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Introduction
In this paper an analytic method developed in [1, 2]
for the calculation of acoustical quantities such as the
sound pressure on-axis, far-field, directivity, and the total
radiated power is presented. This method is based on the
analytical results as developed in the diffraction theory
of optical aberrations by Nijboer [3] and Zernike and
Nijboer [4], see also [5, 6]. Using this approach, many
of the analytic results in Greenspan [7], such as those
on the sound pressure on-axis, the total radiated power,
and the results in text books [8] on far-field expressions
and directivity can be presented and extended in a
systematic fashion. This is worked out in [1] for the
results on on-axis pressure and far-field expressions for
arbitrary velocity distributions on flat piston radiators.
The mathematical foundation of these methods related
to directivity and the total radiated power is discussed
in [2]. An arbitrary velocity distribution can be efficiently
developed as a series in Zernike polynomials. Using
near-field pressure measurements on-axis the coefficients
of these polynomials can be estimated. With these
estimated coefficients the acoustical quantities mentioned
above can be estimated as well. An immediate applica-
tion is to predict the far-field sound pressure from near-
field pressure data measured without using an anechoic
chamber (generalized Keele scheme [1, 9]).

The radiated pressure is given in integral form by the
Rayleigh integral [8, 10] as

p(r, t) =
iρ0ck

2π
eiωt

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

where ρ0 is the density of the medium, c is the speed of
sound in the medium, k = ω/c is the wave number and
ω is the radian frequency of the harmonically vibrating
surface S. Furthermore, t is time, r is a field point, rs
is a point on the surface S, r′ = |r − rs| is the distance
between r and rs, and v(rs) is the normal component of
a (not necessarily uniform) velocity profile on the surface
S. The time variable t in p(r, t) and the harmonic factor
exp(iωt) in front of the integral in Eq. (1) will be omitted
in the sequel. For transparency of exposition, the surface
S is assumed [1, 2] to be a disk of radius a, |rs| = rs ≤ a,
with average velocity Vs given by

V =
∫
S

v(rs) dS = Vsπa
2. (2)

In [1] a generalization to the case of dome-shaped

radiator surfaces S is done. See Fig. 1 for the geometry
and notations used in the case of a flat piston.

 

a 

y 

w  r 

 r’ 

r = (x,y,z) 

(0,0,z) 
z 

x 

θ 
φ ψ  rs

(x,y,0) 

σ 

0 

 
Figure 1: Set-up and notations.

rs = (xs, ys, 0) = (σ cosϕ, σ sinϕ, 0)
r = (x, y, z) = (r sin θ cosψ, r sin θ sinψ, r cos θ)
w = r sin θ = (x2 + y2)1/2, z = r cos θ
r = |r| = (x2 + y2 + z2)1/2 = (w2 + z2)1/2

r′ = |r − rs| = (r2 + σ2 − 2σw cos(ψ − ϕ))1/2.
Frankort [11] has shown that loudspeaker cones mainly
vibrate in a radially symmetric fashion. Therefore the
attention in this paper is restricted to radially symmetric
velocity distributions v, which are denoted as v(σ), 0 ≤
σ ≤ a. Under an integrability condition, these v’s admit
a representation

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a) , 0 ≤ σ ≤ a , (3)

in which the un are scalar coefficients and

R0
2n(ρ) = Pn(2ρ2 − 1) , 0 ≤ ρ ≤ 1 , (4)

where Pn are the Legendre polynomials [12]. In [1] there
are presented analytical results for the on-axis and far-
field pressure p(x) in Eq. (1) related to the coefficients
un and polynomials R0

2n occurring in the expansion in
Eq. (3). By orthogonality of the terms R0

2n(ρ), the
coefficients un in Eq. (3) can be found in integral form



as

un =
2(2n+ 1)

Vs

∫ 1

0

R0
2n(ρ)v(aρ)ρdρ , n = 0, 1, · · · .

