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In this paper we present details on a novel imaging algorithm based on the

Extended Nijboer-Zernike (ENZ) theory of diffraction. We derive integral

expressions relating the electric field distribution in the entrance pupil of an

optical system to the electric field in its focal region. The evaluation of these

integrals is made possible by means of a highly accurate and efficient series

expansion similar to those occurring in standard ENZ-theory. Based on these

results an ENZ-imaging scheme is constructed and evaluated in detail with

attention for the convergence properties and computational complexity of the

new method. c© 2008 Optical Society of America

1. Introduction

In present day optics, the ability to obtain accurate images of a general object by means

of computational methods is of great importance. Computational imaging not only provides

valuable information on the image performance of proposed designs for optical systems, it

also enables a detailed study of image formation itself. Although a large number of different

imaging algorithms exist, all of them can be classified according to whether they operate

in the spatial domain or in the frequency or Fourier domain. In the frequency domain ap-

proach, the assumption has to be made that the response of the system is space-invariant,

implying that the imaging system generates an invariant point response to the coherent near-

field issued from the object. When operating in the spatial domain, this assumption is not
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explicitly needed but, once incorporated, it leads to an important reduction in calculation

time. For this reason, although not strictly required, spatial invariance is also included in

the spatial domain method. Regarding the frequency domain method, its origin is found

in the Abbe microscope imaging theory [1]. It has been generalized to imaging problems

by the work of Duffieux [2], Maréchal [3] and Hopkins. The latter author has extended the

Fourier or frequency-domain approach to imaging with an extended source (partially coher-

ent illumination) [4], including a defocussing of the image [5]. More recent extensions of the

Fourier approach to imaging allow the inclusion of imaging aberrations and the effects of

’vector imaging’ at high numerical aperture [6-8]. The Fourier approach has become very

popular because of its possibility to employ the Fast Fourier Transform in numerical compu-

tations [9] and, more recently, to apply fast algorithms to obtain the so-called transmission

cross-correlation coefficients [10]. The fast image calculation does however require an inher-

ent periodicity in the object. If this periodicity is not present, it can be artificially introduced

by periodically repeating the specific part of the object that has to be imaged. In this case

the continuous frequency spectrum of the object is replaced by a discrete comb-like spectrum

which introduces certain artifacts in the final image.

The alternative to frequency domain imaging is the calculation of the convolution of the

object function with the point response function of the imaging system [11]. The first ana-

lytical result for the ideal response function or point-spread function goes back to Airy [12].

Through-focus imaging with an ideal system has been studied by Lommel [13]. Refinements

including the influence of aberrations have been studied by Strehl [14], Conrady [15,16] and

Picht [17]. A systematic study of imaging in the presence of aberrations has been carried

out by Zernike and Nijboer [18-20], with the use of their circle polynomials on the circu-

lar exit pupil as the key contribution. The calculation of the point-spread function at high

numerical aperture was initiated by Ignatowsky [21] and further developed by Hopkins [22]

and Wolf [23]. In this latter publication, the high-numerical-aperture point-spread function

through-focus was presented using a numerical evaluation of the Debye diffraction integral.

This approach has become the standard one to treat point-spread function calculation using

so-called ’vector diffraction’. Instead of the numerical evaluation of a diffraction integral,

special functions have been proposed to represent the wave field in the exit pupil that yield

a direct analytic solution in the image region, as for example, Gauss-Laguerre modal ex-

pansions [24], multipole functions [25], radial prolate spheroidal functions [26], spherical

harmonics [27], Walsh functions [28]. Most of the special functions quoted above suffer from

the fact that they cannot easily cope with the sharp edge that is encountered in optical

diffraction problems, namely the circular ’hard’ diaphragm that sharply limits the lateral

extent of the imaging bundles in an optical system. For that reason, we use a recent exten-

sion of the method for high-numerical-aperture point-spread calculation according to [23]
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that allows the analytic treatment of the influence of aberrations and defocusing. In a series

of papers, the so-called Extended Nijboer-Zernike (ENZ) theory was presented that provides

the user with semi-analytic expressions for the through-focus aberrated point-spread func-

tion in the low-aperture scalar diffraction case [29,30] and for the vector diffraction case [31].

Although the calculation of the image of a single point has been drastically accelerated by

the availability of an accurate semi-analytic series expansion instead of a diffraction integral

to be numerically evaluated, the application of this new tool for convolution calculations to

obtain complete images is still too slow in practice.

In this paper, we present details on a recently proposed novel approach to point-spread-

function-based image calculation [32]. The basic tool used in this new imaging approach is the

ENZ theory for through-focus point-spread function calculation of general imaging systems

with aberrations and spatial lens transmission variations. However, instead of using a point-

source in the object plane, providing us with a quasi-uniform wave at the entrance pupil and

slowly varying phase in the exit pupil due to imaging aberrations, we start with an extended

object that is many equivalent point-spread functions large in the object plane. The wave field

produced in the entrance pupil by this coherently illuminated extended object field is then

expanded in Zernike-Nijboer circle polynomials, including its amplitude and phase variations

following from the diffraction of the coherent incident wave (in general a plane wave) by the

extended object. The wave field in the exit pupil is the product of the wave field in the

entrance pupil multiplied by the amplitude and phase (aberration) of the lens transmission

function. This wave field with its Zernike polynomial expansion then immediately yields the

through-focus aberrated image.

In Section 2 of this paper, we exploit the general tool for through-focus point-spread

function calculation provided by the ENZ-formalism to compute the image of more general

objects. To this goal we construct the Zernike expansion of the wave field in the entrance pupil

of the system. We give the detailed derivation of imaging from object space to image space

with different refractive indexes to include immersion imaging and show how the Zernike

expansion of the entrance pupil field is incorporated in the formalism. The immersion imaging

mode is encountered not only in microscopy but also in high-resolution optical lithography

systems with numerical aperture values higher than unity [33]. Prior derivations were not

always exact in calculating the absolute field strengths in image space given the object field

components. In Section 3, we present our new method using an extended object as input

for our point-spread function based imaging method. The input for the imaging method is

the optical near-field of the object given the illuminating wave. Rigorous electromagnetic

diffraction is applied to obtain this near field, using a specially developed FDTD (Finite

Difference Time Domain) method [34]. In Section 4, we analyze the accuracy and the typical

computational complexity of our method. Finally, in Section 5, we present our conclusions.
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2. ENZ-theory for advanced imaging

The extended Nijboer-Zernike (ENZ) theory of diffraction has been first described in refer-

ences [29] and [30]. In these papers, a semi-analytic solution of the Debye diffraction integral

for the imaging of a point source by a general optical system was introduced. The develop-

ment of ENZ-theory was intended to provide a method to characterize optical systems by

means of intensity measurements in the focal region. In order to achieve this, it is fundamen-

tal to have both an accurate and fast algorithm to compute the point-spread function for a

general aberrated system. In terms of computations, this comes down to computing the point-

spread function from the otherwise uniform exit-pupil, for an exit-pupil that is influenced by

a general aberration. Although the non-uniformities, present in the pupil due to aberrations,

are usually small and should be relatively small in order to make ENZ-characterization pos-

sible, the pupil imaging method itself is not limited by the size of the deformations and can

be applied to general pupils. Recognizing the fact that in general imaging one also needs to

image an exit-pupil distribution that can be very complex, both in amplitude and phase,

we believe that this appealing feature of the ENZ-theory is well suited to be exploited for

general imaging.
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Fig. 1. Schematic representation of the geometry under consideration. O is the

origin, R0 is the radius of the entrance pupil sphere P0, n̂ is the normal to the

pupil surface and Q0 is a general point in the entrance pupil where we locally

define the orthogonal linear p- and s-polarization states.

