considered in this section
(normal component) vanishes outside the disk σ ≤ a and
has been developed into a Zernike series as in Eq. (3)
with coefficients un given in accordance with Eq. (5) or
explicitly as in the cases discussed earlier.

A. On-axis expression

There holds for an on-axis point r = (0, 0, r) with r ≥
0 by radial symmetry of the integrand in Eq. (1) the
formula

p(r) = iρ0ck

∫ a

0

v(σ)
e−ik(r

2+σ2)1/2

(r2 + σ2)1/2
σdσ . (15)

Inserting v(σ) = Vs
∑∞
n=0 unR

0
2n(σ/a) into the integral

and setting σ = aρ, 0 ≤ ρ ≤ 1 , it follows that

p(r) = iρ0cka
2Vs

∞∑
n=0

un

∫ 1

0

e−ik(r
2+a2ρ2)1/2

(r2 + a2ρ2)1/2
R0

2n(ρ)ρdρ .

(16)
Then by Eq. (12) and orthogonality of the Zernike terms,

p(r) =
1
2
ρ0cVs(ka)2

∞∑
n=0

γn(k, r)un , (17)

in which

γn(k, r) = (−1)njn(kr−)h(2)
n (kr+) ,

r± = 1
2 (
√
r2 + a2 ± r) .

(18)

The jn and h
(2)
n = jn − i yn are the spherical Bessel and

Hankel function, respectively, of the order n = 0, 1, · · · ,
see Ref.14 (§ 10.1.). In particular, j0(z) = (sin z)/z and
h

(2)
0 (z) = (ie−iz)/z.
What follows now is a discussion of the results in

Eqs. (17) and (18). The r± of Eq. (18) satisfy

0 ≤ r− ≤
1
2
a ≤ r+ , r+r− =

1
4
a2 , r++r− =

√
r2 + a2 .

(19)
Consider the case of the rigid piston, i.e., ` = 0 in
Eq. (10). Then u0 = 1, u1 = u2 = · · · = 0, and
from Eqs. (17)–(19) it is found, using j0(z) = sin z/z
and h

(2)
0 (z) = ie−iz/z and some administration, that

p(r) = 1
2ρ0cVs(ka)2 sin kr−

kr−
ie−ikr+

kr+

= 2iρ0cVse
− 1

2 ik((r
2+a2)

1
2 +r) sin 1

2k((r2 + a2)
1
2 − r) .

(20)
This is the classical result on the on-axis pressure for a
rigid piston as can be found in the text books, see, e.g.,
Ref.11 (8.31a,b). Figure 3 shows a plot of |γ`=n=0(k, r)|
as a function of r/a (rigid piston) and of |γn(k, r)| for
n = 1, 2, 3. Some comments on these plots are presented
at the end of this subsection.

For the simply supported radiator, case ` = 1 in
Eq. (6), one has u0 = 1, u1 = −1 so that

p(r) =
1
2
ρ0cVs(ka)2[j0(kr−)h(2)

0 (kr+)+j1(kr−)h(2)
1 (kr+)] ,

(21)
and for the lowest order clamped radiator, case ` = 2 in
Eq. (6), one has u0 = 1, u1 = −3/2 , u2 = 1/2, so that

p(r) = 1
2ρ0cVs(ka)2[j0(kr−)h(2)

0 (kr+)+

3
2j1(kr−)h(2)

1 (kr+) + 1
2j2(kr−)h(2)

2 (kr+)] .
(22)

The results Eq. (21) and Eq. (22) generalize to higher
` immediately since the required coefficients u for the
general case are available through Eq. (10). Also see
Ref.16, Eqs. (9)–(11), where the expression for ` = 1, 2
lead to considerable complications. In Fig. 4 the rigid
piston (` = 0), the simply supported radiator (` = 1) and
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FIG. 3. The product |jn(kr−)h
(2)
n (kr+)| from Eq. (18), for

n = 0, . . . , 3, vs. r/a, where a/λ = 4, and a = 0.1 m, which
yields f = 13.7 kHz and ka = 8π. (a) n = 0, (b) n = 1, (c)
n = 2, (d) n = 3.

the first two clamped radiators (` = 2, 3) are considered
(|p(r)|, normalized as a function of r/a).

