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Abstract

Formulas are presented for acoustical quantities of a harmonically excited

resilient, flat, circular loudspeaker in an infinite baffle. These quantities are

the sound pressure on-axis, far-field, directivity, and the total radiated power.
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These quantities are obtained by expanding the velocity distribution in terms of

orthogonal polynomials. For rigid and non-rigid radiators, this yields explicit,

series expressions for both the on-axis and far-field pressure. In the reverse di-

rection, a method of estimating velocity distributions from (measured) on-axis

pressures by matching in terms of expansion coefficients is described. Together

with the forward far-field computation scheme, this yields a method for as-

sessment of loudspeakers in the far-field and of the total radiated power from

(relatively near-field) on-axis data (generalized Keele scheme).

0 Introduction

In this paper an analytic method developed in [1, 2] for the calculation of acous-

tical quantities such as the sound pressure on-axis, far-field, directivity, and the

total radiated power is presented to the audio engineering community. This

method is based on the analytical results as developed in the diffraction theory

of optical aberrations by Nijboer [3] and Zernike and Nijboer [4], see also [5, 6].

Using this approach, many of the analytic results in Greenspan [7], such as

those on the sound pressure on-axis, the total radiated power, and the results

in text books [8] on far-field expressions and directivity can be presented and

extended in a systematic fashion. This is worked out in [1] for the results on

on-axis pressure and far-field expressions for arbitrary velocity distributions on

flat piston radiators. The mathematical foundation of these methods related

to directivity, and the total radiated power is discussed in [2]. An arbitrary
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velocity distribution can be efficiently developed as a series in Zernike polyno-

mials. Using near-field pressure measurements on-axis the coefficients of these

polynomials can be estimated. With these estimated coefficients the acoustical

quantities mentioned above can be estimated as well. An immediate application

is to predict far-field sound pressure data from near-field pressure data measured

without using an anechoic chamber (generalized Keele scheme [1, 9]).

The radiated pressure is given in integral form by the Rayleigh integral [8, 10]

as

p(r, t) =
iρ0ck

2π
eiωt

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

where ρ0 is the density of the medium, c is the speed of sound in the medium,

k = ω/c is the wave number and ω is the radian frequency of the harmonically

vibrating surface S. Furthermore, t is time, r is a field point, rs is a point on

the surface S, r′ = |r − rs| is the distance between r and rs, and v(rs) is the

normal component of a (not necessarily uniform) velocity profile on the surface

S. The time variable t in p(r, t) and the harmonic factor exp(iωt) in front of the

integral in Eq. (1) will be omitted in the sequel. For transparency of exposition,

the surface S is assumed [1, 2] to be a disk of radius a, |rs| = rs ≤ a, with

average velocity Vs; in [1] a generalization to the case of dome-shaped radiator

surfaces S is done. In [11] a generalization for a loudspeaker modelled as a

resilient spherical cap on a rigid sphere is presented. See Fig. 1 for the geometry

and notations used in the case of a flat piston. The volume velocity V at the

piston is
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Figure 1: Set-up and notations.

rs = (xs, ys, 0) = (σ cosϕ, σ sinϕ, 0)

r = (x, y, z) = (r sin θ cosψ, r sin θ sinψ, r cos θ)

w = r sin θ = (x2 + y2)1/2, z = r cos θ

r = |r| = (x2 + y2 + z2)1/2 = (w2 + z2)1/2

r′ = |r − rs| = (r2 + σ2 − 2σw cos(ψ − ϕ))1/2.
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V =
∫
S

v(rs) dS = Vsπa
2. (2)

Frankort [12] has shown that loudspeaker cones mainly vibrate in a radially

symmetric fashion. This is in general certainly not the case for all loudspeakers–

the limitation is further discussed in Sec. 6–but our attention in this paper is

restricted to radially symmetric velocity distributions v, which are denoted as

v(σ), 0 ≤ σ ≤ a. Define the Zernike terms [3, 4]

R0
2n(ρ) = Pn(2ρ2 − 1) , 0 ≤ ρ ≤ 1 , (3)

where Pn are the Legendre polynomials [13]. By completeness and orthogonality

(see Eq. (9)), the velocity profile v(σ) admits the representation

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a) , 0 ≤ σ ≤ a , (4)

in which un are scalar coefficients (see Eq. (5)). In [1] there are presented

analytical results for the on-axis and far-field pressure p(x) in Eq. (1) related to

the coefficients un and polynomials R0
2n occurring in the expansion in Eq. (4).