Here, we will introduce ENZ-based imaging by deriving an ENZ-based imaging method

for advanced lithographic systems. For such systems, the distance, R0, between the object
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(in this case, a lithographic mask) and the entrance pupil of the optical system, is much

larger than the transverse dimensions of the object being imaged. In this case, it is allowed

to apply the Fraunhofer approximation which considers all light coming from the mask to

be originating from a single point O. However, the radius of the entrance pupil is of the

same order of magnitude as R0, and therefore the entrance pupil can not be considered a

flat surface, but is a spherical surface P0 with its origin at O (see Fig. 1). We now take a

general point Q0(ρ, θ) on the entrance pupil sphere P0, where ρ and θ are polar coordinates

with ρ normalized with respect to the lateral half diameter of the entrance pupil (see Fig.

1). In a very good approximation, the electric field vector of the light arriving at a point

Q0(ρ, θ) will be perpendicular to the normal n̂ of the spherical surface and it is thus possible

to locally represent the field at Q0 by a linear combination of two orthogonal polarization

states perpendicular to n̂. Here, we will adhere to s- (perpendicular) and p- (parallel) states of

linear polarization as they can be conveniently mapped between the entrance and exit pupil

of an aplanatic imaging system. In our case, this mapping is uniquely defined as lithographic

systems very accurately satisfy Abbe’s sine condition, within a tolerance better than 10−5.
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Fig. 2. Definition of the local basis for a general point Q0 on the entrance

pupil sphere with an axial cross-section (left-hand graph) and a cross-section

perpendicular to the z-axis (right-hand graph).

We now introduce a new coordinate base in Q0(ρ, θ) according to

k̂0 = sin α0 cos θ x̂ + sin α0 sin θ ŷ + cos α0 ẑ, (1)

p̂0 = cos α0 cos θ x̂ + cos α0 sin θ ŷ − sin α0 ẑ, (2)
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ŝ0 = − sin θ x̂ + cos θ ŷ, (3)

where α0 = arcsin( ρ
R0

) and the right-handed unit vector bases (p̂0, ŝ0, k̂0) and (x̂, ŷ, ẑ) are

depicted in Fig. 2. We suppose that we have available the Cartesian electric field components

at a general point Q0, for example, by means of rigorous electromagnetic computation. From

the components Ex and Ey, we can find Ez by applying the orthogonality of field components

with respect to the propagation unit vector k̂0 yielding

E0,z = −(E0,x cos θ + E0,y sin θ) tan α0. (4)

The field components on the new basis are then given by

E0,p(ρ, θ) = E0(ρ, θ) · p̂0 =
E0,x cos θ + E0,y sin θ

cos α0

, (5)

E0,s(ρ, θ) = E0(ρ, θ) · ŝ0 = −E0,x sin θ + E0,y cos θ. (6)

Note that the component in the direction of k̂, E0,k, is by definition equal to zero because

of the Fraunhofer approximation. Next, we have to relate the field at a general point Q1

in the exit pupil to the incident field in the corresponding point Q0 on the entrance pupil

sphere P0. The field in the entrance pupil equals the far-field produced by diffraction of the

incident field at the mask structure. For the transition of the far-field from the entrance pupil

to the exit pupil, we need to consider the energy transport between the pupil surfaces. The

basic relationship between the energy flow through the entrance and the exit pupil follows

from paraxial optics. It provides us with the ratio between elementary areas on the pupil

surfaces by means of the square of the paraxial magnification. The exact mapping of an

elementary surface area from entrance to exit pupil outside the paraxial domain needs an

extra condition; in our case, for large-field imaging systems, the Abbe sine condition has to

be satisfied. Following the arguments in [6] and allowing for different refractive indices n0

and n1 in object and image space, we have the following relationship between the energy

flow through corresponding areas in entrance and exit pupil (in the absence of absorption)

εv|E|2dS = constant ,

or,

n0|E0|2dS0 = n1|E1|2dS1 , (7)

where ε = n2 is the relative electric permittivity of the medium, v = c/n is the propagation

velocity and dS0 and dS1 are the corresponding flow cross-sections on the pupil surfaces.

Denoting the distances of entrance and exit pupil from the object and image plane by R0

and R1, respectively, and using the expression for the elementary solid angles in object and

image space, we find

n0R
2
0

dkx,0dky,0

k0kz,0

|E0|2 = n1R
2
1

dkx,1dky,1

k1kz,1

|E1|2, (8)
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with kx,i, ky,i and kz,i being the wavevector components in the object and image space.

Using k0/n0 = k1/n1, we write the electric field at the image side as

|E1| = R0

R1

√
kz,1

kz,0

√
dkx,0dky,0

dkx,1dky,1

|E0|. (9)

Denoting the paraxial magnification by M and writing the Abbe sine-condition according to

kx,0 = Mkx,1, ky,0 = Mky,1, (10)

we obtain

|E1| =

(
MR0

R1

) √
n1

n0

√
kz,1

k1

k0

kz,0

|E0|

=

(
MR0

R1

) √
n1

n0

(1− s2
0ρ

2)1/4

(1− n2
1

n2
0
M2s2

0ρ
2)1/4

|E0|. (11)

Finally, we use the paraxial relation between pupil object and image distances R1/R0 =

(n1/n0)MMp with Mp the pupil magnification and use Newton’s paraxial imaging equation

in putting |Mp| = |Rp/f1| with Rp being the distance from the image side focal point to the

exit pupil and f1 the image side focal distance. The field in the exit pupil is then given by

|E1| =
∣∣∣∣
f1

Rp

∣∣∣∣
√

n0

n1

(1− s2
0ρ

2)1/4

(1− n2
1

n2
0
M2s2

0ρ
2)1/4

|E0| =
∣∣∣∣
f1

Rp

∣∣∣∣
√

n0

n1

TR(ρ)|E0|, (12)

where the transmission factor

TR(ρ) =
(1− s2

0ρ
2)1/4

(1− n2
1

n2
0
M2s2

0ρ
2)1/4

(13)

can be ascribed to the radiometric effect for a system satisfying the Abbe sine-condition

in our general case with unequal refractive indices in object and image space. In the more

common case with n0 = n1, we can put |f1| = |f0| = fL, the focal distance of the imaging

system.