The next comments concern the behavior of the terms
γn in Eq. (18). From Eqs. (18)–(19) it follows that

r− ≈
1
2

(a− r) ≈ 1
2
a ≈ 1

2
(a+ r) ≈ r+ , r � a . (23)

Therefore, when ka is large and r → 0 (with n not large),
it follows from the results in Ref.14, Sec. 10.1 that

|γn(k, r)| ≈
| cos 1

2k(a− r)|
1
4k

2a2
, (24)

confirming the presence of zeros and the largely n-
independent envelope of the curves in Fig. 3 near r = 0.

Finally, when r � a it follows from Eqs. (18)–(19) that

r− ≈
a2

4r
, r+ ≈ r . (25)
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FIG. 4. Normalized |p| vs. r/a for the rigid piston (` = 0)
(solid curve), the simply supported radiator (` = 1) (dotted
curve) and the first two clamped radiators (` = 2, 3) (dash-
dotted and dashed curves, respectively) (using Eq. (17)).
With a/λ = 4 and ka = 8π. The normalization is equal
to (` + 1)/2 ρ0cVs(ka)2. The factor ` + 1 allows an easier
comparison of the four curves.

Therefore, from Ref.14, Sec. 10.1,

γn(k, r) ≈
(−ika

2

4r )n

1 · 3 · · · · · (2n+ 1)
e−ikr+

−ikr+
(26)

which shows an O(1/rn+1)-behavior of γn(k, r) as n →
∞ .

B. Far-field expression

Using the Zernike expansion Eq. (3) of v(σ) it is shown
in Appendix B that the following far-field approximation
holds: when r = (r sin θ, 0, r cos θ) and r →∞,

p(r) ≈ iρ0ckVs
e−ikr

r
a2
∞∑
n=0

un(−1)n
J2n+1(ka sin θ)

ka sin θ
.

(27)
The result Eq. (27) will now be discussed. In the case

of a rigid piston, it follows that

p(r) ≈ iρ0cka
2Vs

e−ikr

r

J1(ka sin θ)
ka sin θ

. (28)

This is the familiar result for the far-field pressure of a
rigid piston as can be found in the textbooks, see, e.g.,
Kinsler et al.11 ((8.35)). In Fig. 5 a plot can be found of
|J2n+1(ka sin θ)

ka sin θ |, n = 0, 1, 2, 3.
For the simply supported radiator, case ` = 1 in

Eq. (6), and for the clamped radiators, cases ` ≥ 2 in
Eq. (6), there is the far-field result of Stenzel15,

p(r) = iρ0cVska
2(`+ 1)!2`

e−ikr

r

J`+1(ka sin θ)
(ka sin θ)`+1

, (29)

also see Ref.2 (Sec. II).
Alternatively, the coefficients u in the Zernike expan-

sion of the v(`) in Eq. (6) are available per Eq. (10), and
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this gives the far-field approximation of p(r) via Eq. (27)
in a form different from Eq. (29). This leads to a non-
obvious analytic relation between Bessel functions and
either method yields the result shown in Fig. 6.
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FIG. 6. Normalized |p| vs. ka sin θ, using the Zernike expan-

sion of the v(`) and Eq. (27) or (29).

Some comments on the behavior of the terms
J2n+1(z)/z, z = ka sin θ, as they occur in the series in
Eq. (27) are presented now. From Ref.14, Ch. 9, it is
seen that in the series in Eq. (27) only those terms con-
tribute significantly for which 2n + 1 ≤ 1

2e ka sin θ. In
particular, when θ = 0, it is only the term with n = 0
that is non-vanishing, and this yields

p((0, 0, r)) ≈ 1
2
iρ0cVska

2 e
−ikr

r
, r →∞ . (30)

This is in agreement with what is found from Eq. (17)
when only the term with n = 0 is retained and r+ is
replaced by r, r− is replaced by 0. For small values of ka
the terms in the series Eq. (27) decay very rapidly with n.
For large values of ka, however, a significant number of
terms may contribute, especially for angles θ far from 0.

