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We study the image formation by a high-numerical-aperture optical imaging system in the

presence of a multilayer structure in the region around the image plane. Earlier references

to this subject in the literature use numerical solutions of the diffraction integrals. In this

paper, we use a numerical approach based on the semi-analytic Extended Nijboer-Zernike

(ENZ) theory to solve the diffraction integrals in the presence of a multilayer structure.

The specific ENZ calculation scheme uses the complex Zernike expansion of the complex

amplitudes of forward and backward propagating plane wave components in a certain

layer of the multilayer stack. By its nature, the ENZ approach enables an accurate and

fast calculation of the vector field in the stratified image region. Examples of multilayer

imaging that are encountered in high-numerical-aperture optical systems and in optical

lithography for semiconductor manufacturing are presented and the accuracy of the ENZ

approach is examined.

Keywords: ENZ-theory, vector diffraction, high-NA, multilayer, imaging.

1 Introduction

Numerical methods based on rigorous calculation of the electric field around the focal

region of a focusing lens system are a powerful tool to understand and interpret image

formation and information retrieval, since the 3D point-spread function is directly related

to the resolution and frequency response of the optical system. For lens systems where

the Debye approximation is valid, a very common method to calculate the field in focus

is to consider the diffraction integral according to the formulation first described by Ig-

natowsky [1] and re-derived by Wolf [2] and Richards and Wolf [3]. Using this general

description, one can obtain the field distribution in a homogeneous medium, but in most

cases the propagating field, between the exit pupil of the lens system and the focal region,
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is subjected to one or even several transitions between layers of a stratified focal region.

Thus, in order to obtain an accurate description of the focused field at the region of in-

terest, one must take into account the effects of these layers, since the transmission and

reflection at the transitions depend on the angle of incidence and state of polarization

of an incident plane wave. The total effect on the imaging by the system is obtained by

integrating over the plane wave components that are present within the angular aperture

of the lens system. The procedure has been carried out in previous work on the transition

between two media like in microscopy (air/sample or immersion liquid/sample) [4–8], and

regarding general stratified media, with applications in optical lithography [9–11], optical

recording [12–15], and confocal microscopy [16].

As an alternative to numerical methods to solve directly the diffraction integral, it has

been shown that the Extended Nijboer-Zernike (ENZ) theory can be used to compute the

through-focus behavior of the optical image [17, 18]. The ENZ method is based on first

constructing the Zernike expansion of the wave field in the entrance pupil. This expansion

is then multiplied by the complex lens transmission function to include the amplitude and

phase changes of the optical field accumulated during the transition through the imaging

system. Using the resulting Zernike field expansion in the exit pupil, ENZ theory provides

the through-focus electric and magnetic field in image space. The advantages of using

the ENZ method as compared to direct numerical computations of the diffraction integral

is that it is semi-analytical, arbitrarily accurate and that it can deal with aberrations

in a straightforward way. The separation in the ENZ-analysis of the aberrational effects

and the diffraction effects in the focal region allows for an important reduction of the

computational effort. The computation beforehand and the subsequent storage in look-

up tables of basic spread-functions greatly enhances the numerical speed once a real

aberrated system needs to be analyzed with respect to its imaging properties in the focal

volume. In previous papers, we have shown how the ENZ diffraction theory can also

be used to obtain an efficient and accurate imaging algorithm for extended objects with

general shape and for arbitrary illumination conditions in the case of a homogeneous

medium between the exit pupil and the focal region [19, 20]. In the present paper, we

extend the ENZ diffraction theory to obtain the three-dimensional field distribution in

media that are often encountered in practice, in particular in an image space that is built

up of various thin parallel layers (stratified image space). These structures are commonly

found in optical microscopy, optical data storage systems and in optical lithography for

semiconductor manufacturing. Applying our Zernike-based method for multilayer imaging

implies that we automatically obtain accurate Zernike coefficients for the forward and

backward propagating fields in a particular layer in image space. This allows us, for

instance, to extract the aberrational state of the imaging in the particular sublayer and

to design the optical imaging system in such a way that this aberration is corrected in

advance.
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The composition of this paper is as follows. In Section 2, we first introduce the multilayer

geometry that is present in the image space and the general approach to obtain the forward

and backward propagating wave amplitudes in the multilayer region. In Section 3, we

describe the extension to ENZ theory that is needed to treat the presence of a multilayer

in image space. As a result, we produce the expressions for the electric and magnetic field

components in a selected layer in image space. To this goal, we derive updated values

of the Nijboer-Zernike expansion coefficients that pertain to the combination of object

structure and imaging system with multilayer structure. Finally, in Section 4, we present

some practical examples that illustrate the application of the theory to high-resolution

imaging in microscopy and optical lithography and we discuss the acuracy and the speed

of the calculation method.

2 Extended Nijboer-Zernike imaging in a multi-layer

In an earlier publication [20] we have shown that the Extended Nijboer-Zernike (ENZ)

theory can be used to compute the through-focus aerial image of an extended object.

This work already included the possibility to have a different medium in both object and

image space, but did not account for a non-uniform or layered configuration in image

space. Such configurations are of particular interest as they are often encountered in

advanced imaging applications such as advanced lithography. In lithography, the image

is created in a resist layer that is enclosed by several other layers such as the wafer stack

and protective capping layers.

In this work we will analyze the implications that arise when a multilayer configuration

in the focal region of an imaging system is considered within the frame-work of the ENZ

formalism. It will be shown that, although the layered configuration gives rise to many

light reflections and thus strongly influences the image formation, it still remains possible

to apply the main results provided by ENZ theory.

In figure 1, a schematic presentation is given for the general optical system considered

in this paper. It is assumed that the object is very small compared to the transverse

dimension of the entrance pupil and that it is illuminated using a Köhler illumination

scheme. The optical system, represented by its complex transmission function, TI , and

magnification, M , transforms the field captured by the entrance pupil into a field distribu-

tion in the exit pupil. So far, the approach remains the same as in [20], but now, instead

of constructing an image in an uniform image space we are faced with image formation

in a focal region that consists of several layers with different refractive index nh. The

problem with such a configuration is that, at the interface between two layers having a

different refractive index, the light will be partly refracted and reflected, and thus gives

rise in every layer to both forward and backward travelling electric field components, th

and rh. In this paper, we will track all transmitted and reflected contributions in a certain
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Figure 1: Schematic representation of imaging into a multi-layered image space by an

optical system with magnification M . The different layers have their respective refractive

indexes, nh, (possibly complex) where the subscript refers to the h-th layer starting from

the exit pupil. th and rh are labels pertaining to the amplitudes of the forward and

backward propagating plane wave components in the layer labeled h. The point F is

the geometrical best focus position in case of a uniform image region and the numerical

aperture NA is given by n1 sin α with sin α = s0.

layer in a systematic way, and will show that this will allow us to do simulations of image

formation in a layered stack using the ENZ formalism.