As already mentioned above, we limit ourselves to systems satisfying Abbe’s sine condition.

In this case a point Q0 at position (ρ, θ) is mapped directly to a point Q1(ρ, θ) on the exit

pupil sphere with the property that the normalized radial coordinate ρ and the azimuthal

coordinate remain unchanged. In addition to the radiometric effect described by the trans-

mission factor TR, the light travelling through the imaging system will also experience some

deformations introduced by imperfections of the imaging system. For lithographic systems

these aberrations are generally small but, nevertheless, we include them in the formalism.
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We describe both the amplitude and phase aberrations of the imaging system by its complex

transmission function TI . In fact, in the most general case we should consider T p
I and T s

I ,

being the transmission function for p- and s-polarization components respectively, but here

we will adhere to imaging systems that are free of birefringence, allowing a single transmis-

sion function for all field components. The transmission function of the imaging system is

then given as

TI = A(ρ, θ) exp [iΦ(ρ, θ)] , (14)

where A(ρ, θ) is the amplitude transmission function and Φ(ρ, θ) is the phase aberration.

In contrast to basic ENZ-theory, where the field E0 in the entrance pupil is uniform, we

are dealing here with a general non-uniform field E0. We can now write the E1,s and E1,p

components as

E1,s(ρ, θ) =
f1 TI TR

Rp

√
n0

n1

E0,s(ρ, θ)

=
f1 TI TR

Rp

√
n0

n1

(−E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ) , (15)

E1,p(ρ, θ) =
f1 TI TR

Rp

√
n0

n1

E0,p(ρ, θ)

=
f1 TI TR

Rp

√
n0

n1

E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ

(1− n2
1M

2s2
0ρ

2/n2
0)

1
2

. (16)

The x-, y- and z-components are given by

E1,x(ρ, θ) = E1,p(ρ, θ) cos(α1) cos θ − E1,s(ρ, θ) sin θ , (17)

E1,y(ρ, θ) = E1,p(ρ, θ) cos(α1) sin θ + E1,s(ρ, θ) cos θ , (18)

E1,z(ρ, θ) = E1,p(ρ, θ) sin(α1) , (19)

or, by using cos(α1) =
√

1− s2
0ρ

2 and inserting Eqs.(15)-(16), we get

E1,x(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

[
(1− s2

0ρ
2)

1
2

(1− n2
1M

2s2
0ρ

2/n2
0)

1
2

×
{
E0,x(ρ, θ) cos2 θ + E0,y(ρ, θ) cos θ sin θ

}
+

{
E0,x(ρ, θ) sin2 θ − E0,y(ρ, θ) cos θ sin θ

}
]
, (20)

E1,y(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

[
(1− s2

0ρ
2)

1
2

(1− n2
1M

2s2
0ρ

2/n2
0)

1
2

×
{
E0,x(ρ, θ) cos θ sin θ + E0,y(ρ, θ) sin2 θ

}
+

{−E0,x(ρ, θ) cos θ sin θ + E0,y(ρ, θ) cos2 θ
}
]
, (21)

8



E1,z(ρ, θ) =
f1 TI(ρ, θ) TR(ρ) s0 ρ

Rp(1− n2
1M

2s2
0ρ

2/n2
0)

1
2

√
n0

n1

{E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ} .

(22)

We now choose to represent the field components E0,x and E0,y, including possible deforma-

tions introduced by the optical system and represented by TI(ρ, θ), by means of a Zernike

expansion

E0,x(ρ, θ) TI(ρ, θ) =
∑
n,m

βm
n,xR

|m|
n (ρ) exp(imθ), (23)

E0,y(ρ, θ) TI(ρ, θ) =
∑
n,m

βm
n,yR

|m|
n (ρ) exp(imθ). (24)

Using this expansion and after a somewhat lengthy manipulation, the field components in

the exit pupil can finally be written as

E1,x(ρ, θ) =
f1 TR(ρ)

2Rp (1− n2
1M

2s2
0ρ

2/n2
0)

1
2

√
n0

n1

∑
n,m

R|m|
n (ρ) exp(imθ)×

{
βm

n,x

[{
(1− s2

0ρ
2)

1
2 + (1− n2

1M
2s2

0ρ
2/n2

0)
1
2

}

−
{

(1− n2
1M

2/n2
0)s

2
0ρ

2 cos 2θ[
(1− n2

1M
2s2

0ρ
2/n2

0)
1
2 + (1− s2

0ρ
2)

1
2

]
}]

−βm
n,y

[
(1− n2

1M
2/n2

0)s
2
0ρ

2 sin 2θ[
(1− n2

1M
2s2

0ρ
2/n2

0)
1
2 + (1− s2

0ρ
2)

1
2

]
]}

, (25)

E1,y(ρ, θ) =
f1 TR(ρ)

2Rp (1− n2
1M

2s2
0ρ

2/n2
0)

1
2

√
n0

n1

∑
n,m

R|m|
n (ρ) exp(imθ)×

{
βm

n,y

[{
(1− s2

0ρ
2)

1
2 + (1− n2

1M
2s2

0ρ
2/n2

0)
1
2

}

+

{
(1− n2

1M
2/n2

0)s
2
0ρ

2 cos 2θ[
(1− n2

1M
2s2

0ρ
2/n2

0)
1
2 + (1− s2

0ρ
2)

1
2

]
}]

−βm
n,x

[
(1− n2

1M
2/n2

0)s
2
0ρ

2 sin 2θ[
(1− n2

1M
2s2

0ρ
2/n2

0)
1
2 + (1− s2

0ρ
2)

1
2

]
]}

, (26)

E1,z(ρ, θ) =
f1 TR(ρ) s0

Rp (1− n2
1M

2s2
0ρ

2/n2
0)

1
2

√
n0

n1

×
∑
n,m

ρ R|m|
n (ρ) exp(imθ)

{
βm

n,x cos θ + βm
n,y sin θ

}
. (27)
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The final step to obtain the image produced by the optical system involves computing the

Debye diffraction integral with the aid of the exit pupil field distribution defined by Eqs.