V. ESTIMATING VELOCITY PROFILES FROM ON-AXIS
RADIATION DATA FOR FAR-FIELD LOUDSPEAKER
ASSESSMENT

A. Estimating velocity profiles from on-axis radiation

The on-axis expression Eqs. (17)–(18) for the pressure
can, in reverse direction, be used to estimate the veloc-
ity profile on the disk from (measured) on-axis data via
its expansion coefficients un. This can be effectuated
by adopting a matching approach in which the coeffi-
cients un in the ‘theoretical’ expression Eqs. (17)–(18)
are determined so as to optimize the match with at
M + 1 points measured data . Thus, one has for the
pressure pm = p((0, 0, rm)) due to the velocity profile
v(σ) =

∑N
n=0 unVsR

0
2n(σ/a) the expression

pm =
1
2
ρ0cVs(ka)2

N∑
n=0

(−1)njn(krm,−)h(2)
n (krm,+)un ,

(31)
where rm ≥ 0 and

rm,± =
1
2

(
√
r2m + a2 ± rm) , (32)

and m = 0, 1, · · · ,M. With

A = (Amn)m=0,1,··· ,M,
n=0,1,··· ,N

;

Amn = 1
2ρ0cVs(ka)2jn(krm,−)h(2)

n (krm,+) ,
(33)

p = [p0, · · · , pM ]T , u = [u0, · · · , uN ]T , (34)

the relation between on-axis pressures pm and coefficients
un can be concisely written as

Au = p . (35)

Now given a (noisy) on-axis data vector p one can esti-
mate the coefficients vector u by adopting a least mean-
squares approach for the error Au− p. This will be illus-
trated by a simulated experiment and, subsequently, by
a real experiment, below. In the simulated experiment,
we assume a loudspeaker with a Gaussian velocity profile
(α = 2), as shown in Fig. 7-a curve vG (dash-dotted) and
given by the left-hand side of Eq. (A2). This profile is ap-
proximated using three Zernike coefficients (u0 =0.4323,
u1 =-0.4060, u2=0.1316) given by the right-hand side of
Eq. (A2), and this leads to the velocity profile va (solid
curve) in Fig. 7-a. It can be seen from Fig. 7-a that in-
cluding three Zernike terms provides a fair approximation
(3 10−2 absolute accuracy on the whole range). Using the
three coefficients of the approximated velocity profile, the
sound pressure was calculated by applying Eq. (17) and
plotted in Fig. 7-b as pcalc (solid curve). Then random
white noise was added to pcalc as shown as p+noise in
Fig. 7-b (dotted curve). Subsequently the inversion pro-
cedure was followed by using the noisy pressure data vec-
tor p to estimate the coefficients vector u by adopting a
least mean-squares approach for the error Au − p (see
Eq. (35)). Using the recovered three Zernike coefficients
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the velocity profile and pressure data was calculated and
plotted in Fig. 7-a (thick dotted curve) and Fig. 7-b (thick
dotted curve), respectively. It appears that the inversion
procedure is rather robust against noise since the calcu-
lated and recovered pressure curves in Fig. 7-b are almost
coincident.
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FIG. 7. Simulated experiment. (a) Gaussian velocity profile
(α = 2) vG vs. ρ (dash-dotted curve, given by the LHS of
Eq. (A2)). Approximated velocity profile va using the series
at the RHS of Eq. (A2), truncated at n = 2 (solid curve).
From noisy pressure data recovered velocity profile vrec (thick
dotted curve). (b) Sound pressure using Eq. (17) and ka =
8 (pcalc, solid curve). Pressure with added noise (p+noise,
dotted curve). Recovered pressure data (prec thick dotted
curve).