3 ENZ theory in case of a multilayer in the focal region

To keep track of the forward and backward propagating waves in the multilayer part of the

image space, it is convenient to decompose the electric (and magnetic) field components

in orthogonal s- and p-polarization components. In the refraction or reflection process at

the optical surfaces in the optical system and at the interfaces in the multilayer, the s-

and p-components suffer different changes in amplitude and phase that follow from the

complex reflection and transmission coefficients at the interfaces. In this section, we first

develop the expressions for the s- and p-polarized plane wave components in the entrance

pupil of the imaging system. The next step is to follow these components through the

optical system and to find their direction and complex amplitudes on the exit pupil sphere

in the homogeneous image space with index n1. In the last step, we calculate the modified

direction and amplitude of the transmitted and reflected plane wave components as they

are found in the layer with index h (refractive index nh). These plane wave components are

then used in the integrand of the Debye integral to obtain the field in the specific layer

with index nh. The integration is carried out over the exit pupil where the truncated

transmitted and reflected plane wave spectra originate.
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3.1 Field components in the entrance pupil

We start with the Cartesian field components of the incident field distribution in the object

plane directly after the object structure. These components are obtained by some other

means, for instance, a rigorous diffraction calculation of the coherent field transmitted

through the object structure. This object field is then propagated to the entrance pupil

sphere of the optical system using a plane wave expansion of the Cartesian object field

components. As usually, it is sufficient to consider two components out of three, for

instance Ex and Ey, the third component Ez following from the orthogonality of the

electric components with respect to the propagation direction of the particular plane

wave. Referring to figure 2 where the object structure has been simplified to a fictitious

point source, we project the Cartesian field components in the entrance pupil onto a

spherical coordinate base that is given in a general point Q0(ρ, θ) by

y
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Figure 2: Definition of the local basis for a general point Q0 on the entrance pupil sphere

with an axial cross-section (left-hand graph) and a cross-section perpendicular to the

z-axis (right-hand graph).

k̂0 = sin α0 cos θ x̂ + sin α0 sin θ ŷ + cos α0 ẑ , (1)

p̂0 = cos α0 cos θ x̂ + cos α0 sin θ ŷ − sin α0 ẑ , (2)

ŝ0 = − sin θ x̂ + cos θ ŷ. (3)

The normalized radial coordinate ρ with 0 ≤ ρ ≤ 1 is defined by α0 = arcsin( ρ
R
). In

general, we present unit vectors by a bold character with a hat on top and the unit

vectors p̂0, ŝ0 and k̂0 in the figure form a right-handed coordinate system along the s-

and p-polarization directions and the local propagation direction of the field.

From the components Ex and Ey in the entrance pupil, we can find Ez by exploiting

the orthogonality of the field components with respect to the propagation unit vector k̂0

yielding

E0,z(ρ, θ) = −{E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ} tanα0 . (4)
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The field components on the new basis are then given by

E0,p(ρ, θ) = E0(ρ, θ) · p̂0 =
E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ

cos α0
, (5)

E0,s(ρ, θ) = E0(ρ, θ) · ŝ0 = −E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ. (6)

E0,k(ρ, θ) was forced to be zero because of the Fraunhofer approximation. This approxi-

mation is valid in the case of diffraction towards an entrance pupil that is very far away

from the object in terms of the wavelength of the light.

3.2 Field components in the exit pupil

The transmission of the plane wave spectrum through the optical system is treated accord-

ing to the laws of geometrical optics. Each plane wave component with unit propagation

vector k̂0 at Q0 in the entrance pupil experiences amplitude and phase changes following

from the trajectory of the corresponding geometrical ray through the optical system. The

intersection point Q1 of this optical ray with the exit pupil in the homogeneous part of

the image space with index n1 follows from some ray mapping condition between object

and image space. In the case of a high-quality large-field imaging system, the mapping

condition is given by the Abbe sine condition. In terms of the unit wave propagation

vectors k̂0 and k̂1 in object and image space we have

n1Mk1,x = n0k0,x , n1Mk1,y = n0k0,y , (7)

with M the lateral magnification of the imaging system. The position of the point Q1

then follows from the plane wave propagation vector k̂1 = {k1,x, k1,y, (1 − k2
1,x − k2

1,y)
1/2}

in the homogeneous part of the image space with index n1 and is given by

xQ1
= −ρR1k1,x , yQ1

= −ρR1k1,y, (8)

with R1 the axial distance of the exit pupil towards the image plane. At this point we

also introduce some abbreviations for goniometric quantities that will frequently occur in

the expressions for the field components on the entrance and exit pupil sphere and in the

multilayer region. We write

s0,M =
n1Ms0

n0

, s0,h = n1s0

nh
,

sin(α1) = s0ρ , cos(α1) = (1 − s2
0ρ

2)1/2 ,

sin(αM) = s0,Mρ , cos(αM) =
(

1 − s2
0,Mρ2

)1/2
,

sin(αh) = s0,hρ , cos(αh) =
(

1 − s2
0,hρ

2
)1/2

.

(9)

From the s- and p-polarized components of the electric field on the entrance pupil sphere,

we derive the s- and p-polarized components on the exit pupil sphere for a forward prop-
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agating plane wave with unit wave vector k̂1 according to

E1,s(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1
E0,s(ρ, θ)

=
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1

(−E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ) , (10)

E1,p (ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1
E0,p(ρ, θ)

=
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1

(E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ)

cos(αM)
. (11)

Here we have used the same steps as in [20], Eqs. (7)-(15), see also figure 3 for the

direction of the s- and p-components in image space.

In these expressions we have

TR(ρ) =

√

√

√

√

cos(α1)

cos(αM)
=

(1 − s2
0ρ

2)1/4

(1 − s2
0,Mρ2)1/4

. (12)

The ρ-dependent amplitude factor TR follows from the chosen lens mapping factor, in our

case the Abbe sine condition. As customarily, TI(ρ, θ) is the complex lens transmission

and aberration function, f1 is the focal distance, n0 is the refractive index of the object

space and n1 the refractive index of the homogeneous part of the image space before

entering the multilayer structure.

3.3 Field components in layer h of the multilayer system

When we introduce a multilayer in the focal region the expressions for the s- and p-

components of the electric field change due to various reflections and refractions at the

multilayer interfaces. Snell’s law applied to the various interfaces of the mulitlayer yields

for the unit propagation vector in the h-th layer

nhkh,x = n1k1,x , nhkh,y = n1k1,y . (13)

The expressions for the s- and p-components of the electric field in the h-th layer in the

focal region are the sum of those pertaining to the forward propagating wave with unit

propagation vector k̂h,t = (kh,x, kh,y, kh,z) and complex transmission factor th and those

associated with the reflected wave in the h-th layer with unit propagation vector k̂h,r =

(−kh,x,−kh,y,−kh,z) and complex reflection coefficient rh. The reflected wave originates

from a forward propagating wave with unit propagation vector k̂h = (−kh,x,−kh,y, +kh,z);

in the far field, its polar coordinates are given by (ρ, θ + π). We have to define the sign

convention for the reflection coefficient r in the case of s- and p-polarization. Like in most

textbooks, we choose the s-direction for the reflected wave in the same direction as for the

incident wave; the p-direction of the reflected wave is chosen opposite to the p-direction
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Figure 3: Definition of the s- and p-polarization directions in an azimuthal plane defined

by the angles θ and θ + π. The transmitted propagation wave vector in the thin layer

with refractive index nh (azimuthal coordinate θ) is derived from an effective wave vector

in image space with unit vector k̂h = (kx,h, ky,h, kz,h). The s- and p-components of the

oppositely directed reflected wave with unit wave vector k̂h,r = −k̂h are obtained from

the diametrically opposed direction of incidence with unit wave vector (−kh,x,−kh,y, kh,z)

and azimuth θ + π. The p-directions of the transmitted and reflected waves are parallel,

their s-components have opposite directions.