(25)-(27). As we are interested in systems with a large numerical aperture, we have to deal

with the full vectorial version of the Debye diffraction integral as formulated in the well-

known papers by Ignatowsky [21], Wolf [23] and Richards and Wolf [35]. The expressions

they introduced were intended to determine the image of a point-source, but, in a very good

approximation for sufficiently large exit pupil diameter, they can be equally well applied to

more general fields in the exit pupil. The general expression for an arbitrary field distribution

on the exit pupil sphere in image space can be found in [36],

E2(r, φ, f) =
−is2

0

λ
exp

(−if

u0

) ∫∫

C

Ei(ρ, θ + π)

(1− s2
0ρ

2)1/2
×

exp

{
if

u0

[
1− (1− s2

0ρ
2)1/2

]}
exp{i2πrρ cos(θ − φ)}ρdρdθ, (28)

with C being the scaled integration area on the exit pupil which in our case is equal to the

unit circle. For the vector quantity Ei(ρ, θ + π) in the integrand of the Debye-integral, one

should take the field-invariant rE1 along a propagation direction defined by (ρ, θ), with r the

distance along the propagation direction towards or away from the image point. This quantity

has also been denoted by ’ray strength’. Once we have obtained the field components E1 on a

sphere with its midpoint at the image center and with a radius R1, the quantity Ei is simply

given by R1E1. Multiplication of R1 with the geometrical amplitude factor f1/Rp in Eqs.(25)-

(27) allows us to write the complete scaling factor f1s
2
0R1/λRp as s2

0f1/(λ[1−Mf1/R1]) using

the paraxial property Rp = R1 − Mf1. Special cases arise when one of the pupils or both

are located at infinity. For an exit pupil at infinity, the geometrical scaling factor reduces

to f1s
2
0/λ. An entrance pupil at infinity poses a problem because the field components E0,s

and E0,p tend to zero and the evaluation of the Zernike coefficients of Eqs.(23)-(24) would

be indefinite. In this case, the field components can be measured or calculated, far enough

from the object itself, on a sphere with a predefined radius R0 that will replace the actually

infinite value of the radius. With the finite energy flow from the infinitely distant entrance

pupil, the field components on the chosen sphere with radius R0 can be obtained. Using

the corresponding R1-value for the exit pupil position, the quantity rE1, a ray invariant, is

then uniquely obtained. The coordinates (r, φ, f) used in Eq.(28) are normalized cylindrical

co-ordinates in the image space with the origin located at the geometrical focus, see Fig.2,

with f being the normalized axial coordinate and (r, φ) the lateral polar coordinates. The

normalization has been carried out with respect to the diffraction unit λ/NA = λ/(n1s0) in

the radial r-direction and f = −2πn1u0z/λ in the axial direction with u0 = 1−
√

1− s2
0.

To evaluate Eq.(28), we insert the exit pupil field given by Eqs.(25)-(27) and the radio-

metric factor TR into Eq.(28). Using the expression
∫ 2π

0
exp(imθ) exp(i2πrρ cos(θ− φ))dθ =
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2πimJm(2πrρ) exp(imφ) with Jm(x) the m-th order Bessel function of the first kind, we

obtain for the vector field in the focal region using column vector notation,

E2(r, φ, f) =
−iπf1s

2
0

λ [1−Mf1/R1]

√
n0

n1

exp

(−if

u0

) ∑
n,m

(−i)m exp[imφ]×

βm

n,x




V m
n,0 + s2

0

(
n2

0−n2
1M2

2n2
0

) {
V m

n,+2 exp[+2iφ] + V m
n,−2 exp[−2iφ]

}

−is2
0

(
n2

0−n2
1M2

2n2
0

) {
V m

n,+2 exp[+2iφ]− V m
n,−2 exp[−2iφ]

}

−is0

{
V m

n,+1 exp[+iφ]− V m
n,−1 exp[−iφ]

}




+ βm
n,y




−is2
0

(
n2

0−n2
1M2

2n2
0

) {
V m

n,+2 exp[+2iφ]− V m
n,−2 exp[−2iφ]

}

V m
n,0 − s2

0

(
n2

0−n2
1M2

2n2
0

) {
V m

n,+2 exp[+2iφ] + V m
n,−2 exp[−2iφ]

}

−s0

{
V m

n,+1 exp[+iφ] + V m
n,−1 exp[−iφ]

}





 ,

(29)

where, for integer j = −2, · · · , +2, we have

V m
n,j(r, f) =

∫ 1

0

ρ|j|

{
(1− n2

1M
2s2

0ρ
2/n2

0)
1
2 + (1− s0

2ρ2)
1
2

}−|j|+1

(1− s0
2ρ2)

1
4 (1− n2

1M
2s0

2ρ2/n2
0)

3
4

×

exp

[
if

u0

(
1−

√
1− s2

0ρ
2

)]
R|m|

n (ρ)Jm+j(2πrρ)ρdρ. (30)

In contrast with earlier publications, for instance [37-39], Eq. 29 has the factor (−i)m in

stead of im. The minus sign is due to the fact that we have the same reference direction

for the polar angles θ and φ in object, pupil and image space. In the earlier publications,

there was a rotation of π between the polar coordinate systems (ρ, θ) and (r, φ). It is also

important to note that former results pertained to imaging from infinity (M = 0) and to

equal indices in object and image space, yielding a geometrical prefactor −iπs2
0R/λ with

R denoting the focal distance of the imaging system. The results presented here yield the

same limiting value for this special case. Also, in accordance with former results from ENZ-

analysis (see [36], appendix D, where a point-source at infinity was considered), one can

devise a series expansion to quickly obtain accurate values of the integral above, that applies

to imaging at finite distances. The functions that are used in the expansion and the values

of the new expansion coefficients are given in Appendix A.

In this section, we have identified the implications of considering imaging of an extended

object at a finite distance from the entrance pupil, within the frame-work of the ENZ-

formalism. We have shown how to adjust the standard ENZ-formalism to accommodate

for this new range of applications, and we have introduced a new expression for the field

in the focal region of a general imaging system. In this new formulation, the field in the

focal region is directly related to the field in the entrance pupil. The only approximation
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used in our considerations is the Fraunhofer approximation that requires the object to be

small compared to the distance between object and entrance pupil. For the use of these new

expressions in mask imaging, this condition is generally satisfied.

3. Computation scheme

In this section, we translate the imaging method devised in Section 2 into a computation

scheme that simulates mask imaging by a lithographic system. When considering such a

full lithographic system simulation, a choice should be made what model to use in order

to describe the finite extent of the illumination source correctly. Here, we will adhere to

the Abbe approach instead of the more commonly used Hopkins approximation (see [40],

Sections 8.2 and 8.3). Although the Hopkins approach is generally faster, it has its limitations

when relatively thick mask objects are considered. On the other hand, the Abbe approach

imposes no limitations on the structure of the mask and has therefore our preference.

y

x

η=1
ηj

σj

B j

zαobj

η=1

ySource
plane

Source
plane

Condenser

B j

Object
plane

k j
αj

Fig. 3. Schematic representation of the Köhler illumination.