For the second experiment we measured a loudspeaker
(vifa MG10SD09-08, a = 3.2 cm) in an IEC-baffle18, at
10 near-field positions (rm =0.00, 0.01, 0.02, 0.03, 0.04,
0.05, 0.07, 0.10, 0.13, 0.19 m), and finally in the far-field
at 1 m distance at 13.72 kHz (ka = 8.0423). The magni-
tude of the sound pressure is plotted in Fig. 8 (solid curve
‘p meas’). Using the same procedure as described above
for the first experiment, the inverse process was followed
by using the ten measured near-field pressure data points

to estimate the coefficients vector u . Using four Zernike
coefficients the pressure data were recovered and plotted
in Fig. 8 (dotted curve ‘p rec’). It appears that the two
curves show good resemblance to each other and that
only four coefficients are needed to provide a very good
description of the near-field at rather high frequencies
(13.72 kHz). Furthermore, it appears that using these
four coefficients, the calculated sound pressure level at 1-
m distance yields -42 dB. The measured value at that far-
field point is -44 dB. These values match rather closely,
even though the used frequency of 13.72 kHz is beyond
the loudspeaker’s high frequency roll-off, which is about
10 kHz, and the cone vibrates not fully circularly sym-
metric anymore due to break-up behavior. This match
provides a proof of principle as the far-field measurement
point was not used to determine the Zernike coefficients,
also see Sec. B below.
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f=13719.7736, SR=2.3217
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|p
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p meas
p rec

FIG. 8. Measured loudspeaker at 13.72 kHz (ka = 8.0423, p
meas, solid curve) vs. r/a. Recovered pressure data (p rec
dotted curve).

In the experiments just described, no particular effort
was spent in forming and handling the linear systems so
as to have small condition numbers. The condition num-
bers, the ratio of the largest and smallest non-zero sin-
gular value of the matrix A in Eq. (33), equals 50 in the
case of the loudspeaker experiment leading to Fig. 8. In
Fig. 9 the condition number is plotted as a function of the
number N + 1 of columns for the case of the simulation
experiment leading to Fig. 7. It is seen that the condition
number grows rapidly with N . It is expected that con-
siderably improved condition numbers result when the
structure of the linear systems and their constituent func-
tions j and h is employed; this is, however, outside the
scope of the present paper. The influence of the condition
number on noise-sensitivity and the like of the solution
of least-squares problems is discussed in Golub and Van
Loan19. In practical cases the number of required Zernike
coefficients will be less than say six. This will not cause
numerical difficulties. Furthermore, such a modest num-
ber of coefficients already allows a large set of velocity
profiles.
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FIG. 9. The condition numbers of the first experiment (dia-
monds, for ka = 8, α = 2,M = 500).

B. Far-field assessment from on-axis measurements

In Keele17 a method is described to assess low-
frequency loudspeaker performance in the on-axis far-
field from an on-axis near-field measurement. In the case
of the rigid piston, the on-axis pressure p(r) = p((0, 0, r))
is given by Eq. (20). Now assume ka� 1. When r � a
it holds that

sin(
1
2
k
√
r2 + a2 − r) ≈ sin(

1
2
ka) ≈ 1

2
ka , (36)

and, when r � a it holds that

sin
1
2
k(
√
r2 + a2 − r) ≈ sin(

ka2

4r
) ≈ ka2

4r
. (37)

Therefore, the ratio of the moduli of near-field and far-
field on-axis pressure is given by 2r/a. This is the basis of
Keele’s method; it allows far-field loudspeaker assessment
without having to use an anechoic room.

With the inversion procedure to estimate velocity pro-
files from on-axis data (which are taken in the relative
near-field) as described in Sec. V.A together with the for-
ward calculation scheme for the far-field as described in
Sec. IV.B, it is now possible to generalize Keele’s scheme.
This is illustrated by comparing the far-field responses
pertaining to the two sets of Zernike coefficients occur-
ring in the Gaussian simulated experiment, see Fig. 7 in
Sec. V.A. Using Eq. (27) the normalized far-field pres-
sure is plotted in Fig. 10 as pcalc (solid curve) and prec
(dotted) curve, respectively (α = 2, ka = 8), where the
normalization is such that the factor in front of the series
at the right-hand side of Eq. (27) equals unity. It appears
that the two curves are very similar. This confirms that
the un obtained from the noisy near-field measured pres-
sure data yield a good estimate of the far-field spatial
pressure response.
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FIG. 10. Simulated experiment Gaussian radiator (α = 2).
Normalized sound pressure in the far-field using Eq. (27) and
ka = 8 (pcalc, solid curve). Recovered normalized far-field
pressure data (precdotted curve).

