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Abstract. A Brownian motion observed at equidistant sampling points
renders a random walk with normally distributed increments. For the dif-
ference between the expected maximum of the Brownian motion and its
sampled version, an expansion is derived with coefficients in terms of the
drift, the Riemann zeta function and the normal distribution function.
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1. Introduction

Let {B(t)}t≥0 denote a Brownian motion with drift coefficient µ and variance
parameter σ2, so that

B(t) = µt + σW (t), (1)

with {W (t)}t≥0 a Wiener process (standard Brownian motion). Without loss
of generality, we set B(0) = 0, σ = 1 and consider the Brownian motion on the
interval [0, 1].

When we sample the Brownian motion at time points n
N , n = 0, 1, . . . N ,

the resulting process is a random walk with normally distributed increments,
also known as the Gaussian random walk. The fact that Brownian motion
evolves in continuous space and time leads to great simplifications in determining
its properties. In contrast, the Gaussian random walk, that moves only at
equidistant points in time, is an object much harder to study. Although it
is obvious that, for N → ∞, the behavior of the Gaussian random walk can
be characterized by the continuous time diffusion equation, there are many
effects to take into account for finite N . This paper deals with the expected
maximum of the Gaussian random walk and, in particular, its deviation from
the expected maximum of the underlying Brownian motion. This relatively
simple characteristic already turns out to have an intriguing description: In
Section 2 we derive an expansion with coefficients in terms of the Riemann
zeta function and (the derivatives of) the normal distribution function. Some
historical remarks follow, and the proof is presented in Section 3.
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2. Main result and discussion

The expected maximum of the Gaussian random walk is by Spitzer’s identity
(see [19, 14]) given by

E max
n=0,...,N

B(n/N) =
N∑

n=1

1
n
EB+(n/N), (2)

where B+(t) = max{0, B(t)}. The difference between the Gaussian random
walk and the Brownian motion decreases with the number of sampling points
N . In particular, the monotone convergence theorem, in combination with a
Riemann sum approximation of the right-hand side of (2), gives (see [1])

E max
0≤t≤1

B(t) =
∫ 1

0

1
t
EB+(t)dt. (3)

The mean sampling error, as a function of the number of sampling points is
then given by

E∆N (µ) =
∫ 1

0

1
t
EB+(t)dt−

N∑

n=1

1
n
EB+(n/N). (4)

Since B(t) is normally distributed with mean µt and variance t one can compute

EB+(t) = µtΦ(µ
√

t) +
(

t

2π

)1/2

e−
1
2
µ2t, (5)

where Φ(x) = 1√
2π

∫ x
−∞ e−

1
2
u2

du. Substituting (5) into (4) yields

E∆N (µ) =
∫ 1

0
g(t)dt− 1

N

N∑

n=1

g(n/N), (6)

where

g(t) = µΦ(µ
√

t) +
1√
2πt

e−
1
2
µ2t. (7)

We are then in the position to present our main result.

Theorem 1. The difference in expected maximum between {B(t)}0≤t≤1 and
its associated Gaussian random walk obtained by sampling {B(t)}0≤t≤1 at N

equidistant points, for |µ/
√

N | < 2
√

π, is given by

E∆N (µ) =− ζ(1/2)√
2πN

− 2g(1)− µ

4N
−

p∑

k=1

B2k

(2k)!
g(2k−1)(1)

N2k

− 1√
2πN

∞∑

r=0

ζ(−1/2− r)(−1/2)r

r!(2r + 1)(2r + 2)

(
µ√
N

)2r+2

+ O(1/N2p+2), (8)

with O uniform in µ, ζ the Riemann zeta function, p some positive integer, Bn

the Bernoulli numbers, and g(k) defined as the kth derivative of g in (7).
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E∆N (µ) shows up in a range of applications. Examples are sequentially
testing for the drift of a Brownian motion [7], corrected diffusion approximations
[17], simulation of Brownian motion [1, 5], option pricing [3], queueing systems
in heavy traffic [12, 13, 15], and the thermodynamics of a polymer chain [8].