of the incident wave. With this convention, we find the following expressions for the s-

and p-field components in the h-th layer:

Eh,s(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1
{th,s(ρ)E0,s(ρ, θ) − rh,s(ρ)E0,s(ρ, θ + π)}

=
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1

{th,s(ρ) [−E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ]

−rh,s(ρ) [E0,x(ρ, θ + π) sin θ − E0,y(ρ, θ + π) cos θ]} , (14)

Eh,p(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

R1

√

n0

n1
{th,p(ρ)E0,p(ρ, θ) + rh,p(ρ)E0,p(ρ, θ + π)}

=
f1 TI(ρ, θ) TR(ρ)

R1 cos(αM)

√

n0

n1
{th,p(ρ) [E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ]

− rh,p(ρ) [E0,x(ρ, θ + π) cos θ + E0,y(ρ, θ + π) sin θ]} . (15)

The minus sign in front of rh,s in Eq.(14) follows from the opposite sign convention for

s-polarization of the transmitted wave and the reflected wave, see figure 3. The Cartesian

components in the h-th layer are given by

Eh,x(ρ, θ) = Eh,p(ρ, θ) cos(αh) cos θ − Eh,s(ρ, θ) sin θ , (16)
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Eh,y(ρ, θ) = Eh,p(ρ, θ) cos(αh) sin θ + Eh,s(ρ, θ) cos θ , (17)

Eh,z(ρ, θ) = Eh,p(ρ, θ) sin(αh) . (18)

The substitution of Eh,s and Eh,p in Eqs.(16)-(18) yields

Eh,x(ρ, θ) =
f1 TR(ρ)

R1

√

n0

n1

[

cos(αh)

cos(αM)
×

{

th,p(ρ) TI(ρ, θ)
{

E0,x(ρ, θ) cos2 θ + E0,y(ρ, θ) cos θ sin θ
}

− rh,p(ρ) TI(ρ, θ + π)
{

E0,x(ρ, θ + π) cos2 θ + E0,y(ρ, θ + π) cos θ sin θ
}

}

+

{

th,s(ρ) TI(ρ, θ)
{

E0,x(ρ, θ) sin2 θ − E0,y(ρ, θ) cos θ sin θ
}

+ rh,s(ρ) TI(ρ, θ + π)
{

E0,x(ρ, θ + π) sin2 θ − E0,y(ρ, θ + π) cos θ sin θ
}

}]

,

(19)

Eh,y(ρ, θ) =
f1 TR(ρ)

R1

√

n0

n1

[

cos(αh)

cos(αM)
×

{

th,p(ρ) TI(ρ, θ)
{

E0,x(ρ, θ) cos θ sin θ + E0,y(ρ, θ) sin2 θ
}

− rh,p(ρ) TI(ρ, θ + π)
{

E0,x(ρ, θ + π) cos θ sin θ + E0,y(ρ, θ + π) sin2 θ
}

}

−
{

th,s(ρ) TI(ρ, θ)
{

E0,x(ρ, θ) cos θ sin θ − E0,y(ρ, θ) cos2 θ
}

+ rh,s(ρ) TI(ρ, θ + π)
{

E0,x(ρ, θ + π) cos θ sin θ − E0,y(ρ, θ + π) cos2 θ
}

}]

,

(20)

Eh,z(ρ, θ) =
f1 TR(ρ) n1s0 ρ

nhR1 cos(αM)

√

n0

n1
×

{

th,p(ρ) TI(ρ, θ) {E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ}

− rh,p(ρ) TI(ρ, θ + π) {E0,x(ρ, θ + π) cos θ + E0,y(ρ, θ + π) sin θ}
}

.

(21)

The Zernike coefficients that pertain to a layer h in the stratified image region follow

from the field in the exit pupil TI(ρ, θ) that includes the lens transmission and aberration

function and from the functions th(ρ) and rh(ρ). Although one could also include the

lens mapping function TR(ρ) into the construction of the Zernike polynomials, we choose

not to do so because the mapping is an entity that is basically detached from the lens
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quality and the object properties. Of course, in the case of lithographic imaging, there

is virtually no choice left and the lens mapping is entirely defined by the Abbe sine con-

dition. Regarding the functions th,p(ρ), th,s(ρ), rh,p(ρ) and rh,s(ρ), these can be obtained

in a straightforward manner using, for instance, thin-film matrix theory. We construct

the required β-coefficients using TIth,s, TIth,p, TIrh,s and TIrh,p. At this point it is also

straightforward to include birefringence of the optical system into the formalism by allow-

ing non-identical aberration functions, TI,x and TI,y, acting on the x- and y- components

of the incident field, respectively. We then find the following sets of β-coefficients

E0,x(ρ, θ) th,s(ρ) TI,x(ρ, θ) =
∑

n,m

βm
n,x,tsR

|m|
n (ρ) exp(imθ), (22)

E0,x(ρ, θ) th,p(ρ) TI,x(ρ, θ) =
∑

n,m

βm
n,x,tpR

|m|
n (ρ) exp(imθ), (23)

E0,y(ρ, θ) th,s(ρ) TI,y(ρ, θ) =
∑

n,m

βm
n,y,tsR

|m|
n (ρ) exp(imθ), (24)

E0,y(ρ, θ) th,p(ρ) TI,y(ρ, θ) =
∑

n,m

βm
n,y,tpR

|m|
n (ρ) exp(imθ), (25)

and similarly for the counter propagating field components

E0,x(ρ, θ) rh,s(ρ) TI,x(ρ, θ) =
∑

n,m

βm
n,x,rs

R|m|
n (ρ) exp(imθ), (26)

E0,x(ρ, θ) rh,p(ρ) TI,x(ρ, θ) =
∑

n,m

βm
n,x,rp

R|m|
n (ρ) exp(imθ), (27)

E0,y(ρ, θ) rh,s(ρ) TI,y(ρ, θ) =
∑

n,m

βm
n,y,rs

R|m|
n (ρ) exp(imθ), (28)

E0,y(ρ, θ) rh,p(ρ) TI,y(ρ, θ) =
∑

n,m

βm
n,y,rp

R|m|
n (ρ) exp(imθ). (29)

For analysis of the field components in layer h, we only need these eight sets of coefficients.

When going to another layer, new sets have to be constructed. Moreover, it will turn out

that each sublayer also requires new diffraction integrals to be integrated and tabulated

(V (r, f)-functions). The ENZ approach has to be compared with methods based on the

direct summation of plane wave components in the sublayer h. The advantage of the ENZ-

approach in the multilayer configuration is the availability of compact and accurate basic

functions with the general shape V m
n,j(r, f) exp(imθ) that immediately yield the focused

field in the entire layer by mulitplication with the β-coefficients of Eqs.(22)-(29) for the

forward and backward propagating fields.