VI. GENERALIZATION OF THE ON-AXIS RESULT TO
DOME-SHAPED RADIATORS

The on-axis result in Eq. (17) for the flat-piston radi-
ators is now generalized to dome-shaped and inverted-
dome-shaped radiators. The formal treatment of the
dome-shaped radiators requires solving the Helmholtz
equation. However, in this paper a geometrical approach
is used, where the Rayleigh integral in Eq. (1) is main-
tained, with distance function r′ defined in accordance
with the function d describing the dome surface. This
geometrical approach is similar to the one used by Bor-
doni20 and Kates21. From Suzuki and Tichy22 (Sec.II.A)
it appears that the geometrical approach yields a fairly
good approximation, at least, in the high-frequency re-
gion.

Thus the considered radiating surface S is now as-
sumed to consist of the points

rs = (xx, ys, zs) = (σ cosϕ, σ sinϕ, d(σ)) ,
0 ≤ σ ≤ a, 0 ≤ ϕ ≤ 2π ,

(38)

in which d(σ) is the function

d(σ) = ±[(b2−σ2)1/2−(b2−a2)1/2] , 0 ≤ σ ≤ a , (39)

with b ≥ a. The ‘+’-sign in Eq. (39) corresponds to a
convex dome while the ‘-’-sign corresponds to a concave
(or inverted) dome. In the ‘+’-case, S is the cap of a
sphere of radius b bounded by the parallel of latitude of
angle arccos(a/b). The integral expression for the pres-
sure is still given by the Rayleigh integral in Eq. (1), with
v(rs) the normal component of the velocity distribution
on S. The normal on the surface S is given by

n(σ) =
1
b

(±σ cosϕ,±σ sinϕ, (b2 − σ2)1/2) . (40)

The function r′, being the distance between a field point
r = (r sin θ, 0, r cos θ) and the point rs in Eq. (38), is
given by

r′ = (r2 + σ2− 2rσ sin θ cosϕ− 2rd(σ) cos θ+ d2(σ))1/2 ,
(41)
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and is to be considered in the set (r, θ) with r cos θ ≥
d(σ).

When transforming the Rayleigh integral Eq. (1) from
an integral over the disk σ ≤ a, one should account for
the surface element in the usual manner according to

dS =

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2 dxdy =

bσdσdϕ
√
b2 − σ2 , (42)

where f(x, y) = d(
√
x2 + y2). Then writing

v(σ) = v((σ cosϕ, σ sinϕ, d(σ))) , 0 ≤ σ ≤ a , (43)

one obtains

p(r) =
iρ0ck

2π

∫ a

0

∫ 2π

0

v(σ)
e−ikr

′

r′
b√

b2 − σ2
σdσdϕ .

(44)
In Appendix C the following is shown. Let

g(τ) = τ

(
2− (1− c0)τ2

1 + c0

)1/2

(45)

in which c0 =
√

1− (a/b)2. Then g is a mapping from
[0, 1] onto [0, 1]. Now when

W (τ) = v(ag(τ)) , W (τ) = Ws

∞∑
n=0

wnR
0
2n(τ) , (46)

with Ws such that w0 = 1, then

p(r) = iρ0cWs(ka)2
1

1 + c0

∞∑
n=0

δn(k, r)wn , (47)

where

δ(k, r) = (−1)njn(k(r− +
1
2
d(0)))h(2)

n (k(r+ +
1
2
d(0))) .

(48)
Here r± is as in Eqs. (17)–(18). The validity of this result
is largely due to the special form of the assumed dome
shape and does not seem to admit a generalization to
other dome shapes.

A discussion of the result Eq. (46)–(48) follows now.
As Eq. (46) shows, a simple warping operation on v is
required so as to obtain the series representation Eq. (47)
with coefficients per Eq. (48) that is strikingly similar to
the result Eqs. (17)–(18). In Fig. 11 the warping function
g(τ), 0 ≤ τ ≤ 1, for s0 = a/b = 1, 0.9, 0.5, 0 is shown, the
case s0 = 0 yielding g(τ) = τ (i.e., the result Eqs. (17)–
(18)). The plots show that for moderate values of s0, say
s0 ≤ 1/2, the influence of the warping operation is quite
modest. Consequently, in that case, wn ≈ un, where un
are the coefficients in the Zernike expansion Eq. (3) of v
itself.