By orthogonality of the terms R0
2n(ρ), the coefficients un in Eq. (4) can be

found in integral form as

un =
2(2n+ 1)

Vs

∫ 1

0

R0
2n(ρ)v(aρ)ρdρ , n = 0, 1, · · · . (5)

In particular, u0 = 1. There is an impressive number of cases where one can

explicitly find the un in Eq. (5); these include the rigid piston (` = 0), the simply

supported radiator (` = 1) and the higher order clamped radiators (` ≥ 2) with
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the velocity profile of Stenzel [14] given in Greenspan’s notation [7] as

v(`)(σ) = (`+ 1)Vs(1− (σ/a)2)`H(a− σ) ,

` = 0, 1, · · · ,

(6)

and the Gaussian velocity profile

v(σ;α) =
αVs

1− e−α
e−α(σ/a)2H(a− σ) , (7)

where H(x) is the Heaviside function, H(x) = 0, 1/2, or 1 according as x

is negative, zero, or positive. Hence, the velocity profiles in Eqs. (6) and (7)

vanish for σ > a. This is illustrated in Fig. 2 where various profiles are plotted.
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Figure 2: Normalized velocity profiles V for the rigid piston (` = 0) (solid curve),

the simply supported radiator (` = 1) (dotted curve) and the first two clamped

radiators (` = 2, 3) (dash-dotted and dashed curves, respectively) using Eq. (6),

and the truncated Gaussian profile (α = 2, solid curve with closed circles) using

Eq. (7). The normalization is such that the velocity is equal to 1 at σ/a = 0.

The velocity is equal to zero for |σ/a| > 1.
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The relevance of the Zernike terms R0
2n for the purposes of the present

paper is the existence of closed-form formulas. For instance, the radiators in

Eq. (6) give rise to an on-axis pressure expansion in the form of a series of

n+1 terms u`j`(kr−)h(2)
` (kr+), with r± argument values directly related to the

axial position (0, 0, r), while the far-field pressure expansion is a similar series

involving terms u`J2`+1(ka sin θ)/(ka sin θ). In [2] it is shown how the acoustic

power P and the directivity D are computed from the coefficients u`. In the

reverse direction, the forward computation schemes for the on-axis and far-field

pressures is complemented in [1] by an inverse method with potential use in

far-field loudspeaker assessment. Here one estimates the expansion coefficients

un of a velocity profile v by matching with a measured on-axis pressure data set

and then one predicts the far-field sound radiation using the far-field forward

formula.

1 Paper outline

In Sec. 2 the definition and basic properties of the Zernike polynomials are given,

and some of the expansion results that are relevant for this paper are presented.

Furthermore, the Hankel transform of the Zernike polynomials is presented in

closed form. The latter result is of importance both for the forward computation

scheme for the far-field and for establishing results on the radiated power, etc.

In Sec. 3 the basic formulas are highlighted and discussed. Thus, the closed

form involving a spherical Bessel and Hankel function for the on-axis pressure
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associated with a single Zernike term is presented, with comments on both near-

field and far-field behavior and on behavior for low and high frequencies in terms

of ka. Also the far-field expression is presented as derived in [1].

In Sec. 4, the formulas [2] for the total radiated power and directivity, are

presented and discussed.