With the Zernike expansions (22)-(25) and (26)-(29), expressions can be found for the

forward and backward propagating Cartesian components of the electric and magnetic

field. However, to continue the use of the V m
n,j-type integrals that have been introduced

in the earlier ENZ analysis with a homogeneous image space, we define the following sets

of composite Zernike coefficients

βm
n,x,t+ =

βm
n,x,tp + βm

n,x,ts

2
; βm

n,x,t− =
βm

n,x,tp − βm
n,x,ts

2
,
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βm
n,y,t+

=
βm

n,y,tp + βm
n,y,ts

2
; βm

n,y,t−
=

βm
n,y,tp − βm

n,y,ts

2
,

βm
n,x,r+

=
βm

n,x,rp
+ βm

n,x,rs

2
; βm

n,x,r− =
βm

n,x,rp
− βm

n,x,rs

2
,

βm
n,y,r+

=
βm

n,y,rp
+ βm

n,y,rs

2
; βm

n,y,r− =
βm

n,y,rp
− βm

n,y,rs

2
, (30)

The Cartesian electric field components for each direction of incidence in layer h can

now be evaluated, both for the forward and for the backward propagating field. Their

directional or spectral dependence is determined by the normalized polar coordinates

(ρ, θ) on the exit pupil sphere from where the propagating plane waves components in

image space originate. The somewhat lengthy expressions for Et
h,x(ρ, θ), Et

h,y(ρ, θ) and

Et
h,z(ρ, θ), as well as the corresponding expressions for the back propagating components,

are written in full in Appendix A.

Next, these Cartesian spectral components have to be inserted into the Debye diffraction

integral. The propagation factor for the transmitted wave is exp{i[kh,xx + kh,yy + kh,zz]};
for the back propagating wave we have the exponential exp{−i[kh,xx + kh,yy + kh,zz]}. In

both cases, the kz,h-component is obtained from the dispersion relation in the layer with

index nh. Inserting the field components of forward and back propagating waves into the

Debye integral, see [2], [20], we find for the field vector E2 in layer h the expression

E2(r, φ, f) =
−in1s

2
0

λ0

[

exp

(

−if

u0,h

)

∫∫

C

Et

h
(ρ, θ + π)

(1 − s2
0ρ

2)
1

2

exp

{

if

u0,h

[

1 − (1 − s2
0,hρ

2)
1

2

]

}

×

exp
{

i2πrρ cos(θ − φ)
}

ρ dρdθ

+ exp

(

if

u0,h

)

∫∫

C

Er

h
(ρ, θ)

(1 − s2
0ρ

2)
1

2

exp

{

−if

u0,h

[

1 − (1 − s2
0,hρ

2)
1

2

]

}

×

exp
{

− i2πrρ cos(θ − φ)
}

ρ dρdθ
]

,

(31)

with

u0,h = 1 −
√

1 − s2
0,h ; f =

−2πnhu0,hz

λ0

, (32)

and λ0 the vacuum wavelength of the radiation. E
t,r
h

, the so-called ray strength, represents

the electric field components of a forward or backward propagating plane wave with wave

vector ±(kx, ky, kz), measured at a distance of 1 meter from the reference point in focus.

The function Et

h
for the transmitted field in the integrand of the first integral has to be

evaluated at the azimuth θ+π. This is because of the fact that a wave vector with azimuth

θ originates in the exit pupil at an azimuthal position θ + π. In the second integral above

for the reflected field, the azimuth θ of the integration variables and the azimuth of the

incident wave vector that created the reflected wave are identical.
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We may proceed now by applying ENZ theory to derive the fields E
t,r
2 in the h-th layer

of the focal region. Applying the formulae that were already derived in [20], the field in

the focal region can now be written as (vector column notation)

Et

2
(r, φ, f) =

−iπn1f1s
2
0

λ0 [1 − Mf1/R1]

√

n0

n1
exp

(

−if

u0,h

)

∑

n,m

(−i)m exp[imφ] ×














βm
n,x,t+















V m
n,0,t+

−
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+

exp[+2iφ] + V m
n,−2,t+

exp[−2iφ]
}

+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+ exp[+2iφ] − V m

n,−2,t+ exp[−2iφ]
}

−is0,h

{

V m
n,+1,t+ exp[+iφ] − V m

n,−1,t+ exp[−iφ]
}















+βm
n,x,t−















V m
n,0,t−

−
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t−

exp[+2iφ] + V m
n,−2,t−

exp[−2iφ]
}

+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t− exp[+2iφ] − V m

n,−2,t− exp[−2iφ]
}

−is0,h

{

V m
n,+1,t−

exp[+iφ] − V m
n,−1,t−

exp[−iφ]
}















+βm
n,y,t+















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+

exp[+2iφ] − V m
n,−2,t+

exp[−2iφ]
}

V m
n,0,t+

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+

exp[+2iφ] + V m
n,−2,t+

exp[−2iφ]
}

−s0,h

{

V m
n,+1,t+

exp[+iφ] + V m
n,−1,t+

exp[−iφ]
}















+ βm
n,y,t−















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t− exp[+2iφ] − V m

n,−2,t− exp[−2iφ]
}

V m
n,0,t−

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t−

exp[+2iφ] + V m
n,−2,t−

exp[−2iφ]
}

−s0,h

{

V m
n,+1,t−

exp[+iφ] + V m
n,−1,t−

exp[−iφ]
}





























,

(33)

for the forward propagating contribution and in a similar fashion we get for the counter

propagating contribution

Er

2
(r, φ, f) =

−iπn1f1s
2
0

λ0 [1 − Mf1/R1]

√

n0

n1
exp

(

if

u0,h

)

∑

n,m

(−i)m exp[imφ] ×














βm
n,x,r+















−V m
n,0,r−

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] + V m
n,−2,r−

exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] − V m
n,−2,r−

exp[−2iφ]
}

−is0,h

{

V m
n,+1,r−

exp[+iφ] − V m
n,−1,r−

exp[−iφ]
}















+βm
n,x,r−















−V m
n,0,r+

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] + V m
n,−2,r+

exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] − V m
n,−2,r+

exp[−2iφ]
}

−is0,h

{

V m
n,+1,r+

exp[+iφ] − V m
n,−1,r+

exp[−iφ]
}















+βm
n,y,r+















−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r− exp[+2iφ] − V m

n,−2,r− exp[−2iφ]
}

−V m
n,0,r−

−
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] + V m
n,−2,r−

exp[−2iφ]
}

−s0,h

{

V m
n,+1,r− exp[+iφ] + V m

n,−1,r− exp[−iφ]
}














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+ βm
n,y,r−















−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] − V m
n,−2,r+

exp[−2iφ]
}

−V m
n,0,r+

−
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] + V m
n,−2,r+

exp[−2iφ]
}

−s0,h

{

V m
n,+1,r+

exp[+iφ] + V m
n,−1,r+

exp[−iφ]
}





























.