A particularly interesting case occurs when b = a so
that S is a hemisphere. Then c0 = 0 and

g(τ) = τ(2− τ2)1/2 = (1− (1− τ2)2)1/2. (49)
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FIG. 11. The warping function (Eq. (45)) g(τ) vs. τ .

When v(σ) = v(`)(σ) = (`+1)Vs(1+(σ/a)2)`, see Eq. (6),
one gets

v(`)(ag(τ)) = (`+1)Vs(1−τ2)2` =
`+ 1
2`+ 1

v(2`)(τ) , (50)

and so the required Zernike coefficients wn in Eq. (46)
are available per Appendix A.1, case k = 2`. For the
Gaussian in Eq. (7) one computes, using Eq. (49) and
exp(x) =

∑∞
`=0 x

`/l!

v(ag(τ);α) =
αVs
eα − 1

∞∑
`=0

α`

`!
(1− τ2)2` . (51)

Hence the required Zernike coefficients wn in Eq. (46)
can be obtained explicitly in the form of infinite series by
combining Eq. (7) and Appendix A.1.

VII. DISCUSSION AND OUTLOOK

In this paper the foundation is laid for a method to
perform forward and inverse sound pressure computa-
tions for circular radiators with a non-uniform velocity
profile. In the forward problem, the velocity profile is
assumed to be known and the on-axis and far-field sound
pressure are expressed analytically in terms of Zernike
expansion coefficients of the velocity profile and (spheri-
cal) Bessel (and Hankel) functions. In the inverse prob-
lem, the velocity profile is unknown and is estimated in
terms of Zernike expansion coefficients from on-axis pres-
sure data by adopting a matching approach based on the
analytic result for the on-axis pressure. Well-behaved ve-
locity profiles are already adequately represented by only
a few terms of their Zernike expansion. Therefore, the
Zernike series approach is more convenient for both the
forward problems and the inverse problem than, for in-
stance, an approach based on expansions involving the
family of rigid, simply supported and clamped radiators.
The forward and inverse method is proposed for use in
assessment of the far-field of a loudspeaker without the
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need for an anechoic room. Here, the Zernike coefficients
of the velocity profile are estimated from the on-axis (rel-
atively near-field) data, and these coefficients are used in
the forward scheme to compute the far-field. This as-
sessment procedure has not been fully worked out in the
present paper due to a variety of practical issues that
need to be addressed. Among these practical issues are

• choice of the on-axis measurement points,

• condition of the linear systems that arise,

• influence of ka,

• influence of noise,

• influence of misalignment of the measurement
points,

• influence of inclination of the measurement axis,

• incorrect setting of the radius of the radiator,

while various combinations of these issues should also be
considered. The authors intend to work out the method
for the loudspeaker assessment with attention for the
above mentioned points.

In this paper, the theory has been developed mainly for
flat radiators. However, the basic result for the on-axis
pressure as a series expansion, in terms of Zernike coef-
ficients and spherical Bessel and Hankel functions, has
been generalized to the case of dome-shaped radiators.
It is, therefore, to be expected that both the forward and
the inverse methods can also be generalized to the case
of dome-shaped radiators. The forward problem and the
inverse problem concerning the on-axis pressure are not
much more difficult than in the case of flat radiators:
only a simple warping operation performed on the veloc-
ity profile is required. The computation of the far-field
is, however, more complicated for the dome-shaped radi-
ators. In the first place, the estimated Zernike coefficients
require a transformation due to the warping operation.
Secondly, the basic integrals corresponding to a single
Zernike term, that occur in the far-field expression for
the sound pressure are not readily expressed in Bessel
functions as was the case for flat radiators. The authors
intend to develop the method both on a theoretical and
practical level for dome-shaped radiators as well.