The expression in (8) for E∆N (µ) involves terms cjN
−j/2 with

c1 = −ζ(1/2)√
2π

, c2 = −µ− 2µΦ(−µ) + 2φ(µ)
4

, c3 = −ζ(−1/2)µ2

2
√

2π
, c4 =

φ(µ)
24

,

(9)
φ(x) = e−x2/2/

√
2π and cj = 0 for j = 6, 10, 14, . . .. The first term c1 has been

identified by Asmussen, Glynn & Pitman [1], Thm. 2 on p. 884, and Calvin
[5], Thm. 1 on p. 611, although Calvin does not express c1 in terms of the
Riemann zeta function. The second term c2 was derived by Broadie, Glasserman
& Kou [3], Lemma 3 on p. 77, using extended versions of the Euler-Maclaurin
summation formula presented in [1]. To the best of the authors’ knowledge, all
higher terms appear in the present paper for the first time.

The distribution of the maximum of Brownian motion with drift on a finite
interval is known to be (see Shreve [18], p. 297)

P( max
0≤t≤T

B(t) ≤ x) = Φ
(x− µT√

T

)
− e2µxΦ

(−x− µT√
T

)
, x ≥ 0, (10)

and integration thus yields

E( max
0≤t≤T

B(t)) =
1
2µ

(2Φ(µ
√

T )− 1) + Φ(µ
√

T )µT + φ(µ
√

T )
√

T . (11)

A combination of (11) and (8) leads to a full characterization of the expected
maximum of the Gaussian random walk. Note that the mean sampling error for
the Brownian motion defined in (1) on [0, T ], sampled at N equidistant points,
is given by σ

√
T · E∆N (µ

√
T/σ).

When the drift µ is negative, results can be obtained for the expected all-time
maximum. That is, for the special case µ < 0, σ = 1, T = N and N →∞, one
finds that limN→∞

√
N · E∆N (µ

√
N) is equal to

−ζ(1/2)√
2π

+
1
4
µ− µ2

√
2π

∞∑

r=0

ζ(−1/2− r)
r!(2r + 1)(2r + 2)

(−µ2

2

)r

, (12)

for−2
√

π < µ < 0. Note that (12) follows from Theorem 1. The result, however,
was first derived by Pollaczek [16] in 1931 (see also [11]). Apparently unaware
of this fact, Chernoff [7] obtained the first term −ζ(1/2)/

√
2π, Siegmund [17],

Problem 10.2 on p. 227, obtained the second term 1/4 and Chang & Peres
[6], p. 801, obtained the third term −ζ(−1/2)/2

√
2π. The complete result was

rediscovered by the authors in [9], and more results for the Gaussian random
walk were presented in [9, 10], including series representations for all cumulants
of the all-time maximum.

3. Proof of Theorem 1

We shall treat separately the cases µ < 0, µ > 0 and µ = 0. The proof for
µ < 0 in Subsection 3.1 largely builds upon Euler-Maclaurin summation and
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the result in Section 4 of [9] on the expected value of the all-time maximum of
the Gaussian random walk. The result for µ > 0 in Subsection 3.2 then follows
almost immediately due to convenient symmetry properties of Φ. Finally, in
Subsection 3.3, the issue of uniformity in µ is addressed and the result for µ = 0
is established in two ways: First by taking the limit µ ↑ 0 and subsequently by
a direct derivation that uses Spitzer’s identity (4) for µ = 0 and an expression
for the Hurwitz zeta function.