(34)

The integrals Vn,j,t± with j = −2,−1, 0, +1, +2 occurring in the expressions above, are

given as

V m
n,j,t±(r, f) =

∫ 1

0
ρ|j|

{

(

1 − s2
0,hρ

2
) 1

2 ±
(

1 − s2
0,Mρ2

) 1

2

}−|j|+1

(1 − s2
0ρ

2)
1

4

(

1 − s2
0,Mρ2

)
3

4

×

exp

[

if

u0,h

(

1 −
√

1 − s2
0,hρ

2
)

]

R|m|
n (ρ)Jm+j(2πrρ)ρdρ.

(35)

and we also immediately find for absorption-free media that

V m
n,j,r±

(r, f) =
(

V m
n,j,t±

(r,−f)
)∗

. (36)

In Appendix B, a recipe is provided to efficiently compute the integrals given in Eq.(35).

To calculate the power flow and momentum flux in the focal region, we need the expression

for the magnetic induction in a specific layer of the multilayer stack. In homogeneous

space, for a plane wave, we have the relationship B =
√

ǫµ k̂ × E, with k̂ the unit

propagation vector of the plane wave. In the optical domain, we are allowed to write

µ = µ0 with µ0 the magnetic permeability of vacuum and ǫ1/2 = nh(ǫ0)
1/2. The unit

propagation vector is measured in the layer of the stack with refractive index nh, for a

certain value of the normalized pupil coordinates (ρ, θ) in the exit pupil, and is given by

k̂h(ρ, θ) =
(

−ρ nhs0 cos θ/n1,−ρ nhs0 sin θ/n1, [1 − (ρ nhs0/n1)
2]1/2

)

= (− sin(αh) cos θ,− sin(αh) sin θ, cos(αh)) . (37)

Using this quantity to obtain the magnetic induction on the exit pupil sphere and per-

forming the Debye integral for the magnetic induction components we find the following

quantities in the focal region (transmitted components in vector notation),

Bt

2
(r, φ, f) =

−iπn1nhf1s
2
0

λ0 c [1 − Mf1/R1]

√

n0

n1
exp

(

−if

u0,h

)

∑

n,m

(−i)m exp[imφ] ×














βm
n,x,t+















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+

exp[+2iφ] − V m
n,−2,t+

exp[−2iφ]
}

+V m
n,0,t+ +

(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+ exp[+2iφ] + V m

n,−2,t+ exp[−2iφ]
}

−s0,h

{

V m
n,+1,t+

exp[+iφ] + V m
n,−1,t+

exp[−iφ]
}














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+βm
n,x,t−















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t−

exp[+2iφ] − V m
n,−2,t−

exp[−2iφ]
}

+V m
n,0,t−

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t−

exp[+2iφ] + V m
n,−2,t−

exp[−2iφ]
}

−s0,h

{

V m
n,+1,t−

exp[+iφ] + V m
n,−1,t−

exp[−iφ]
}















+βm
n,y,t+















−V m
n,0,t+ +

(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+ exp[+2iφ] + V m

n,−2,t+ exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t+

exp[+2iφ] − V m
n,−2,t+

exp[−2iφ]
}

+is0,h

{

V m
n,+1,t+ exp[+iφ] − V m

n,−1,t+ exp[−iφ]
}















+ βm
n,y,t−















−V m
n,0,t− +

(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t− exp[+2iφ] + V m

n,−2,t− exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,t− exp[+2iφ] − V m

n,−2,t− exp[−2iφ]
}

+is0,h

{

V m
n,+1,t− exp[+iφ] − V m

n,−1,t− exp[−iφ]
}





























.

(38)

The backward propagating components of the magnetic induction are obtained in a similar

way, with the unit vector s replaced by its negative counterpart for each reflected plane

wave component, and we obtain

Br

2
(r, φ, f) =

−iπn1nhf1s
2
0

λ0 c [1 − Mf1/R1]

√

n0

n1
exp

(

if

u0,h

)

∑

n,m

(i)m exp[imφ] ×














βm
n,x,r+















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] − V m
n,−2,r−

exp[−2iφ]
}

+V m
n,0,r− +

(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r− exp[+2iφ] + V m

n,−2,r− exp[−2iφ]
}

s0,h

{

V m
n,+1,r− exp[+iφ] + V m

n,−1,r− exp[−iφ]
}















+βm
n,x,r−















+i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] − V m
n,−2,r+

exp[−2iφ]
}

+V m
n,0,r+

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] + V m
n,−2,r+

exp[−2iφ]
}

s0,h

{

V m
n,+1,r+

exp[+iφ] + V m
n,−1,r+

exp[−iφ]
}















+βm
n,y,r+















−V m
n,0,r−

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] + V m
n,−2,r−

exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r−

exp[+2iφ] − V m
n,−2,r−

exp[−2iφ]
}

−is0,h

{

V m
n,+1,r−

exp[+iφ] − V m
n,−1,r−

exp[−iφ]
}















+ βm
n,y,r−















−V m
n,0,r+

+
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] + V m
n,−2,r+

exp[−2iφ]
}

−i
(

s2
0,M

−s2
0,h

2

)

{

V m
n,+2,r+

exp[+2iφ] − V m
n,−2,r+

exp[−2iφ]
}

−is0,h

{

V m
n,+1,r+

exp[+iφ] − V m
n,−1,r+

exp[−iφ]
}





























.

(39)

14



4 Computation of the point-spread function in a multilayer us-

ing ENZ

In Section 3 of this paper we have presented expressions (36)-(39), to calculate the for-

ward and backward propagating electromagnetic field components in a given layer of a

multilayer stack in the image region of an optical system. In the present section, we will

apply these new expressions to some optical systems in which layered configurations in

image space play an important role and we will verify our results by comparing them with

an existing method based on a numerical evaluation of the Richards and Wolf diffraction

integral [14].

4.1 Multilayer effects in lithographic resist images
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Water

a cb

Figure 4: Three stack configurations in image space that occur in optical lithographic

imaging.

Our first example illustrates the importance of multilayer modeling in deep UV high

numerical aperture optical lithography (λ = 193nm, NA= 1.368 (water immersion)). In

figure 4, three different possible models for the wafer stack configuration are shown. In

configuration a, it is assumed that the light has to cross a single material interface before

image formation takes place in a half space of photoresist (n = 1.76). In configuration b,

a more realistic wafer stack is considered in which the effect of a highly reflective silicon

substrate (n = 0, 78+2, 46i) is taken into account. Configuration c shows a more advanced

stack in which an anti-reflective coating (ARC) is included. This ARC acts as an optical

gradient to minimize the light reflections coming from the substrate.

For all three configurations we have computed the through-focus point-spread function

(PSF) that is formed in the resist layer. The geometric best-focus position was put one

wavelength inside the layer of resist (z = 0 in figure 5), meaning that focal shifts intro-

duced by the layer transitions were not corrected for. The results are shown in figure 5,

where the first column contains data obtained with the ENZ method presented in this

paper and, for comparison, the second column contains data for the same configurations,
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this time obtained by means of numerical integration. As can be seen from these figures,

there is a very good agreement between the ENZ method and its numerical integration

counterpart (a more detailed comparison of the accuracy of the two approaches is pre-

sented in subsection 4.3). Comparing the results at different rows in figure 5, we see

that the simplified representation of the wafer stack given by configuration a accurately

predicts the focal shift, relative to the geometrical best focus position, introduced by the

medium transition. However, by comparing rows one and two we see that neglecting the

influence of the substrate is not allowed. As a matter of fact, the standing wave pat-

tern observed for configuration b is unacceptable from a lithographer’s point of view and

therefore in practice they often apply an anti-reflective coating (ARC). An ARC has been

included in configuration c and it can be seen that it effectively reduces the standing wave

non-uniformity down to an acceptable value.