VIII. CONCLUSIONS

Zernike polynomials are an efficient and robust method
to describe velocity profiles of resilient sound radiators.
Only a few coefficients are necessary to approximate a
wide variety of velocity profiles including the rigid piston,
the simply supported radiator, the clamped radiators,
Gaussian radiators as well as real loudspeaker drivers.
This method enables one to solve the inverse problem
of calculating the actual velocity profile of the radia-
tor using (measured) on-axis sound pressure data. This
computed velocity profile allows the extrapolation to far-
field loudspeaker pressure data, including off-axis behav-
ior. The forward computation scheme can be extended

to dome-shaped radiators with arbitrary velocity distri-
butions.

APPENDIX A: ZERNIKE EXPANSIONS

In this appendix a number of explicit Zernike expan-
sions for the radially symmetric case are collected, some
general results on Zernike expansions are given, and some
examples are given to demonstrate that the nth coeffi-
cient in a Zernike expansion is roughly 4n as small as the
nth coefficient in an expansion based on the functions
(1 − (σ/a)2)n) in Eq. (6). The results are presented in
terms of the normalized variable ρ = σ/a, 0 ≤ ρ ≤ 1.

1. Zernike expansion of ρ2`, (1− ρ2)`

From Ref.23, Appendix A,

ρ2` =
∑̀
n=0

2n+ 1
n+ 1

(
`
n

)
(
`+ n+ 1

`

) R0
2n(ρ) . (A1)

Using Pn(−x) = (−1)nPn(x), so that R0
2n((1−ρ)2)1/2) =

(−1)nR0
2n(ρ), one obtains Eq. 10.

2. Expansion of e−αρ
2

It holds that

e−αρ
2

= e−
1
2α

∞∑
n=0

(−1)n (2n+1)
√
π

α
In+1/2(α/2)R0

2n(ρ) ,

(A2)
where(π/2z)1/2In+1/2(z) is the modified spherical Bessel
function of order n. See Ref.14, §10.2 and 10.2.37, with
z = α/2 and cos θ = 2ρ2 − 1 in 10.2.37. From Ref.14,
22.14.7 and 10.25,

|R0
2n(ρ)| ≤ 1 ,

√
π
α In+1/2(α/2) ≈ (α/2)n

1·3·...·(2n+1) ,

n→∞ .
(A3)

For instance, when α = 1, including the terms in the
series in Eq. (A2) with n = 0, · · · , 5 yields absolute accu-
racy 10−6 on the whole range 0 ≤ ρ ≤ 1. Alternatively,
there is an expansion in terms of the velocity profiles
(1− (σ/a)2)n of Eq. (6), viz.

e−αρ
2

= e−α
∞∑
n=0

αn

n!
(1− ρ2)n . (A4)

Denoting the expansion coefficients in Eq. (A2) by un and
those in Eq. (A4) by wn, it follows from the asymptotics
of the Γ-function that

un
wn
≈ e 1

2α

√
πn

4n
, n→∞ . (A5)

Thus the nth coefficient required in the clamped radiator
expansion in Eq. (A4) is roughly 4n as large as the one

Sound fields from resilient radiators 10



needed in the Zernike expansion in Eq. (A2). This phe-
nomenon has been noted and verified for a large set of
other analytic velocity profiles such as (spherical) Bessel
functions.

3. Expansion of exp(−iλ(T2+xρ2)1/2)

−iλ(T2+xρ2)1/2

To show Eq. (12), consider Ref.14, 10.1.45–46,

eiλV

iλV
=
∞∑
n=0

(2n+ 1)jn(λr1)h(1)
n (λr2)Pn(cos γ) , (A6)

where V = (r21 + r22 − 2r1r2 cos γ)1/2 with γ ∈ R, and
0 ≤ |r1| ≤ r2. With the choice

r1 = T− , r2 = T+ , cos γ = 1− 2ρ2 , (A7)

one has V = (T 2 + xρ2)1/2 and Eq. (12) follows using
Pn(−x) = (−1)nPn(x), R0

2n(ρ) = Pn(2ρ2−1) and Ref.14,
10.1.1–3,

jn(−z) = (−1)njn(z) , h(1)
n (−z) = (−1)nh(2)

n (z) .
(A8)

APPENDIX B: FAR-FIELD APPROXIMATION

Letting r = (r sin θ, 0, r cos θ), it holds

p(r) = iρ0ck
2π

∫
S
v(rs)

e−ikr
′

r′ dS =

iρ0ck
∫ a
0
v(σ)

(
1
2π

∫ 2π

0
e−ik

√
r2+σ2−2rσ sin θ cosϕ√

r2+σ2−2rσ sin θ cosϕ
dϕ

)
dσ .