3.1. The negative-drift case. Set µ = −γ with γ > 0. We have from (6)

E∆N (µ) =

{∫ ∞

0
g(t)dt− 1

N

∞∑

n=1

g(n/N)

}

−
{∫ ∞

1
g(t)dt− 1

N

∞∑

n=N+1

g(n/N)

}
. (13)

We compute by partial integration
∫ ∞

0
g(t)dt = −

∫ ∞

0
γΦ(−γ

√
t)dt +

1√
2π

∫ ∞

0
t−1/2e−

1
2
γ2tdt

=
−1
2γ

+
1
γ

=
1
2γ

. (14)

Furthermore, with β = γ/
√

N ,

1
N

∞∑

n=1

g(n/N) =
1
N

∞∑

n=1

(
− γΦ(−γ

√
n/
√

N) +
1√

2πn/N
e−

1
2
γ2n/N

)

=
1√
N

∞∑

n=1

(e−
1
2
β2n

√
2πn

− βΦ(−β
√

n)
)

=
EM√

N
, (15)

with EM as in (4.1) of [9]. From (14), (15) and [9], (4.25), it follows that

∫ ∞

0
g(t)dt− 1

N

∞∑

n=1

g(n/N) =
−ζ(1/2)√

2πN
− γ

4N

− 1√
2πN

∞∑

r=0

ζ(−1/2− r)(−1/2)r

r!(2r + 1)(2r + 2)

(
γ√
N

)2r+2

.

(16)

This handles the first term on the right-hand side of (13).
For the second term, we use Euler-Maclaurin summation (see De Bruijn [4],

Sec. 3.6, pp. 40-42) for the series 1
N

∑∞
n=N+1 g(n/N). With

f(x) =
1
N

g(x/N), x ≥ N, (17)
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we have for p = 1, 2, . . .

∞∑

n=N+1

f(n) = −f(N) +
∞∑

n=N

f(n)

= −f(N) + lim
M→∞

[∫ M

N
f(x)dx + 1

2f(N)

+
p∑

k=1

B2k

(2k)!

(
f (2k−1)(M)− f (2k−1)(N)

)

−
∫ M

N
f (2p)(x)

B2p (x− bxc)
(2p)!

dx

]

= −1
2f(N) +

∫ ∞

N
f(x)dx−

p∑

k=1

B2k

(2k)!
f (2k−1)(N) + Rp,N , (18)

where Bn(t) denotes the nth Bernoulli polynomial, Bn = Bn(0) denotes the nth
Bernoulli number, and

Rp,N = −
∫ ∞

N
f (2p)(x)

B2p (x− bxc)
(2p)!

dx. (19)

Since f (l)(x) = g(l)(x/N)/N l+1, we thus obtain

1
N

∞∑

n=N+1

g(n/N) =
−1
2N

g(1) +
∫ ∞

1
g(x)dx

−
p∑

k=1

B2k

(2k)!
1

N2k
g(2k−1)(1) + Rp,N , (20)

where

Rp,N = − 1
N2p

∫ ∞

1
g(2p)(x)

B2p (Nx− bNxc)
(2p)!

dx. (21)

From the definition of g in (7) it is seen that g(2p) is smooth and rapidly
decaying, hence Rp,N = O(1/N2p). Since

Rp,N = − B2p+2

(2p + 2)!
1

N2p+2
g(2p+1)(1) + Rp+1,N , (22)

we even have Rp,N = O(1/N2p+2). Therefore, from (20),

∫ ∞

1
g(t)dt− 1

N

N∑

n=N+1

g(n/N)

=
1

2N
g(1) +

p∑

k=1

B2k

(2k)!
1

N2k
g(2k−1)(1) + O(1/N2p+2). (23)

Combining (16) and (23) completes the proof, aside from the uniformity issue,
for the case that µ = −γ < 0.
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3.2. The positive-drift case. The analysis so far was for the case with nega-
tive drift µ = −γ with γ > 0. The results can be transferred to the case that
µ > 0 as follows. Note first from Φ(−x) = 1−Φ(x) that g(t) = µ−Φ(−µ

√
t) +

(2πt)−1/2 exp(−1
2(−µ)2t). Therefore, by (6)

E∆N (µ) = E∆N (−µ), (24)

since the term µ vanishes from the right-hand side of (6). Then use the result
already proved with −µ < 0 instead of µ. This requires replacing g(t) from (7)
by