In the Abbe approach, the finite-size illumination source approximated by a sampled equiv-

alent source with constant values for its strength and far-field radiation pattern over each

sampling subarea. In advanced lithography, the illumination system, based on Köhler illumi-

nation, has been extended with smoothing elements, for instance, a fly-eyes lens array or an

assembly of light-guiding quartz rods. These measures are meant to improve the uniformity

of the effective source of the illumination system, both regarding its near-field and far-field

properties. Suppose that we can measure the radiance function B(x, y; ζx, ζy) of the effec-

tive source, so that we are then left with calculating the corresponding electromagnetic field
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strengths in the object plane where the mask is located. In the following, we limit ourselves

to a centered object with very limited extent. With the Köhler illumination arrangement,

the axial object collects the forward directed radiation of each source point in the effective

source. In this case, we can use the value of the radiance function in this direction, given

by B(x, y; 0, 0). The power flow from an elementary source element dSS towards the object

element with size dSO is given by

d2P = B(x, y; 0, 0)dSSdΩO

= B(x, y; 0, 0)dSSdSO cos(α)/f 2
C , (31)

where we have used that the solid angle dΩO subtended by the object is given by its projected

surface divided by the square of the focal length fC of the condensor lens (α is the projection

angle). In the case of the sampled source, we suppose a constant behavior of the source over

each sampling area and we are then allowed to integrate the elementary power flow using

the value of the radiance function in each sampling point. For a sampled source area with

index j we find

Pj = B(xj, yj; 0, 0)SjSOcos(αj/f
2
C) , (32)

where Sj is the area of the j-th source element. The power contained in the parallel beam

that is issued by the sampling area with index jS is given by

Pj = ε0cn0|EO|2SOcos(αj) . (33)

From Eqs.(32) and (33) we obtain for the electric field strength

|EO| =
√

B(xj, yj; 0, 0)Sj

ε0cn0f 2
C

. (34)

In the expression above, we have taken the radiance function in a medium with refractive

index n0, the value in the object space. If the radiance function of the source is only available

in vacuum or air, one can apply the relation B = n2
0BV which follows from the conservation

law of radiance (BV is the measured radiance function in vacuum or air).

In what follows, the Cartesian co-ordinates (xj, yj) in the effective source will be replaced

by reduced coordinates, with the normalized co-ordinates in the entrance pupil of the imaging

system as the reference. To this goal, we start with the numerical aperture in the object space,

given by sobj = sin(αobj) = |n1Ms0/n0| with n1s0 the numerical aperture in the image space.

The angular measure of the source is normalized with respect to sobj , such that the lateral

reduced coordinate η of the source is unity if the source completely fills the entrance pupil.

The relationship between the Cartesian coordinates (xj, yj) of a general source point and its

reduced coordinates is given by

xj/fC = ηj cos(σj)sobj ,

yj/fC = ηj sin(σj)sobj , (35)
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where we have used polar coordinates (η, σ) in the reduced domain because of the frequently

occurring rotational symmetry in illumination systems. The state of polarization of the light

issued by the light source has not been discussed so far. In the case of an unpolarized source,

the source power is equally distributed over two orthogonally polarized states of polarization.

In more specific cases, the power has to be distributed over the x-, y- and z-field components

of the light according to the measured state of (partial) polarization of the source.

In the Abbe approach, for each source region, we also have at our disposal the average

propagation direction that is needed to analyze the diffraction process at the mask and

the propagation of the diffracted light through the imaging system. A general source point

with reduced polar coordinates (ηj, σj) gives rise to a fictitious plane wave whose normalized

propagation vector is given by

k̂j =
(
−ηjsobj cos(σj) x̂,−ηjsobj sin(σj) ŷ,

√
1− η2

j s
2
obj ẑ

)
. (36)

We now have available, at the location of the mask, the electric field strength and propagation

direction of the fictitious wave produced by each sampling area of the source. The intensity

in a selected plane in the image space can be calculated, carrying out the full chain of

diffraction at the mask, diffraction at the diaphragm or pupils of the imaging system and

the wave propagation towards the image region. The intensities due to each sampled region

in the incoherently radiating source are added to obtain the total intensity distribution in

the image region.

The interaction of each plane wave with an object is simulated separately with a rigorous

electromagnetic solver based on the Finite Difference Time-Domain (FDTD) method. The

FDTD implementation used here is an in-house developed code at Delft University of Tech-

nology. It uses absorbing boundary conditions based on a convolutional Perfectly Matched

Layer (PML) implementation [41, 42]. Next to absorbing PML boundaries, quasi-periodic

boundary conditions can be applied using the so-called Sine-Cosine technique [43]. Media

with negative permittivity and non-zero absorption are simulated via the Auxiliary Differen-

tial Equations (ADE) technique for dispersive media [44]. The code is parallelized for efficient

execution on multi-processor machines.

The objects simulated for this paper are relatively small isolated structures. The estab-

lished approaches and simulation tools to treat such structures almost always involve peri-

odic boundary conditions, where the isolated structures are padded by structureless object

space to approximate the isolated case. Since the ENZ formalism does not require periodic

boundary conditions for the rigorous calculation, PML absorbing boundary conditions are

employed on all sides of the computational domain. The PML regions are non-reflective and

thus fully transparent to outgoing waves. As a result, it appears numerically as if the object

extends homogeneously in all directions. The rectangular three-dimensional computational
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domain (CD) is then defined by the smallest volume that encloses the structured region of

the object.

In common FDTD implementations, letting material interfaces cross the PML boundary is

problematic. Our FDTD implementation does allow the interfaces of a multi-layer structure

to cross into the PML. Because Maxwell’s equations are linear we can write the total field

(TF), Etot, as the sum of two solutions to Maxwell’s equations,

Etot = Esca + Ezero, (37)

where Ezero is a known solution such as the incident field in free space and Esca is called

the scattered field. As in other implementations, we calculate the total field in the CD and

the scattered field in the surrounding PML region. The fields in the two regions are coupled

by adding or subtracting the incident field on the boundary of the computational domain

and the PML. However, on this boundary in a layered geometry, the incident field is not the

correct solution to Maxwell’s equations, because the incident field is defined for homogeneous

free space. The algorithm produces, therefore, incorrect results. Instead of using the incident

field for Ezero, we use the analytical steady-state solution of a plane wave incident on a

structureless object. This approach was shown to give correct results for objects that include

a multi-layer configuration [45].

The output of an FDTD simulation consists of near-field values in the computational

domain. To simulate the propagation of the field from the mask to the entrance pupil of

the optical system a near-to-far-field transformation is applied. For this purpose, we use the

Stratton-Chu formula [46], which relates the scattered fields Esca and Hsca on the boundary,

∂Ω, of a given domain to the field at any point in or outside the domain at r′

Esca(r
′) = −

∫∫

∂Ω

(n× Esca(r))GH
(r, r′)− (n×Hsca(r))GE

(r, r′) dr2. (38)

Herein, G(r, r′), is the Green’s tensor of the layered system (subscripts, E and H, indicate

the electric and magnetic Green’s tensor). The layered Green’s tensor is needed because we

allow material interfaces to cross the Stratton-Chu integration surface. For a general layered

system, these terms are difficult to calculate analytically. Instead, we implement the Fourier

transformed Stratton-Chu formula [47]:

F [Esca](kx, ky, z
′) = −

∫∫

∂Ω

(n× Esca(r))F [G
H

](r,ksc)

−(n×Hsca(r))F [G
E
](r,ksc) dr2, (39)

which now uses the Fourier transformed Green’s tensor, F [G](r,ksc), of a layered system.