In Sec. 5 the inverse method [1] of estimating the Zernike expansion coef-

ficients of the velocity profile from the on-axis (measured, sampled) pressure

data is considered. Together with the forward scheme for computing far-field

pressures from Zernike expansions, this yields a loudspeaker assessment method

that generalizes a well-known method in audio engineering for estimating the

far-field of a loudspeaker from near-field on-axis data in the case of a rigid piston

(Keele scheme [9]).

In the present paper only a few measurements and simulation results will be

shown.

2 The Zernike terms R0
2n

The Zernike terms R0
2n are polynomials of degree 2n given by

R0
2n(σ/a) = Pn(2(σ/a)2 − 1) =

∑n
s=0(−1)s

( 2n− s

n

)( n
s

)
(σ/a)2n−2s ,

(8)

where Pn is the Legendre polynomial of degree n, see Ref. [13, 22.3.8 and

22.5.42]. The first few R0
2n are given in Table 1, and in Fig. 3 some of them

are plotted as a function of ρ = σ/a ∈ [0, 1]. The R0
2n cannot be interpreted
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Figure 3: The Zernike terms R0
2n vs. σ/a for n = 0, 1, 2, 3 and n = 8; note the

increasing number of undulations for increasing n.

directly in physical terms, unlike the velocity profiles v(`) in Eq. (6) in which

` has the interpretation of a smoothness parameter for the transition from the

non-zero values on the piston (σ < a) to the value zero outside the piston

(σ > a). Rather, their significance for loudspeaker analysis stems from the

following facts.

• They are very efficient and convenient in representing a general velocity

profile v. This is due to the orthogonality property

∫ 1

0

R0
2n1

(ρ)R0
2n2

(ρ) ρ dρ =


1

2(2n1+1) , n1 = n2 ,

0 , n1 6= n2 ,

(9)

as well as the fact that many velocity profiles considered in loudspeaker

analysis can be represented as a Zernike series. In [1][Appendix A], a

number of cases are listed, such as the expansions for the velocity profiles
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in Eq. (6) and Eq. (7).

• The Hankel transform of 0th order of the R0
2n has a closed form, viz.

∫ a

0

J0(uσ)R0
2n(σ)σdσ = (−1)n

a

u
J2n+1(ua) . (10)

This formula has been proved in Ref. [3] as a special case of a formula

expressing the mth order Hankel transform of Zernike polynomials of az-

imuthal order m in terms of Bessel functions of the first kind. This formula

is very important for the development of explicit analytic results in the

spirit of [7]. It gives for instance, the far-field expression for the pres-

sure due to a single term R0
2n in the velocity profile, see Sec. 3.2 and

[1][Appendix B].

Table 1: Zernike polynomials

n R0
2n(σ/a)

0 1

1 2(σ/a)2 − 1

2 6(σ/a)4 − 6(σ/a)2 + 1

3 20(σ/a)6 − 30(σ/a)4 + 12(σ/a)2 − 1
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3 On-axis and far-field expressions

The velocity profile v(σ) considered in this section (normal component) vanishes

outside the disk σ ≤ a and has been developed into a Zernike series as in Eq. (4)

with coefficients un given in accordance with Eq. (5) or explicitly as in the cases

discussed earlier.

3.1 On-axis expression

There holds [1] for an on-axis point r = (0, 0, r) with r ≥ 0 the formula

p(r) =
1
2
Vsρ0c(ka)2

∞∑
n=0

γn(k, r)un , (11)

in which

γn(k, r) = (−1)njn(kr−)h(2)
n (kr+) ,

r± = 1
2 (
√
r2 + a2 ± r) .

(12)

The r± in Eq. (12) satisfy

0 ≤ r− ≤ 1
2a ≤ r+ , r+r− = 1

4a
2 ,

r+ + r− =
√
r2 + a2 .

(13)

The jn and h
(2)
n = jn − i yn are the spherical Bessel and Hankel function,

respectively, of the order n = 0, 1, · · · , see Ref. [13, § 10.1.]. In particular,

j0(z) = (sin z)/z and h
(2)
0 (z) = (ie−iz)/z.