4.2 Air-gap effects when imaging with a solid immersion lens

Our second example involves a proposed next-generation optical disk read-out system. In

this system, a high refractive index ‘solid’ immersion lens is placed very closely to the disk

in order to improve the read-out resolution by optical tunneling of high spatial frequencies

corresponding to evanescent plane waves. The thin layer of air between the lens and the

spinning disk should be as small as possible for resolution purposes but large enough to

avoid the risk of mechanical contact during play-back of a disk. The width of the air

gap strongly influences the performance of the system. In figure 6 we have plotted the

through-focus intensity profile of the point-spread function that, in this example, serves

as the read-out spot. Various effects introduced by the air-gap can be observed. A focal

shift is present which should be accounted for in the actual design of the system. For

large air-gaps, the average intensity of the light spot goes down and the full width at

half maximum of the scanning light spot gradually increases. This means that there is

an optimum air-gap width for which the read-out beam still has a sufficiently small size

whilst the spot intensity is adequate for read-out with a good signal-to-noise ratio. Figure

6 applies to a solid immersion lens with a numerical aperture of 1.45. It is seen that the

full width at half maximum of the lateral intensity profile starts to increase substantially

once the air gap width exceeds 40 nm. A practical compromise between disk storage

capacity, optical transmission through the gap and mechanical robustness of the system

was found to be a gap width of typically 25 nm [21].

4.3 Accuracy of the ENZ approach as compared with numerical integration

In previous work [17,22–24], an extensive study has been carried out on the correctness and

the convergence of the ENZ semi-analytic expressions. In several cases, with exact analytic

results available for comparison, it has been shown that the ENZ method can achieve an

accuracy of 10−6 in amplitude with a relatively modest number of terms included in the
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Figure 5: Comparison between the ENZ method (left column) and a fully numerical

integration method (right column). The figures show, from top to bottom, the intensity

of the x-polarized point-spread distribution in the resist layer for the configurations a, b

and c, presented in figure 4. The geometric best focus in water immersion would have

been found at the axial position z = 0.
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Figure 6: Point-spread formation in a layer of PC (n = 1, 62) using a solid immersion

lens (n = 2.086) for various values of the air-gap thickness (NA=1.45, λ =405 nm). The

colour shading in each graph has been adapted to the maximum energy density occurring

in the graph.

basically infinite summation series. In [22], it is shown that for a total defocus range

of eight Rayleigh focal depths, the number of terms in each summation can be typically

limited to 20. Much larger focal depths can be handled by applying a double Bessel

expansion with respect to the lateral and the axial excursion from the center of the point-

spread function. The results for strongly varying exit pupil functions, both in amplitude

and/or phase, are determined by the accuracy of the complex Zernike expansion of the

pupil function. In [24] and [20], it is shown how rather strongly oscillating pupil functions

can be adequately matched by Zernike expansions with maximum radial and azimuthal

indices of typically 20. The amplitude matching is generally correct down to a relative

value 10−6; only in the case of discontinuities in the pupil function itself or its derivatives,

the residual error may amount to a value of, for instance, 10−3. The resulting ENZ

calculations, chosen to be accurate themselves down to 10−6, will now be limited by the

accuracy of the Zernike fit of the exit pupil field components. It was observed that the

final accuracy of the field components in the image region was better than it would be

expected on the basis of the accuracy of the Zernike fit of the field components in the exit

pupil. This can be ascribed to an averaging effect when performing the Debye integral to

obtain each field component in image space.
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We have examined the differences between the results of the ENZ calculation scheme and

of the numerical integration method. The geometry of the test problem was the one la-

beled c in figure 4. The ENZ approach first requires a calculation-intensive tabulation of

the V -integrals of Eq.(35). Once this preparatory work has been done, the Zernike coeffi-

cients of the field components in the exit pupil are calculated and the field distribution in

the focal region is then obtained in a very fast way by using the tabulated values of the

V -integrals. In practice, this latter step is orders of magnitude faster than a numerical

evaluation of the Debye diffraction integral. The summations in the ENZ calculations were

truncated so as to achieve an accuracy of 10−6 in the amplitude of the field components.

The error tolerance of the numerical integration procedure was set to 10−5. This error

tolerance for numerical integration was chosen because of memory and calculation time

limitations. The differences between the results of the two methods for the dominating

x- and z-field components in the focal region were of the order of 1.10−5 with respect to a

normalized maximum amplitude of unity. This implies that the accuracy was not limited

by the ENZ approach but determined by the error setting of the numerical integration

procedure.

5 Conclusions and discussion

We have shown that the Extended Nijboer-Zernike diffraction theory can be adapted

to allow for the image formation in a stratified image space, as is encountered often in

imaging applications like microscopy, optical lithography and optical data storage. With

the aid of the angular plane wave spectrum of the transmitted and reflected wave field in a

particular layer of the stratified medium, we are able to construct the effective transmitted

and reflected fields in the exit pupil of the imaging system. We obtain the transmitted and

reflected plane wave spectra in a specific layer by standard means, for instance, by using

thin layer matrix theory. The transmitted and reflected fields are each used as input for the

Debye diffraction integral that is then solved using the semi-analytic ENZ theory. With

respect to standard numerical integration of the Debye integral, we have shown that the

ENZ approach is highly accurate. Without loss of speed, the solution of the diffraction

integral can easily be made accurate up to a level of 10−6 in amplitude. Numerical

methods often have a typical accuracy of 10−3 up to 10−4 in amplitude if reasonable

calculation times are desired. The accuracy of the ENZ method is limited in practice by

the accuracy of the Zernike fit of the transmitted and reflected fields in a sublayer, as

projected backwards towards the exit pupil. This accuracy degrades if the effective pupil

function shows sharp oscillations or discontinuities. Practical Zernike fit errors in our

examples remained below a level of 10−5. It was shown that a numerical solution of the

diffraction integral can be made accurate to 10−5. However, the calculation time becomes

excessively large with respect to the ENZ approach. The use of numerical integration

could be acceptable for a single field point evaluation. When repeated evaluations are
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needed like in object mask optimization for optical lithography, the ENZ approach will

offer a superior performance, both in speed and accuracy.

Another advantage of the tabulation possibility of the ENZ method in a multilayer ge-

ometry is the following. For a given aperture angle in a selected sublayer in image space,

the set of Zernike coefficients and V -integrals needs to be evaluated only once. The ac-

tual through-focus calculations in the layer are then obtained very quickly by using the

prepared tabulated values of coefficients and integrals. This advantage is maintained for

a specific sublayer when the aperture angle is left unchanged. Changes in other sublayers

do not affect the tabulated data for the V -integrals in the layer under consideration. The

changes only affect the plane wave spectra belonging to the forward and backward propa-

gating waves in the sublayer and their corresponding Zernike coefficients. It is only when

switching to another layer with a different aperture angle that a new tabulation is needed.