(5)
In particular, u0 = 1. There is an impressive number of
cases where one can explicitly find the un in Eq. (5); these
include the rigid piston (` = 0), the simply supported
radiator (` = 1) and the higher order clamped radiators
(` ≥ 2) with the velocity profile given by

v(`)(σ) = (`+ 1)Vs(1− (σ/a)2)`H(a− σ) ,
` = 0, 1, · · · ,

(6)

and the Gaussian velocity profile

v(σ;α) =
αVs

1− e−α
e−α(σ/a)2H(a− σ) , (7)

where H(x) is the Heaviside function, H(x) = 0, 1/2, or
1 according as x is negative, zero, or positive. Hence, the
velocity profiles in Eqs. (6) and (7) vanish for σ > a.

The Zernike terms R0
2n

The Zernike terms R0
2n are polynomials of degree 2n

given by

R0
2n(σ/a) = Pn(2(σ/a)2 − 1) =∑n
s=0(−1)s

(
2n− s
n

)(
n
s

)
(σ/a)2n−2s ,

(8)

where Pn is the Legendre polynomial of degree n, see
Ref. [12, 22.3.8 and 22.5.42]. The first few R0

2n are given
in Table 1. In [1][Appendix A], a number of cases are
listed, such as the expansion

(1− (σ/a)2)` =

∑`
n=0 (−1)n 2n+1

n+1

(
`
n

)
(
`+ n+ 1

`

) R0
2n(σ/a) , (9)

which are relevant for the rigid and simply supported
(` = 0, 1) and the clamped radiators (` ≥ 2).

Table 1: Zernike polynomials

n R0
2n(σ/a)

0 1
1 2(σ/a)2 − 1
2 6(σ/a)4 − 6(σ/a)2 + 1
3 20(σ/a)6 − 30(σ/a)4 + 12(σ/a)2 − 1

On-axis and far-field expressions
The velocity profile v(σ) considered in this section (nor-
mal component) vanishes outside the disk σ ≤ a and
has been developed into a Zernike series as in Eq. (3)
with coefficients un given in accordance with Eq. (5) or
explicitly as in the case given in Eq. (9).

On-axis expression
There holds [1] for an on-axis point r = (0, 0, r) with
r ≥ 0 the formula

p(r) =
1
2
ρ0cVs(ka)2

∞∑
n=0

γn(k, r)un , (10)

in which

γn(k, r) = (−1)njn(kr−)h(2)
n (kr+) ,

r± = 1
2 (
√
r2 + a2 ± r) .

(11)

The r± in Eq. (11) satisfy

0 ≤ r− ≤ 1
2a ≤ r+ , r+r− = 1

4a
2 ,

r+ + r− =
√
r2 + a2 .

(12)

The jn and h
(2)
n = jn − i yn are the spherical Bessel and

Hankel function, respectively, of the order n = 0, 1, · · · ,
see Ref. [12, § 10.1.]. In particular, j0(z) = (sin z)/z and
h

(2)
0 (z) = (ie−iz)/z.

The result in Eqs. (10) and (11) comprises the known
result [8, 8.31a,b] for the rigid piston (` = 0 in Eq. (9)
and u0 = 1, u1 = u2 = · · · = 0) with p(r), r = (0, 0, r),
given by

p(r) = 1
2ρ0cVs(ka)2 sin kr−

kr−
ie−ikr+

kr+

= 2iρ0cVse
− 1

2 ik((r
2+a2)

1
2 +r)·

sin 1
2k((r2 + a2)

1
2 − r) ,

(13)

and it generalizes immediately to the case of the simply
supported radiator (` = 1) and the clamped radiators
(` ≥ 2) through Eq. (9).

Far-field expression
Using the Zernike expansion Eq. (3) of v(σ) it is shown
in [1][Appendix B] that the following far-field approxi-
mation holds: when r = (r sin θ, 0, r cos θ) and r →∞,

p(r) ≈ iρ0ckVs
e−ikr

r
a2
∞∑
n=0

un(−1)n
J2n+1(ka sin θ)

ka sin θ
.