Figure 4 shows a plot of |γ`=n=0(k, r)| as a function of r/a (rigid piston) and

of |γn(k, r)| for n = 1, 2, 3. Some comments on these plots are presented at the

end of this subsection.
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Figure 4: The product |jn(kr−)h(2)
n (kr+)| from Eq. (12), for n = 0, . . . , 3, vs.

r/a, where a/λ = 4, and a = 0.1 m, which yields f = 13.7 kHz and ka = 8π.

(a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3.
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The result in Eqs. (11) and (12) comprises the known result [8, 8.31a,b] for

the rigid piston with p(r), r = (0, 0, r), given by

p(r) = 1
2Vsρ0c(ka)2 sin kr−

kr−
ie−ikr+

kr+

= 2iρ0cVse
− 1

2 ik((r
2+a2)

1
2 +r)·

sin( 1
2k((r2 + a2)

1
2 − r)) ,

(14)

and it generalizes immediately to the case of the simply supported radiator

(` = 1) and the clamped radiators.

In Fig. 5 the rigid piston (` = 0), the simply supported radiator (` = 1) and

the first two clamped radiators (` = 2, 3) are considered (|p(r)|, normalized as

a function of r/a).

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

−3

r/a

|p
|

l =0
l =1
l =2
l =3

Figure 5: Normalized |p| vs. r/a for the rigid piston (` = 0) (solid curve),

the simply supported radiator (` = 1) (dotted curve) and the first two clamped

radiators (` = 2, 3) (dash-dotted and dashed curves, respectively) using Eq. (11).

Here a/λ = 4 and ka = 8π. The normalization is equal to (`+ 1)/2 ρ0cVs(ka)2.

The factor `+ 1 allows an easier comparison of the four curves.
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The next comments concern the behavior of the terms γn in Eq. (12). From

Eqs. (12)–(13) it follows that

r− ≈
1
2

(a− r) ≈ 1
2
a ≈ 1

2
(a+ r) ≈ r+ , r � a . (15)

Therefore, when ka is large and r → 0 (with n not large), it follows from the

results in Ref. [13], Sec. 10.1 that

|γn(k, r)| ≈
| cos 1

2k(a− r)|
1
4k

2a2
, (16)

confirming the presence of zeros and the largely n-independent envelope of the

curves in Fig. 4 near r = 0.

Finally, when r � a it follows from Eqs. (12)–(13) that

r− ≈
a2

4r
, r+ ≈ r . (17)

Therefore, from Ref. [13], Sec. 10.1,

γn(k, r) ≈
(−ika

2

4r )n

1 · 3 · · · · · (2n+ 1)
e−ikr+

−ikr+
(18)

which shows an O(1/rn+1)-behavior of γn(k, r) as n→∞ .

3.2 Far-field expression

Using the Zernike expansion Eq. (4) of v(σ) it is shown in [1][Appendix B] that

the following far-field approximation holds: when r = (r sin θ, 0, r cos θ) and

r →∞,

p(r) ≈ iρ0ckVs
e−ikr

r
a2
∞∑
n=0

un(−1)n
J2n+1(ka sin θ)

ka sin θ
. (19)
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In the case of a rigid piston, it follows that

p(r) ≈ iρ0cka
2Vs

e−ikr

r

J1(ka sin θ)
ka sin θ

. (20)

This is the familiar result for the far-field pressure of a rigid piston as can be

found in the textbooks, see, e.g., Kinsler et al. [8, (8.35)]. In Fig. 6 a plot can

be found of |J2n+1(ka sin θ)
ka sin θ |, n = 0, 1, 2, 3, as a function of ka sin θ.
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k a sin θ

J(
2n
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1,
k
a
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n
θ)
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k
a
si
n
θ)

n=0
n=1
n=2
n=3

Figure 6: |J2n+1(ka sin θ)
ka sin θ | vs. ka sin θ.