The tabulation advantage is especially appreciated when many image calculations in the

same medium are needed. Again, the optimization of object mask patterns to obtain

a desired image pattern in the photoresist recording layer is a good example of such a

repeated calculation with unchanged values of the tabulated V -integrals.

As we already pointed out in the introduction, an extra advantage a Zernike-based method

is that accurate Zernike coefficients become available for the forward and backward prop-

agating fields in a particular layer of the stratified medium in image space. The complex

Zernike coefficients yield information about the imaging quality in the particular sublayer.

Correction of the effective aberration state in a specific sublayer can then obtained by an

appropriate design of the optical imaging system. For high-numerical-aperture imaging,

the complex Zernike expansion define the polarization-dependent amplitude and phase

deviations in a sublayer. These can then be corrected with the aid of birefringent means

to obtain perfect imaging at a given position in the sublayer.

The stratified medium in image space may contain absorbing layers or layers where frus-

trated total reflection takes place via evanescent fields or plasmon creation. However, our

implementation so far does not allow to calculate the field in a sublayer that itself shows

appreciable absorption or where the plane wave spectrum comprises evanescent compo-

nents. We actually work on an extension of the multilayer ENZ method so as to cover

these cases as well.
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Appendices

A Expressions for the forward and backward propagating field

components in layer h

In this Appendix we produce the expressions for the electric field components in layer h

of the stratified medium in image space. These components follow from the substitution

of the composite Zernike coefficients of Eq.(30) into the Eqs.(19)-(21). We then split the

Cartesian components into their forward and backward propagating parts, denoted by

the upper indices t and r, respectively. Shorthand notation for goniometric quantities

according to Eq.(9) is used to improve the readability of the expressions.

Et
h,x(ρ, θ) =

f1 cos1/2(α1)

2R1 cos3/2(αM)

√

n0

n1

∑

n,m

R|m|
n (ρ) exp(imθ) ×

{

βm
n,x,t+ [cos(αh) + cos(αM)] + βm

n,x,t− [cos(αh) − cos(αM)] +

[

βm
n,x,t+

[cos(αh) − cos(αM)] + βm
n,x,t−

[cos(αh) + cos(αM)]
]

cos 2θ +

[

βm
n,y,t+ [cos(αh) − cos(αM)] + βm

n,y,t− [cos(αh) + cos(αM)]
]

sin 2θ

}

,

(A.1)

Er
h,x(ρ, θ) =

f1 cos1/2(α1)

2R1 cos3/2(αM)

√

n0

n1

∑

n,m

R|m|
n (ρ) exp(imθ) (−1)m ×

{

−βm
n,x,r+

[cos(αh) − cos(αM)] − βm
n,x,r−

[cos(αh) + cos(αM)] +

[

−βm
n,x,r+

[cos(αh) + cos(αM)] − βm
n,x,r− [cos(αh) − cos(αM)]

]

cos 2θ +

[

−βm
n,y,r+

[cos(αh) + cos(αM)] − βm
n,y,r−

[cos(αh) − cos(αM)]
]

sin 2θ

}

,

(A.2)

Et
h,y(ρ, θ) =

f1 cos1/2(α1)

2R1 cos3/2(αM)

√

n0

n1

∑

n,m

R|m|
n (ρ) exp(imθ) ×

{

βm
n,y,t+ [cos(αh) + cos(αM)] + βm

n,y,t− [cos(αh) − cos(αM)] +

[

−βm
n,y,t+

[cos(αh) − cos(αM)] − βm
n,y,t−

[cos(αh) + cos(αM)]
]

cos 2θ +
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[

βm
n,x,t+

[cos(αh) − cos(αM)] + βm
n,x,t−

[cos(αh) + cos(αM)]
]

sin 2θ

}

,

(A.3)

Er
h,y(ρ, θ) =

f1 cos1/2(α1)

2R1 cos3/2(αM)

√

n0

n1

∑

n,m

R|m|
n (ρ) exp(imθ) (−1)m ×

{

−βm
n,y,r+

[cos(αh) − cos(αM)] − βm
n,y,r−

[cos(αh) + cos(αM)] +

[

βm
n,y,r+

[cos(αh) + cos(αM)] + βm
n,y,r− [cos(αh) − cos(αM)]

]

cos 2θ +

[

−βm
n,x,r+

[cos(αh) + cos(αM)] − βm
n,x,r−

[cos(αh) − cos(αM)])
]

sin 2θ

}

,

(A.4)

Et
h,z(ρ, θ) =

f1s0,h cos1/2(α1)

R1 cos3/2(αM)

√

n0

n1

∑

n,m

ρ R|m|
n (ρ) exp(imθ) ×

{[

βm
n,x,t+

+ βm
n,x,t−

]

cos θ +
[

βm
n,y,t+

+ βm
n,y,t−

]

sin θ
}

, (A.5)

Er
h,z(ρ, θ) =

f1s0,h cos1/2(α1)

R1 cos3/2(αM)

√

n0

n1

∑

n,m

ρ R|m|
n (ρ) exp(imθ) ×

(−1)m
{

−
[

βm
n,x,r+

+ βm
n,x,r−

]

cos θ −
[

βm
n,y,r+

+ βm
n,y,r−

]

sin θ
}

.

(A.6)

B Series expansion for V m
n,j,t±

In this Appendix we present a method for obtaining a series expansion for the integral

V m
n,j,t±

(r, f) given by

V m
n,j,t±

(r, f) =
∫ 1

0
ρ|j|

{

(1 − s0,h
2ρ2)

1

2 ±
(

1 − s2
0,Mρ2

)
1

2

}−|j|+1

(1 − s0
2ρ2)

1

4

(

1 − s2
0,Mρ2

) 3

4

×

exp

[

if

u0,h

(

1 −
√

1 − s2
0,hρ

2
)

]

R|m|
n (ρ)Jm+j(2πrρ)ρdρ. (B.1)

We use the identity
(

1 − s0,h
2ρ2
) 1

2±
(

1 − s2
0,Mρ2

) 1

2 = (B.2)

=



























(1 − s0,h
2ρ2)

1

2 +
(

1 − s2
0,Mρ2

) 1

2 , + case

(s2
0,M

−s2
0,h)ρ2

(1−s0,h
2ρ2)

1
2 +(1−s2

0,M
ρ2)

1
2

, − case

=
(

(

1 − s0,h
2ρ2
) 1

2 +
(

1 − s2
0,Mρ2

) 1

2

)σ
((

s2
0,M − s2

0,h

)

ρ2
)

1−σ
2 (B.3)
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where σ = ±1 indicates both sign possibilities, to write Eq. (B.1) in the form

V m
n,j,t±

(r, f) =
(

s2
0,M − s2

0,h

)
1

2
(1−σ)(−|j|+1) ×

∫ 1

0
ρ1−σ+σ|j|

{

(1 − s0,h
2ρ2)

1

2 +
(

1 − s2
0,Mρ2

) 1

2

}σ(−|j|+1)

(1 − s0
2ρ2)

1

4

(

1 − s2
0,Mρ2

) 3

4

×

exp

[

if

u0,h

(

1 −
√

1 − s2
0,hρ

2
)