(14)

Some comments on the behavior of the terms J2n+1(z)/z,
z = ka sin θ, as they occur in the series in Eq. (14)
are presented now. From the asymptotics of the Bessel
functions, as given in Ref. [12, Eq. 9.3.1], it is seen that
in the series in Eq. (14) only those terms contribute
significantly for which 2n+1 ≤ 1

2e ka sin θ. In particular,
when θ = 0, it is only the term with n = 0 that is non-
vanishing, and this yields

p((0, 0, r)) ≈ 1
2
iρ0cVska

2 e
−ikr

r
, r →∞ . (15)

This is in agreement with what is found from Eq. (10)
when only the term with n = 0 is retained and r+ is
replaced by r, r− is replaced by 0. For small values of ka
the terms in the series Eq. (14) decay very rapidly with n.
For large values of ka, however, a significant number of
terms may contribute, especially for angles θ far from 0.



Power output and directivity
The power is defined as the intensity pv∗ integrated over
the plane z = 0. Thus, because v vanishes outside S,

P =
∫
S

p(σ)v∗(σ)dS , (16)

where p(σ) = p((σ cosψ, σ sinψ, 0)) is the pressure at an
arbitrary point on S.

In [2] it is shown that

P = 2πiρ0ck

∫ ∞
0

V (u)V ∗(u)
(u2 − k2)1/2

udu , (17)

where

V (u) =
∫ a

0

J0(uσ) v(σ)σ dσ , u ≥ 0 , (18)

is the Hankel transform (of order 0) of v, see [2][Sec.V.B],
for more details.

We next consider the directivity. With the usual
approximation arguments in the Rayleigh integral
representation of p in Eq. (1), there follows
(r = (r cosψ sin θ, r sinψ sin θ, r cos θ))

p(r) ≈ iρ0ck
e−ikr

r
V (k sin θ) . (19)

From this there results the directivity

D =
4π|V (0)|2∫ 2π

0

∫ π/2
0
|V (k sin θ)|2 sin θdψdθ

=
2|V (0)|2∫ π/2

0
|V (k sin θ)|2 sin θdθ

,

(20)

see Kinsler et al. [8], Sec.8.9. By Eqs. (2) and (18) it
holds that V (0) = 1

2a
2Vs. Next consider the case that

ka→∞. It is shown in [2][Sec. V.D] that

D ≈
2( 1

2a
2Vs)2

1
2πρ0ck2 2πρ0ca2

∫ 1

0
|v(aρ)|2ρdρ

=
1
2 (ka)2V 2

s∫ 1

0
|v(aρ)|2ρdρ

= Cv(ka)2 ,

(21)

in which Cv is the ratio of the square of the modulus of
the average velocity and the average of the square of the
modulus of the velocity (averages over S). In case that
v = v(`), the last member of Eq. (21) is given by (2` +
1)(`+ 1)−1(ka)2; in Kinsler et al. [8], end of Subsec. 8.9.
this result for the case ` = 0 is given.

Estimating velocity profiles from on-axis
radiation
The on-axis expression Eqs. (10)–(11) for the pressure
can, in reverse direction, be used [1] to estimate the
velocity profile on the disk from (measured) on-axis data
via its expansion coefficients un. This can be effec-
tuated by adopting a matching approach in which the
coefficients un in the ‘theoretical’ expression Eqs. (10)–
(11) are determined so as to optimize the match with

measured data at M + 1 points. Thus, one has for the
pressure pm = p((0, 0, rm)) due to the velocity profile
v(σ) = Vs

∑N
n=0 unR

0
2n(σ/a) the expression

pm = 1
2ρ0cVs(ka)2 ·∑N
n=0(−1)njn(krm,−)h(2)

n (krm,+)un ,
(22)

where rm ≥ 0 and

rm,± =
1
2

(
√
r2m + a2 ± rm) , (23)

and m = 0, 1, · · · ,M. With

A = (Amn)m=0,1,··· ,M,
n=0,1,··· ,N

;

Amn = 1
2ρ0cVs(ka)2jn(krm,−)h(2)

n (krm,+) ,
(24)

p = [p0, · · · , pM ]T , u = [u0, · · · , uN ]T , (25)

the relation between on-axis pressures pm and coefficients
un can be concisely written as

Au = p . (26)

Now given a (noisy) on-axis data vector p, one can
estimate the coefficients vector u by adopting a least
mean-squares approach for the error Au − p. This will
be illustrated by an experiment, below.