For the simply supported radiator, case ` = 1 in Eq. (6), and for the clamped

radiators, cases ` ≥ 2 in Eq. (6), the coefficients u in the Zernike expansion of

the v(`) in Eq. (6) are available [1, Appendix A] and this gives the far-field

approximation of p(r) via Eq. (19).

Some comments on the behavior of the terms J2n+1(z)/z, z = ka sin θ, as

they occur in the series in Eq. (19) are presented now. From the asymptotics of

the Bessel functions, as given in Ref. [13, Eq. 9.3.1], it is seen that in the series in

Eq. (19) only those terms contribute significantly for which 2n+1 ≤ 1
2e ka sin θ.
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Figure 7: Normalized |p| vs. ka sin θ, using the Zernike expansion of the v(`) and

Eq. (19).

In particular, when θ = 0, it is only the term with n = 0 that is non-vanishing,

and this yields

p((0, 0, r)) ≈ 1
2
iρ0cVska

2 e
−ikr

r
, r →∞ . (21)

This is in agreement with what is found from Eq. (11) when only the term with

n = 0 is retained and r+ is replaced by r, r− is replaced by 0. For small values

of ka the terms in the series Eq. (19) decay very rapidly with n. For large

values of ka, however, a significant number of terms may contribute, especially

for angles θ far from 0.

4 Power output and directivity

The power is defined as the intensity pv∗ (where ∗ denotes the complex conju-

gate) integrated over the plane z = 0. Thus, because v vanishes outside S,

P =
∫
S

p(σ)v∗(σ)dS , (22)
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where p(σ) = p((σ cosψ, σ sinψ, 0)) is the pressure at an arbitrary point on S.

In [2], Sec. V it is shown from Kings’s result [15] that

P = 2πiρ0ck

∫ ∞
0

V (u)V ∗(u)
(u2 − k2)1/2

udu , (23)

where

V (u) =
∫ a

0

J0(uσ) v(σ)σ dσ , u ≥ 0 , (24)

is the Hankel transform of v. This gives rise, via Eqs. (4) and (10), to the

integrals ∫ ∞
0

J2n1+1(au)J2n+1(au)
(u2 − k2)1/2

du . (25)

and these have been evaluated in the form of a power series in ka in [2][Sec.V.B].

We next consider the directivity. With the usual approximation arguments

in the Rayleigh integral representation of p in Eq. (1)

there follows (r = (r cosψ sin θ, r sinψ sin θ, r cos θ))

p(r) ≈ iρ0ck
e−ikr

r
V (k sin θ) . (26)

From this there results the directivity

D =
4π|V (0)|2∫ 2π

0

∫ π/2
0
|V (k sin θ)|2 sin θdψdθ

=
2|V (0)|2∫ π/2

0
|V (k sin θ)|2 sin θdθ

,

(27)

see Kinsler et al. [8], Sec.8.9. By Eqs. (2) and (24) it holds that V (0) = 1
2a

2Vs,

and ∫ π/2

0

|V (k sin θ)|2 sin θdθ =
1

2πρ0ck2
<[P ] . (28)
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Consider the case that ka→ 0. In [2] it is derived that <[P ] ≈ 1
2πρ0cV

2
s a

2(ka)2.

Therefore, as ka→ 0

D ≈
2( 1

2a
2Vs)2

1
2πρ0ck2

1
2πρ0cV 2

s a
2(ka)2

= 2 , (29)

or 3 dB; this limiting value 2 of D is also found in the case of a rigid piston [8]

or a hemispherical source on an infinite baffle.