]

R|m|
n (ρ)Jm+j(2πrρ)ρdρ. (B.4)

Next, we follow a similar approach as in [20], Appendix A, to write the integral in (B.4)

as a series expansion given by

V m
n,j,t±

(r, f) =
(

s2
0,M − s2

0,h

) 1

2
(1−σ)(−|j|+1) ×

exp{g′}
p
∑

s=0

∞
∑

t=0

CsBtT
m+j
1−σ+σ|j|+|m|+2s+2t(r, f

′) , (B.5)

where for integer k, l with l − |k| even

T k
l (r, f ′) =

∫ 1

0
ρleif ′ρ2

Jk(2πrρ)ρdρ . (B.6)

To arrive at (B.5) we have used

exp

[

if

u0,h

(

1 −
√

1 − s2
0,hρ

2
)

]

{

(1 − s0,h
2ρ2)

1

2 +
(

1 − s2
0,Mρ2

) 1

2

}σ(−|j|+1)

(1 − s0
2ρ2)

1

4

(

1 − s2
0,Mρ2

) 3

4

= exp
{

g′ + if ′ρ2
}

∞
∑

t=0

Btρ
2t . (B.7)

Furthermore, the coefficients g′, f ′ and Bt, as well as Cs in (B.5) can be obtained starting

from expression (B.7) and following the recipe given in [20], Appendix A, Eqs. (A3-A22).

The T k
l given in (B.6) have already been computed in [18] for l − |k| ≥ 0, however in Eq.

(B.5) values l − |k| < 0 can also occur. We therefore derive a computation scheme for

T k
l , that is valid for general integer values of l and k, below. We assume k ≥ 0 (note that

J−k = (−1)kJk).

We have Bauer’s formula

exp (if ′ρ2) = exp ( i
2
f ′)

∞
∑

q=0

(2q + 1) iqjq(
1
2
f ′)R0

2q(ρ) , (B.8)

so that

T k
l (r, f ′) = exp ( i

2
f ′)

∞
∑

q=0

(2q + 1) iqjq(
1
2
f ′)

∫ 1
0 ρlR0

2q(ρ)Jk(2πrρ)ρdρ . (B.9)

The series in Eq. (B.9) has excellent convergence properties, with no loss of digits, and

taking the terms with q ≤ 3
4
|f ′| + 5 yields in all cases sufficient accuracy.
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Next we consider the integrals
∫ 1
0 ρlR0

2q(ρ)Jk(2πrρ)ρdρ. There is the Zernikek expansion

Jk(2πrρ) =
∞
∑

t=0

2(k + 2t + 1)(−1)t Jk+2t+1(2πr)

2πr
Rk

k+2t(ρ) , (B.10)

and this Zernikek expansion is also excellent convergent. It is sufficient to include all

terms with l ≤ max{0, 3
2
|πr| + 4 − 1

2
k} to get sufficient convergence. Therefore,

T k
l (r, f ′) = 2 exp ( i

2
f ′) ×

∞
∑

q,t=0

(2q + 1) (k + 2t + 1) iq(−1)tjq(
1
2
f ′)Jk+2t+1(2πr)

2πr
Elkqt , (B.11)

in which

Elkqt =
∫ 1

0
ρlR0

2q(ρ)Rk
k+2t(ρ)ρdρ . (B.12)

These Elkqt can be computed as follows. We write k = l + 2r, where r is integer and can

be positive, zero or negative, but in all cases l + r ≥ 0 and r ≤ k. Then we write

Elkqt =
∫ 1

0
ρl+rR0

2q(ρ)ρ−rRl+2r
k+2t(ρ)ρdρ . (B.13)

Now for integer N , M , K with N , M ≥ 0 and N −M even and ≥ 0 and K = −M,−M +

1, · · ·, we show below that (P = (N − M)/2, Q = (N + M)/2)

ρKRM
N (ρ) =

P
∑

j=0

Cj(N, M, K)RM+K
N+K−2j(ρ) , (B.14)

where, using Pochhammer’s symbol (x)j = 1 (j = 0), = x(x+1) · · · (x+j−1), j = 1, 2, · · ·,

Cj(N, M, K) =
N + K − 2j + 1

N + K − j + 1

(

P

j

)

(Q + K − j)!(N − j)!

Q!(N + K − j)!
(K − j + 1)j .

(B.15)

Using Eq. (B.14) with K = l + r, M = 0, N = 2q and K = −r, M = l + 2r, N = k + 2t,

respectively, in Eq. (B.13), we get

Elkqt =
∫ 1

0

q
∑

j1=0

Cj1(2q, 0, l + r)Rl+r
l+r+2q−2j1

(ρ) × (B.16)

t
∑

j2=0

Cj2(k + 2t, l + 2r,−r)Rl+r
l+r+2t−2j2

(ρ)ρdρ

=
min(q,l+r)
∑

j=max(0,q−t)

Cj(2q, 0, l + r)Cj+t−q(k + 2t, l + 2r,−r)

2(l + r + 2q − 2j + 1)
.

Here it has also been used that (orthogonality)

∫ 1

0
Rl+r

l+r+2s(ρ)Rl+r
l+r+2t(ρ)ρdρ =

δst

2(l + r + 2s + 1)
, s, t = 0, 1, · · · . (B.17)
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We still owe the reader a proof of Eqs. (B.14-B.15). The formula in Eqs. (B.14-B.15)

take the form

ρKRM
N (ρ) =

min(K,P )
∑

j=0

N + K − 2j + 1

N + K − j + 1

(

P
j

)(

Q+K−j
Q

)

(

N+K−j
K

) RM+K
N+K−2j(ρ) (B.18)

when K = 0, 1, · · ·, and takes the form

1

ρL
RM

N (ρ) =
P
∑

j=0

(−1)j N − L − 2j + 1

L + j

(

P
j

)(

N−j
L−1

)

(

Q
L+j

) RM−L
N−L−2j(ρ) (B.19)

for K = −L = −M,−M + 1, · · · ,−1. This can be shown by elementary manipulations

with binomials and Pochhammer symbols.

The formula in Eq. (B.18) can be shown as follows. We have RM
N (ρ) = ρMP

(0,M)
P (2ρ2 −1)

with P
(α,β)
k the general Jacobi polynomial of degree k with parameters α, β, see [25],

Ch. 22. Since RM+K
N+K−2j(ρ) = ρM+KP

(0,M+K)
P−j (2ρ2 − 1), the formula in Eq. (B.18) shows

how to write P
(0,M)
P as a linear combination of P

(0,M+K)
P−j , j = 0, 1, · · · , P . The required

coefficients can be found from [26], Thm. 7.1.2 on p. 358 with

α = 0, δ = M, k = j, n = P, β = M + K , (B.20)

and some further rewriting from Pochhammer symbols in [26], Thm 7.1.2 to binomials in

Eq. (B.18).

Similarly, Eq (B.19) shows how to write P
(0,M)
P as a linear combination of P

(0,M−L)
P−j ,

j = 0, 1, · · · , P . Again [26], Thm. 7.1.2 provides the solution, now with

α = 0, δ = M, k = j, n = P, β = M − L . (B.21)
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