Here ksc is the wave vector in the direction of the far-field observation point. F [G](r,ksc)

is efficiently calculated in the same algorithm that gives the analytic multi-layer solution
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for the FDTD simulation. By using the Fourier transformed equation for the Stratton-Chu

formula, the Fraunhofer far-field at the location on the spherical entrance pupil determined

by the wavenumbers kx,sc, ky,sc and distance z′ is almost directly obtained:

E0(kx,sc, ky,sc, z
′) = F [Esca]

kz,sc

|ksc| . (40)

This quantity is the field E0(ρ, θ) that is used in the ENZ-imaging algorithm and has been

introduced in Eqs. (4-6). In order to do the numerical integration of Eq. (39), the rectangular

boundaries of the FDTD computational domain are discretized to a uniform, orthogonal

boundary grid. Because field values on the FDTD grid are not collocated but staggered, the

FDTD field values are linearly interpolated.

An advantage of the described Stratton-Chu method is that separate points in the far

field can be calculated, corresponding directly to points on the spherical entrance pupil of

the optical system. It is therefore very suited for parallelized computation. More importantly,

it gives the freedom to choose any kind of entrance pupil sampling, which can severely reduce

the computational burden of the far-field calculation and the ENZ-imaging algorithm [45].

It must be noted that for small isolated objects, a method is needed that uses the field on

all boundaries of the domain to obtain rigorous far-field results, such as the Stratton-Chu

formula. In practice, where for example a large mask area is considered, a simple Fourier-

based near-to-far-field transformation may be more efficient and equally accurate.

Once the field in the entrance pupil is available one can proceed with applying the ENZ-

based expressions that were derived in Section 2. We perform a Zernike expansion of the

computed field components E0,x and E0,y, including possible transmission defects TI , ac-

cording to Eqs.(23-24). In our case, the coefficients βm
n,x and βm

n,y are obtained through a

least-squares fitting operation. This could in principle also be done using inner-product eval-

uation of the function to be fitted and the Zernike orthogonal functions. Nevertheless, we

have observed that a least-squares approach, for a set of well chosen data points, is far more

efficient. More information on the sampling schemes applied in ENZ-imaging can be found

in [45].

In the final step, to obtain the electric field contribution to the image from a single point

in the illumination source, we evaluate Eq.(29) for the sets of Zernike coefficients βm
n,x and

βm
n,y that result from the optimal least-squares fit discussed above. Note that Eq. (29) relies

on the basic function V m
n,j, which is defined in Eq. (30) and can conveniently be computed

using the recipe given in Appendix A.

Following the procedure given above, the computation of the image contribution from a

single source-point, should be repeated for every point comprising the light source. The total

aerial image produced by the optical system then follows after incoherent summation of all

contributions.
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The full computational scheme described in this section can be summarized as follows

1. A single source point gives rise to illumination of the mask by a plane wave, where the

angle of incidence of the plane wave is directly related to the spatial position of the

considered source point.

2. The interaction between the mask and the incident plane wave is computed by means

of a rigorous electromagnetic solver (in our case an in-house FDTD implementation).

3. An adapted version of the Stratton-Chu method is applied to obtain the field in the

entrance pupil from the near-field at the mask.

4. The field in the exit pupil is obtained by applying the optical transfer function between

the entrance and exit pupil of the optical system.

5. The field in the exit pupil is represented as a Zernike expansion after which the aerial

image contribution, due to illumination by a single source point, follows directly from

the ENZ-imaging algorithm.

6. Finally, step 1-5 should be repeated for each elementary point in the light source after

which their intensity contribution should be summed incoherently to obtain the aerial-

image of the mask produced by the lithographic system. In practice, a discrete sampling

of the source will be carried out to keep the computational effort within reasonable

bounds.

In this section, we have given a detailed description of the ENZ-based imaging scheme. In

the remainder of this paper, we will discuss its characteristics and highlight some of its main

features.

4. Evaluation of the ENZ-based method

This section discusses the anticipated accuracy and convergence of the imaging method

proposed in this paper. We will limit ourselves to the imaging part of the algorithm, which

includes the computations from entrance pupil to image region. We will not go into detail

on the rigorous electromagnetic computations of the near field at the object, because, in

principle, the proposed method allows for any rigorous solver to be used. For more details

on the FDTD implementation developed in-house at TU Delft as used for the examples in

this paper we refer to [48].

4.A. Representation of E0TI as a Zernike expansion

In the following, we assume that the arbitrary field E0 in the entrance pupil of the imaging

system is known. In order to compute the image resulting from this field distribution we
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should apply Eqs.(23)-(24) and the resulting sets of Zernike coefficients, βm
n,x and βm

n,y, are

subsequently inserted into Eq.(29). Note that TI represents the complex transmission func-

tion of an imaging system that we assume to be free of birefringence and that TI ≡ 1 for an

aberration-free system.

As already mentioned in Section 3, we perform a least-squares fitting operation to obtain

βm
n,x and βm

n,y. The number of Zernike functions needed to accurately describe E0TI strongly

depends on the object being imaged. This number is therefore determined iteratively. The

maximum azimuthal order, mmax, and radial order, nmax, of the Zernike functions are in-

creased until the desired fitting accuracy is reached. In Fig. 4, we show the residual RMS

fitting error, for some particular objects (nine regularly arranged contact holes, an elbow

structure and a hammerhead structure, respectively), versus mmax and nmax. Note that by

definition of the Zernike functions mmax ≤ nmax.
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Fig. 4. For three different objects (top row), the Root Mean Square (RMS)

error present in the Zernike approximation of the electric field components

in the entrance pupil (bottom row) is shown. The system settings for the

three objects are, from left to right: normal incidence TM polarized plane

wave illumination with an object side numerical aperture of 0.525 and for the

middle and right object normal incidence TE-polarization with an object side

numerical aperture of 0.2375.
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The simulation results in Fig. 4 clearly illustrate that the number of Zernike polynomials

required to obtain a certain degree of fitting accuracy for the field in the entrance pupil,

strongly varies between different objects. In general, one would expect the required number

of Zernike polynomials to depend on the size and complexity of the objects. Nevertheless,

a complex object doesn’t necessary imply the need for a large number of Zernike functions

for an accurate fit. A complex object can produce a relatively smooth field distribution in

the pupil which would then require a limited number of Zernike polynomials to be fitted

accurately. On the other hand, a fairly simple structure with a high degree of periodicity,

can produce a sharply modulated pupil distribution that closely resembles the diffraction

pattern that would arise in the case of a purely periodic object. In this case, the number of

Zernike polynomials required to obtain an accurate fit is fairly large. Thus, in general, the

number of Zernike functions needed grows according to the size and degree of periodicity of

the object under consideration.

Once we have acquired a Zernike expansion of sufficient accuracy for the field in the

entrance pupil we can proceed with applying the approach described in Section 3. In the

next subsection we describe the convergence properties of the expressions that relate the

entrance pupil field distribution to the field in the image region.