For the experiment, we measured a loudspeaker (vifa
MG10SD09-08, a = 3.2 cm) in an IEC-baffle [13], at
10 near-field positions (rm =0.00, 0.01, 0.02, 0.03, 0.04,
0.05, 0.07, 0.10, 0.13, 0.19 m), and, finally, for the far-
field at 1 m distance. For a particular frequency at
13.72 kHz (ka = 8.0423), the magnitude of the sound
pressure is plotted in Fig. 2 (solid curve ‘p meas’). Using
the same procedure as described above for the first
simulation, the inverse process was followed by using the
ten measured near-field pressure data points to estimate
the coefficients vector u . Using four Zernike coefficients
the pressure data were recovered and plotted in Fig. 2
(dotted curve ‘p rec’). It appears that the two curves
show good resemblance to each other and that only four
coefficients are needed to provide a very good description
of the near-field at rather high frequencies (13.72 kHz).
Furthermore, it appears that using these four coefficients,
the calculated sound pressure level at 1-m distance yields
-42 dB. The measured value at that far-field point is -
44 dB. These values match rather closely, even though
the cone vibrates not fully circularly symmetric anymore
at the used frequency of 13.72 kHz, due to break-up
behavior. This match provides a proof of principle as the
far-field measurement point was not used to determine
the Zernike coefficients.

In the experiment just described, no particular effort
was spent in forming and handling the linear systems
so as to have small condition numbers. The condition
number, the ratio of the largest and smallest non-zero
singular value of the matrix A in Eq. (24), equals 50
in the case of the loudspeaker experiment leading to
Fig. 2. In practical cases the number of required Zernike
coefficients will be less than, say, six. This will not
cause numerical difficulties. Furthermore, such a modest
number of coefficients already parameterizes a large set
of velocity profiles.
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Figure 2: Measured loudspeaker at 13.72 kHz (ka = 8.0423,
p meas, solid curve) vs. r/a. Recovered pressure data (p rec
dotted curve).

Far-field assessment from on-axis mea-
surements
In Keele [9] a method is described to assess low-frequency
loudspeaker performance in the on-axis far-field from an
on-axis near-field measurement. In the case of the rigid
piston, the on-axis pressure p(r) = p((0, 0, r)) is given by
Eq. (13). Now assume ka � 1. When r � a it holds
that

sin(
1
2
k
√
r2 + a2 − r) ≈ sin(

1
2
ka) ≈ 1

2
ka , (27)

and, when r � a it holds that

sin
1
2
k(
√
r2 + a2 − r) ≈ sin(

ka2

4r
) ≈ ka2

4r
. (28)

Therefore, the ratio of the moduli of near-field and far-
field on-axis pressure is given by 2r/a. This is the basis of
Keele’s method; it allows far-field loudspeaker assessment
without having to use an anechoic room.

With the inversion procedure to estimate velocity profiles
from on-axis data (which are taken in the relative near-
field) and with the forward calculation scheme for the far-
field as described above it is now possible to generalize
Keele’s scheme.

Conclusions
Zernike polynomials are an efficient and robust method
to describe velocity profiles of resilient sound radiators.
A wide variety of velocity profiles, including the rigid
piston, the simply supported radiator, the clamped
radiators, Gaussian radiators as well as real loudspeaker
drivers, can be approximated accurately using only a
few terms of their Zernike expansions. This method
enables one to solve both the forward as well as the
inverse problem. With the forward method the on-
axis and far-field off-axis sound pressure are calculated
for a given velocity profile. With the inverse method
the actual velocity profile of the radiator is estimated
using (measured) on-axis sound pressure data. This
computed velocity profile allows the extrapolation to

far-field loudspeaker pressure data, including off-axis
behavior, without the use of anechoic rooms.
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