Next consider the case that ka→∞. It is shown in [2][Sec. V.D] that

D ≈
2( 1

2a
2Vs)2

1
2πρ0ck2 2πρ0ca2

∫ 1

0
|v(aρ)|2ρdρ

=
1
2 (ka)2V 2

s∫ 1

0
|v(aρ)|2ρdρ

= Cv(ka)2 ,

(30)

in which Cv is the ratio of the square of the modulus of the average velocity and

the average of the square of the modulus of the velocity (averages over S). In

case that v = v(`), the last member of Eq. (30) is given by (2`+1)(`+1)−1(ka)2;

in Kinsler et al. [8], end of Subsec. 8.9. this result for the case ` = 0 is given.

5 Estimating velocity profiles from on-axis radi-

ation data for far-field loudspeaker assessment

5.1 Estimating velocity profiles from on-axis radiation

The on-axis expression Eqs. (11)–(12) for the pressure can, in reverse direction,

be used [1] to estimate the velocity profile on the disk from (measured) on-axis

data via its expansion coefficients un. This can be effectuated by adopting a

matching approach in which the coefficients un in the ‘theoretical’ expression
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Eqs. (11)–(12) are determined so as to optimize the match with measured data

at M + 1 points. Thus, one has for the pressure pm = p((0, 0, rm)) due to the

velocity profile v(σ) = Vs
∑N
n=0 unR

0
2n(σ/a) the expression

pm = 1
2ρ0cVs(ka)2 ·∑N
n=0(−1)njn(krm,−)h(2)

n (krm,+)un ,
(31)

where rm ≥ 0 and

rm,± =
1
2

(
√
r2m + a2 ± rm) , (32)

and m = 0, 1, · · · ,M. With

A = (Amn)m=0,1,··· ,M,
n=0,1,··· ,N

;

Amn = 1
2ρ0cVs(ka)2jn(krm,−)h(2)

n (krm,+) ,

(33)

p = [p0, · · · , pM ]T , u = [u0, · · · , uN ]T , (34)

the relation between on-axis pressures pm and coefficients un can be concisely

written as

Au = p . (35)

Now given a (noisy) on-axis data vector p one can estimate the coefficients vector

u by adopting a least mean-squares approach for the error Au− p. This will be

illustrated by a simulated experiment and, subsequently, by a real experiment,

below. In the simulated experiment, we assume a loudspeaker with a Gaussian

velocity profile (α = 2), as shown in Fig. 8-a curve vG (dash-dotted).This pro-

file is approximated using three Zernike coefficients (u0 =0.4323, u1 =-0.4060,

u2=0.1316), and this leads to the velocity profile va (solid curve) in Fig. 8-a.

It can be seen from Fig. 8-a that including three Zernike terms provides a fair
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approximation (3 10−2 absolute accuracy on the whole range). Using the three

coefficients of the approximated velocity profile, the sound pressure was calcu-

lated by applying Eq. (11) and plotted in Fig. 8-b as pcalc (solid curve). Then

random white noise was added to pcalc as shown as p+noise in Fig. 8-b (dotted

curve). Subsequently, the inversion procedure was followed by using the noisy

pressure data vector p to estimate the coefficients vector u by adopting a least

mean-squares approach for the error Au− p (see Eq. (35)). Using the recovered

three Zernike coefficients the velocity profile and pressure data were calculated

and plotted in Fig. 8-a (thick dotted curve) and Fig. 8-b (thick dotted curve),

respectively. It appears that the inversion procedure is rather robust against

noise since the calculated and recovered pressure curves in Fig. 8-b are almost

coincident.

For the second experiment we measured a loudspeaker (Vifa MG10SD09-

08, a = 3.2 cm) in an IEC-baffle [16], with the microphone placed at various

positions on a straight line at 10 near-field points at zero degree observation

angle (rm =0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.10, 0.13, 0.19 m), and finally

the bottom curve for the far-field at 1 m distance. The SPL is plotted in Fig. 9.

Figure 9 clearly shows that the near field differs form the far field, in particular at

higher frequencies. The lower curve is somewhat noisy because the amplification

of the microphone amplifier was kept the same for all measurements.