4.B. Computation of the basic integral V m
n,j(r, f)

In Section 2, we have derived an expressions for E2, the field in the image region of the

optical system (Eq.(29)). This expression depends on the basic integral, V m
n,j(r, f), which

is defined in Eq.(30). Similar to standard ENZ-theory, a series expansion has been devised

to evaluate V m
n,j(r, f) efficiently (Appendix A). It is important to recognize that V m

n,j(r, f)

solely depends on the specifications of the imaging system and is independent of the object

being imaged. Therefore, the V m
n,j(r, f)-functions should only be computed once for a specific

magnification and aperture setting of the imaging system, after which the V m
n,j(r, f)-function

values can be stored and subsequently reused in future image simulations.

What remains, is the calculation of V m
n,j(r, f), for j = −2,−1, 0, 1, 2 and for a range of

values of m and n, in a both accurate and efficient manner. When we study the expansion

of V m
n,j(r, f) as found in Eq.(A23) we find that it contains an infinite sum over the parameter

t. In practice, t has to be cut off at some finite value tmax. The relation between tmax and

the Root Mean Square (RMS) error present in the computed values for V m
n,j(r, f) has been

displayed in Fig.5. One can see that a modest amount of terms, say tmax = 25, already results

in an accuracy of 10−4. As E2 is linear in V m
n,j(r, f) the error in E2 introduced by V m

n,j(r, f) is

also expected to be of the order 10−4. Furthermore, we see a steady decrease in the RMS, for

increasing tmax, down to 10−12. From this, we can conclude that the V m
n,j(r, f)-functions can

always be computed down to the accuracy required by a particular application. Therefore,
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Fig. 5. The Root Mean Square (RMS) error present in the V m
n,j(r, f)-functions

when approximated with the series expansion in which the infinite sum is

replaced by a summation over t = 1, 2...tmax (see Appendix A).

the V m
n,j(r, f) functions do not pose a limit on the overall accuracy of the ENZ-method.

In this and the previous subsection, we have discussed the accuracy of the two computa-

tion modules that together comprise the ENZ-method. As discussed above, we can always

compute the V m
n,j(r, f)-functions down to the desired accuracy. A higher accuracy, of course,

requires a larger computational burden, but in the case of the V m
n,j(r, f)-functions this is of

limited interest as the functions can be computed in advance and can be stored in a look-up

table. Thus, the overall accuracy of the method is mainly determined by the quality of the

Zernike expansions for the field in the entrance pupil. In the next subsection, we will evaluate

the resulting accuracy for the field in the image region given the accuracy of the Zernike

expansions in the entrance pupil.

4.C. Field accuracy in the image region

As discussed in the previous subsections, we can assume that the overall accuracy of the ENZ-

method is determined by the fitting accuracy for the fields in the entrance pupil. In Fig. 6, we

have plotted the RMS error in the intensity in the image region versus the RMS error in the

Zernike expansions of the fields in the entrance pupil. The figure clearly illustrates a similar

behavior for the RMS errors of all three objects studied. Note that the lines representing the

contact holes and elbow structure do not cover the full range of the RMS errors in entrance
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pupil expansions, because for the maximum number of Zernike terms used in these examples

(mmax = nmax = 20), the best obtained accuracies were 10−2 and 10−4 respectively.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

RMS Error Pupil

R
M

S
 E

rr
o
r 

In
te

n
si

ty

 

 

Nine regularly arranged contact holes
Elbow structure
Hammerhead structure

Fig. 6. For the same three objects as in Fig. 4, the RMS error for the intensity

in the image region is shown as a function of the RMS error in the Zernike

expansion of the pupil fields.

It is interesting to note that a pupil field accuracy of 10−3 already yields an intensity

fidelity in the image region that is better than 10−4, despite the nonlinearities that arise in

the creation of the intensity distribution in the image.

Now that we have acquired a clear view on the expected accuracy of the ENZ-based

imaging method, we should relate this to the computational burden that is associated with

it. This will be main topic of the next subsection.

4.D. Computational considerations

The accuracy of a method should always be discussed in relation to the computational bur-

den involved with it. As the ENZ-method is constructed from several largely independent

modules, the computational complexity should be evaluated likewise. Here we will limit the

discussion of the computational complexity to those modules already discussed in the previ-

ous subsections. We do not go into detail on the near-field computations and the propagation

into the entrance pupil as in principle any rigorous electromagnetic solver could be used here.
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As we apply a least-squares fitting operation to obtain the Zernike expansion coefficients

for the entrance pupil fields, the computational complexity will largely be determined by this

operation. In our case we use the least-squares fitting algorithm included in Matlab (Standard

Matlab function mldivide.m [49]), which is based on QR factorization with column pivoting,

to obtain the Zernike coefficients. The computational complexity of this algorithm is O(N3
Z),

where NZ is the total number of Zernike coefficients to be fitted.
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Fig. 7. The relation between the computation time and the total number of

Zernike coefficients used in the expansion of the entrance pupil field is shown.

The computational complexity of the second module, which computes the field in the focal

region given two sets of Zernike coefficients, βm
n,x and βm

n,y, can be deduced from Eq.(29).

Recall that the V m
n,j functions are independent of the object and can therefore be calculated

in advance. As a result, all terms between the large parentheses on the second and third line

of Eq. (29) are fixed for a given set of (r, φ, f). The computational task is thus reduced to

computing

E2(r, φ, f) = C1(f)
∑
n,m

[
βm

n,xC2(m,n, r, φ, f) + βm
n,yC3(m,n, r, φ, f)

]
, (41)

where C1, C2 and C3 all represent data stored in a look-up table. Consequently, the compu-

tational complexity is proportional to

Nf ×Nr ×Nφ × 2NZ , (42)
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where Nf , Nr and Nφ are the number of sampling points in the f , r and φ direction of our

cylindrical coordinate system in the focal volume. The expression in Eq. (42) thus predicts a

linear relation between the CPU-time and NZ , the number of Zernike coefficients used in the

computation. This behavior is clearly visible in Fig. 7, where we have plotted the CPU-time

versus the number of Zernike coefficients.

On comparing the computational complexities determined above, we can conclude that

both modules can be dominant. Whenever Nf × Nr × Nφ ¿ N2
Z , the least-squares fitting

module will dominate the required computational workload, while in case that Nf × Nr ×
Nφ À N2

Z , the computational contribution of the second module will be more important.

In this subsection we have discussed the computational complexity of the novel simulation

modules introduced by the ENZ-method. It was shown that both the least-squares square

fitting operation as the field construction from Zernike coefficients can be dominant in the

total required computational burden for these two modules. Nevertheless, the contribution to

the computational workload of the complete ENZ-method will generally remain limited. The

computational burden for the complete ENZ-method is dominated by the Abbe treatment

of the illumination source in combination with the rigorous near field computations.

5. Conclusions and discussion

In this paper, we have introduced a new imaging method based on the ENZ-theory. Although

the standard ENZ-theory is meant to provide the through-focus point-spread function of a

general system, we have shown that its range of application can be extended to include

imaging of general objects.