(B1)
Now, when r →∞,√

r2 + σ2 − 2rσ sin θ cosϕ ≈ r−σ sin θ cosϕ ≈ r . (B2)

Replacing r′ in exp(−ikr′) by r − σ sin θ cosϕ and r′ in
the denominator in the integrand in Eq. (B1) by r while
using ∫ 2π

0

eiz cosϕdϕ = 2πJ0(z) , (B3)

the conventional approximation

p(r) ≈ iρ0ck
e−ikr

r

∫ a

0

v(σ)J0(kσ sin θ)σdσ (B4)

follows. Then Eq. (27) follows upon inserting in Eq. (B4)
the Zernike expansion Eq. (3) of v and using the result
Eq. (14).

APPENDIX C: ON-AXIS FIELD FOR A DOME-SHAPED
RADIATOR

In this appendix the result of Eqs. (45)–(48) is proved.
The on-axis pressure at r = (0, 0, r) is given by, see
Eq. (44),

p(r) = iρ0ck

∫ a

0

bv(σ)√
b2 − σ2

e−ikr
′

r′
σdσ (C1)

in which

r′ = (r2 + σ2 − 2rd(σ) + d2(σ))1/2 (C2)

and d(σ) is given by Eq. (39). Working this out, while
noting cancellation of terms σ2 due to the special form
of d, it follows that

(r′)2 = c(r) + d(r)ψ(σ) ; ψ(σ) = −(b2 − σ2)1/2 , (C3)

where c(r) and d(r) only depend on r. In normalized
coordinates

ρ = σ/a , s0 = a/b , (C4)

Eq. (C3) assumes the form

(r′/a)2 = C(r) +D(r)Ψ(ρ) =: F (ρ; r) , (C5)

where C(r) = a−2c(r) , D(r) = a−2d(r) and

Ψ(ρ) =
1
b
ψ(σ) = −(1− s20ρ2)1/2 , 0 ≤ ρ ≤ 1 . (C6)

This F (ρ; r) can be written as

F (ρ; r) = F (0; r) + (F (1; r)− F (0; r))f2(ρ) , (C7)

where

f(ρ) =

√
Ψ(ρ)−Ψ(0)
Ψ(1)−Ψ(0)

=

√
1− (1− s20ρ2)1/2

1− c0
(C8)

and c0 = (1− s20)1/2. Letting

T 2 = F (0; r) x = F (1; r)− F (0; r) , (C9)

it follows that r′ = a(T 2 + xf2(ρ))1/2. Hence, from
Eq. (C1) and Eq. (12) with λ = ka and f(ρ) instead
of ρ,

p(r) = iρ0cka
∫ 1

0
v(aρ)√
1−s20ρ2

e−ikr
′

r′ ρdρ

= ρ0c(ka)2
∑∞
n=0 δn(k, r)tn

(C10)

in which, see below Eq. (12),

δn(k, r) = (−1)njn(kaT−)h(2)
n (kaT+) (C11)

and

tn = (2n+ 1)
∫ 1

0

v(aρ)√
1− s20ρ2

R0
2n(f(ρ))ρdρ. (C12)

From Eqs. (C5) and (C9) it follows that

aT = r − d(0) , a
√
T 2 + x =

√
r2 + a2 , (C13)

hence δn(k, r) is given by the right-hand side of Eq. (48).
Next, substitute τ = f(ρ), ρ = g(τ) in the integral defin-
ing tn, where the inverse function g of f is given by

g(τ) = τ
(2− (1− c0)τ2

1 + c0

)1/2

, 0 ≤ τ ≤ 1 . (C14)
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Then, using

g′(τ)g(τ)√
1− s20g2(τ)

=
2

1 + c0
, (C15)

it follows that

tn =
2(2n+ 1)

1 + c0

∫ 1

0

v(ag(τ))R0
2n(ρ)ρdρ . (C16)

Noting that W (τ) = v(ag(τ)), see Eq. (46), the proof is
complete.
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