For a particular frequency at 13.72 kHz (ka = 8.0423), the magnitude of

the sound pressure is plotted in Fig. 10 (solid curve ‘p meas’). Using the same

procedure as described above for the first simulation, the inverse process was
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Figure 8: Simulated experiment. (a) Gaussian velocity profile (α = 2) vG vs. ρ

(dash-dotted curve. Approximated velocity profile va, Zernike series expansion

of [1], Appendix A truncated at n = 2 (solid curve). From noisy pressure data

recovered velocity profile vrec (thick dotted curve). (b) Sound pressure using

Eq. (11) and ka = 8 (pcalc, solid curve). Pressure with added noise (p+noise,

dotted curve). Recovered pressure data (prec thick dotted curve). Note that the

solid curve is almost coincident with the prec thick dotted curve, but is visible

between the dots of that thick curve.
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Figure 9: Measured SPL (with arbitrary reference level) for the loudspeaker

(Vifa MG10SD09-08, a = 3.2 cm) in an IEC-baffle [16], at 10 near-field positions

from upper curve (0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.10, 0.13, 0.19 m),

and finally the bottom curve for the far-field at 1 m distance.
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followed by using the ten measured near-field pressure data points to estimate

the coefficients vector u . Using four Zernike coefficients the pressure data were

recovered and plotted in Fig. 10 (dotted curve ‘p rec’). It appears that the two

curves show good resemblance to each other and that only four coefficients are

needed to provide a very good description of the near-field at rather high fre-

quencies (13.72 kHz). Furthermore, it appears that using these four coefficients,

the calculated sound pressure level at 1-m distance yields -42 dB. The measured

value at that far-field point is -44 dB. These values match rather closely, even

though the cone vibrates not fully circularly symmetric anymore at the used

frequency of 13.72 kHz, due to break-up behavior. This match provides a proof

of principle as the far-field measurement point was not used to determine the

Zernike coefficients, also see Sec. B below.
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Figure 10: Sound pressure radiated [a.u.] by the loudspeaker that was measured

at 13.72 kHz (ka = 8.0423, p meas, solid curve) vs. r/a. Recovered pressure

data (p rec dotted curve).
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In the experiments just described, no particular effort was spent in forming

and handling the linear systems so as to have small condition numbers. The

condition numbers, the ratio of the largest and smallest non-zero singular value

of the matrix A in Eq. (33), equals 50 in the case of the loudspeaker experiment

leading to Fig. 10. In practical cases the number of required Zernike coefficients

will be less than, say, six. This will not cause numerical difficulties. Further-

more, such a modest number of coefficients already parameterizes a large set of

velocity profiles.

5.2 Far-field assessment from on-axis measurements

In Keele [9] a method is described to assess low-frequency loudspeaker per-

formance in the on-axis far-field from an on-axis near-field measurement. In

the case of the rigid piston, the on-axis pressure p(r) = p((0, 0, r)) is given by

Eq. (14). Now assume ka� 1. When r � a it holds that

sin(
1
2
k(
√
r2 + a2 − r)) ≈ sin(

1
2
ka) ≈ 1

2
ka , (36)

and, when r � a it holds that

sin(
1
2
k(
√
r2 + a2 − r)) ≈ sin(

ka2

4r
) ≈ ka2

4r
. (37)

Therefore, the ratio of the moduli of near-field and far-field on-axis pressure is

given by 2r/a. This is the basis of Keele’s method; it allows far-field loudspeaker

assessment without having to use an anechoic room.