The main result presented in this paper is a semi-analytic expression relating a general

field in the entrance pupil to the resulting field in the focal region of an optical system. The

field in the entrance pupil can, in principle, be obtained using any rigorous electromagnetic

solver and follows from the interaction between an incident plane wave and the object. In

general, the light source illuminating the object will be of finite extent. In this case the source

is considered as a collection of (weighted) incoherent point sources and the total image is

obtained by incoherent summation of the image intensity contributions of all point sources

(the Abbe approach).

In Section 3 we have shown that our results can be efficiently implemented into a com-

putation scheme to compute the image produced by a general isolated object. For the most

part, our scheme is similar to standard Abbe-type imaging methods, but it uses the ENZ-

based algorithms for image formation instead of the more conventional approach based on

Fourier optics. Although the ENZ-algorithm is fundamentally different from the Fourier

based approach, it does not alter the overall computation scheme significantly. As a re-

sult, a conventional piece of Abbe-type imaging software developed modularly can be easily
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equipped with our new method by simply replacing the conventional imaging module by its

ENZ-based counterpart.

In Section 4 the accuracy and convergence of the ENZ-method is evaluated. It is shown

that the series expansion used to generate the ENZ basic functions is accurate all the way

down to machine precision. Considering that the ENZ basic functions solely depend on the

properties of the imaging system and the location of the image region, and at the same time

are independent of the object being imaged, they can be calculated and stored in advance.

Based on these observations we can conclude that the accuracy of the ENZ-imaging algorithm

is limited by the residual RMS error present in the Zernike expansion of the exit pupil

distribution. In principle, as the Zernike polynomials constitute a complete set, the residual

error in the expansion can be made arbitrarily small. However, a higher accuracy will require

a larger number of expansion coefficients to be determined and this will, of course, increase

the computational burden.

For simulation methods it is most relevant to know the relation between the accuracy and

the computational burden or complexity. In Subsection 4.4 the theoretical lower boundary for

the computational complexity is determined. It is shown that two distinct tasks in the ENZ

imaging scheme can both be dominant in terms of computational burden. Whenever an object

generates a strongly oscillating pupil distribution, a large number of Zernike coefficients is

required for an accurate fit. In this case the least-squares fitting operation requires substantial

computational effort. On the other hand, if the pupil distribution is relatively smooth and a

fairly large number of image points are of interest, the field construction in the focal region

will be the dominant task.

Altogether, we believe that ENZ-based imaging provides an appealing addition to the

available arsenal of image simulators. The method can generate extremely accurate results

and does so totally independent of other existing methods. As a result, the ENZ-method is

an excellent choice to benchmark and this will be one of the focus points of our future work.

In addition to this, the ENZ-method works especially well for isolated structures. While

other methods have to rely on progressive zero padding to approximate a (quasi) isolated

structure, the ENZ-method truly treats the smallest computational domain which fits the

isolated object of interest. Of course, this has a beneficial effect on the computational burden

in general but especially reduces the amount of memory required for the rigorous treatment

of the light interactions with the object.
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A. Series expansion for V m
n,j

In this appendix we present a method for obtaining a series expansion for the integral

V m
n,j(r, f) given by

V m
n,j(r, f) =

∫ 1

0

ρ|j|

{
(1− s0

2ρ2)
1
2 + (1− n2

1M
2s2
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√
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0ρ
2

)]
R|m|

n (ρ)Jm+j(2πrρ)ρdρ. (A1)

We follow a similar approach as in [36], Appendix D, to transform the integral in (A1) into

a tractable form. We write

exp

[
if

u0

(
1−

√
1− s2

0ρ
2

)]{
(1− s0

2ρ2)
1
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2s0
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4
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t=0

Btρ
2t . (A2)

Here the coefficients g′ and f ′ are defined by requiring the best fit for the constant and the

quadratic term in ρ in the ln of the function (A2). So let

F (ρ) =
if

u0

(
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√
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and define

A(ρ) = 1−
√

1− s2
0ρ

2 =
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n=0

anρ
2n , (A4)

B(ρ) = ln
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2n , (A5)

C(ρ) = ln
(
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2ρ2
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+ 3 ln
(
1− n2

1M
2s2

0ρ
2/n2

0

)
=
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n=0

cnρ
2n , (A6)

so that

F (ρ) =
if

u0

A(ρ) + (−|j|+ 1) B(ρ)− 1

4
C(ρ) =
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n=0

fnρ2n , (A7)

fn =
if

u0

an + (−|j|+ 1) bn − 1

4
cn , n = 0, 1, ... . (A8)

We shall determine an, bn and cn.

29



an: We have by Taylor expansion

a0 = 0 ; an = −
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where the third identity is obtained by working out the numerator and denominator and

simplifying, and the fourth identity is obtained by multiplying the Taylor expansions

of (1− ax)−1/2 and of (1− x)−1/2. Therefore, by integrating from 0 to x,

f(x) = ln 2−
∞∑
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Using (A12) with a = n2
1M

2/n2
0 and x = s2

0ρ
2, we see that

b0 = ln 2 ; bn = −(−1)ns2n
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cn: We have by Taylor expansion

c0 = 0 ; cn = −(s0)
2n(1 + 3(n1M

n0
)2n)

n
, n = 1, 2, ... . (A14)

Thus with an, bn, cn from (A9), (A13), (A14), we can compute the fn of F (ρ) =
∑∞

n=0fnρ2n

according to (A8).

Next, we proceed by writing

F (ρ) = g′ + if ′ρ2 +
∞∑

n=0

Anρ2n , (A15)
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where g′ + if ′ρ2 is the best quadratic approximation of F (ρ) using ρdρ on [0, 1] as weight

function. To this end, we convert the Taylor expansion
∑∞

n=0fnρ2n of F (ρ) into a Zernike

expansion
∑∞

k=0β
0
2kR

0
2k according to the formula
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see [29], Eq. (10). Now
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is the desired best approximation of F (ρ). Hence
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and

A0 = f0 − g′ , A1 = f1 − if ′ ; An = fn , n = 2, 3, ... . (A19)

The final step in achieving (A2) consists of writing

exp
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Anρ
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)
=
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t=0

Btρ
2t . (A20)

As in [36], Appendix D this is done recursively according to

B0 = exp (A0) , Bt+1 =
t∑

j=0

t + 1− j

t + 1
At+1−jBj , t = 0, 1, ... . (A21)

From (A2) one can now compute the V m
n,j in (A1) as in [36], Appendix D.2. Thus one

writes (with some minor corrections on [36], Appendix D.2)
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where p = (n− |m|)/2, q = (n + |m|)/2. Then

V m
n,j(r, f) =

p∑
s=0
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t=0

CsBtT
m+j
|j|+|m|+2s+2t(r, f

′) , (A23)

where for integer k, l with l − |k| even and ≥ 0

T k
l (r, f ′) =

∫ 1

0

ρleif ′ρ2

Jk(2πrρ)ρdρ . (A24)

These T k
l have been computed in [29], Eqs. (14-16) in the form of a power-Bessel series.
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