−µΦ(−µ
√

t) + (2πt)−1/2e−
1
2
(−µ)2t (25)

and µ by −µ everywhere in (8). The term 2g(t)− µ then becomes

2
(
−µΦ(−µ

√
t) + (2πt)−1/2 exp(−1

2(−µ)2t)
)
− (−µ) =

2
(
µΦ(µ

√
t) + (2πt)−1/2 exp(−1

2µ2t)
)
− µ, (26)

which is in the form 2g(t)− µ with g from (7). Next we compute

g′(t) =
−1

2
√

2π
t−3/2e−

1
2
µ2t

=
d
dt

[
−µΦ(−µ

√
t) + (2πt)−1/2e−

1
2
(−µ)2t

]
. (27)

Finally, the infinite series with the ζ-function involves µ quadratically. Thus
writing down (8) with −µ < 0 instead of µ turns the right-hand side into the
same form with g given by (7). This completes the proof of Theorem 1 for
µ 6= 0.

3.3. The zero-drift case. We shall first establish the uniformity in µ < 0 of
the error term O in (8), for which we need that

Rp,N =
−1
N2p

∫ ∞

1
g(2p)(x)

B2p (Nx− bNxc)
(2p)!

dx (28)

can be bounded uniformly in µ < 0 as O(N−2p). Write ν = 1
2µ2, and observe

from (27) and Newton’s formula that for k = 1, 2, . . .

g(k)(t) =
−1

2
√

2π

(
d
dt

)k−1 [
t−3/2e−νt

]

=
(−1)k

2
√

2π
e−νt

k−1∑

n=0

(
k − 1

n

)
3
2 · 5

2 · · · · · (3
2 + n− 1)νk−1−nt−3/2−n. (29)

Hence, g(2p)(t) > 0 and g(2p−1)(1) < 0 for p = 1, 2, . . .. Therefore, with C an
upper bound for

|B2p (Nx− bNxc) /(2p)!| , (30)
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we have

|Rp,N | ≤ C

N2p

∫ ∞

1
g(2p)(t)dt = − C

N2p
g(2p−1)(1)

=
C

N2p

e−ν

2
√

2π

2p−2∑

n=0

(
2p− 2

n

)
3
2 · 5

2 · · · · · (3
2 + n− 1)ν2p−2−n, (31)

which is bounded in ν > 0 when p = 1, 2 . . . is fixed. This settles the uniformity
issue and thus the case µ = 0 by letting µ ↑ 0.

A direct derivation of the result (8) for the case µ = 0 is also possible. When
ζ(s, x) is the analytic continuation to C \ {−1} of the function

ζ(s, x) =
∑

n>−x

(n + x)−s, Re(s) > 1, x ∈ R, (32)

then for s ∈ C \ {−1} and p = 1, 2, . . . with 2p + 1 > −Re(s), there holds (see
Borwein, Bradley & Crandall [2], Section 3, for similar expressions)

ζ(s, x) =
∑

−x<n≤N

(n + x)−s − (x + N)1−s

1− s
− 1

2(x + N)−s

−
p∑

k=1

(
1− s

2k

)
B2k

1− s
(x + N)−s−2k+1 + O(N−s−2p−1). (33)

Combination of

E∆N (0) =
1√
2π

(
2− 1

N1/2

N∑

n=1

n−1/2

)
(34)

and (33) with s = 1/2, x = 1 and N replaced by N − 1, leads to

E∆N (0) = − ζ(1/2)√
2πN

− 1
2N

√
2π
− 2√

2π

p∑

k=1

(
1/2
2k

)
B2kN

−2k +O(N−2p−2). (35)

Note that
2√
π

(
1/2
2k

)
B2k =

B2k

(2k)!
h(2k−1)(t)

∣∣∣
t=1

; h(t) =
1√
2πt

, (36)

and so (35) corresponds to (8) with µ = 0, indeed.
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