With the inversion procedure to estimate velocity profiles from on-axis data

(which are taken in the relative near-field) as described in Sec. 5.1 together
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with the forward calculation scheme for the far-field as described in Sec. 3.2, it

is now possible to generalize Keele’s scheme. This is illustrated by comparing

the far-field responses pertaining to the two sets of Zernike coefficients occurring

in the Gaussian simulated experiment, see Fig. 8 in Sec. 5.1. Using Eq. (19) the

normalized far-field pressure is plotted in Fig. 11 as pcalc (solid curve) and prec

(dotted) curve, respectively (α = 2, ka = 8), where the normalization is such

that the factor in front of the series at the right-hand side of Eq. (19) equals

unity. It appears that the two curves are very similar. This confirms that the un

obtained from the noisy near-field measured pressure data yield a good estimate

of the far-field spatial pressure response.
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Figure 11: Simulated experiment Gaussian radiator (α = 2). Normalized sound

pressure in the far-field using Eq. (19) and ka = 8 (pcalc, solid curve). Recovered

normalized far-field pressure data (precdotted curve).
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6 Discussion and outlook

This paper has considered a method to perform forward and inverse sound pres-

sure computations for circular radiators with a non-uniform velocity profile.

However, it must be stated that not all drivers move in a circularly symmetric

fashion. Shallow cones have significant circumferential modes. For example,

automotive loudspeakers and transducers without spider (headphones and mi-

crospeakers) suffer from rocking modes. This needs further research.

In the forward problem, the velocity profile is assumed to be known and

the on-axis and far-field sound pressure are expressed analytically in terms of

Zernike expansion coefficients of the velocity profile and (spherical) Bessel (and

Hankel) functions. In the inverse problem, the velocity profile is unknown and

is estimated in terms of Zernike expansion coefficients from on-axis pressure

data by adopting a matching approach based on the analytic result for the on-

axis pressure. Well-behaved velocity profiles are already adequately represented

by only a few terms of their Zernike expansion. Therefore, the Zernike series

approach is more convenient for both the forward problems and the inverse

problem than, for instance, an approach based on expansions involving the

family of rigid, simply supported and clamped radiators. The forward and

inverse method is proposed for use in assessment of the far-field of a loudspeaker

without the need for an anechoic room. Here, the Zernike coefficients of the

velocity profile are estimated from the on-axis (relatively near-field) data, and

these coefficients are used in the forward scheme to compute the far-field. This

assessment procedure has not been fully worked out in the present paper due to
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a variety of practical issues that need to be addressed. Among these practical

issues are

• choice of the on-axis measurement points,

• condition of the linear systems that arise,

• influence of ka,

• influence of noise,

• influence of misalignment of the measurement points,

• influence of inclination of the measurement axis,

• incorrect setting of the radius of the radiator,

• accuracy of the identified velocity profile and the role of this intermediate

result,

while various combinations of these issues should also be considered. It can

already be said that in practice the number of retrieved Zernike coefficients

will be in the order of five. The real number will be depending on the condition

number of the matrix A in Eq. (35). The authors intend to work out the method

for the loudspeaker assessment with attention for the above mentioned points.

In this paper, the theory has been developed for flat radiators. However, the

basic result for the on-axis pressure as a series expansion, in terms of Zernike

coefficients and spherical Bessel and Hankel functions, has been generalized to

the case of dome-shaped radiators [1]. Furthermore the theory is adapted to
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spherical loudspeaker cabinets, where the loudspeaker is modelled as a moving

cap on the sphere [11]. It is, therefore, to be expected that both the forward

and the inverse methods can also be generalized to the case of dome-shaped

radiators. The authors intend to develop the method both on a theoretical and

practical level for dome-shaped radiators as well.

7 Conclusions

Zernike polynomials are an efficient and robust method to describe velocity

profiles of resilient sound radiators. A wide variety of velocity profiles, including

the rigid piston, the simply supported radiator, the clamped radiators, Gaussian

radiators as well as real loudspeaker drivers, can be approximated accurately

using only a few terms of their Zernike expansions. This method enables one to

solve both the forward as well as the inverse problem. With the forward method

the on-axis and far-field off-axis sound pressure are calculated for a given velocity

profile. With the inverse method the actual velocity profile of the radiator

is calculated using (measured) on-axis sound pressure data. This computed

velocity profile allows the extrapolation to far-field loudspeaker pressure data,

including off-axis behavior, without the use of anechoic rooms.
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