Sound radiation from a resilient spherical cap on a rigid sphere

Ronald M. Aarts® and Augustus J.E.M. Janssen
Philips  Research ~ Europe

HTC 36 (WO0-02)

NL-5656AF  FEindhoven

The Netherlands

(Dated: January 8, 2010)

It has been argued that the sound radiation of a loudspeaker is modeled realistically by assuming
the loudspeaker cabinet to be a rigid sphere with a resilient spherical cap. Series expansions, valid
in the whole space outside the sphere, for the pressure due to a harmonically excited cap with an
axially symmetric velocity distribution are presented. The velocity profile is expanded in functions
orthogonal on the cap rather than on the whole sphere. As a result only a few expansion coefficients
are sufficient to accurately describe the velocity profile. An adaptation of the standard solution of
the Helmholtz equation to this particular parametrization is required. This is achieved by using
recent results on argument scaling of orthogonal (Zernike) polynomials. The approach is illustrated
by calculating the pressure due to certain velocity profiles that vanish at the rim of the cap to
a desired degree. The associated inverse problem, in which the velocity profile is estimated from
pressure measurements around the sphere, is also feasible as the number of expansion coefficients
to be estimated is limited. This is demonstrated with a simulation.
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I. INTRODUCTION

The sound radiation of a loudspeaker is quite often
modeled by assuming the loudspeaker cabinet to be a
rigid infinite baffle around a circularly symmetric mem-
brane. Given a velocity distribution on the membrane,
the pressure in front of the baffle due to a harmonic ex-
citation is then described by the Rayleigh integral! or
by King’s integral?. These integrals have given rise to
an impressive arsenal of analytic results and numerical
methods for the pressure and other acoustical quantities
in journal papers® 7 and textbooks'® 2?4, The results
thus obtained are in good correspondence with what one
finds, numerically or otherwise, when the loudspeaker is
modeled as being a finite-extent box-like cabinet with a
circular, vibrating membrane. Here one should limit at-
tention to the region in front of the loudspeaker and not
too far from the axis through the middle of and perpen-
dicular to the membrane. The validity of the infinite-
baffle model becomes questionable, or even nonsensical,
on the side region or behind the loudspeaker?? (p. 181).
An alternative model, with potential for more adequately
dealing with the latter regions, assumes the loudspeaker
to be a rigid sphere equipped with a membrane in a spher-
ical cap of the sphere. It has been argued by Morse and
Ingard?® (Sec. 7.2), that using the sphere as a simpli-
fied model of a loudspeaker whose cabinet has roughly
the same width, height and depth, produces comparable
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acoustical results as the true loudspeaker (also see Fig. 2
of the present paper). An application for the cap model
is that it can be used to predict the polar behavior of a
loudspeaker cabinet. Modeling the loudspeaker as a re-
silient spherical cap on a rigid sphere would have the at-
tractive feature that the solution of the Helmholtz equa-
tion for the pressure is feasible as a series involving the
spherical harmonics and spherical Hankel functions, see
Ref.18 (Ch. 11.3), Ref.19 (Ch. III, Sec. 6), Ref.20 (Ch. 7)
and Ref.21 (Chs. 19-20), and expansion coefficients to be
determined from the boundary condition at the sphere
(including the resilient cap).

In the present paper, the velocity profile is assumed
to be axially symmetric but otherwise general. It was
shown by Frankort?® that this is a realistic assumption
for loudspeakers, because their cones mainly vibrate in a
radially symmetric fashion. These loudspeaker velocity
profiles can be parameterized conveniently and efficiently
in terms of expansion coefficients relative to functions or-
thogonal on the cap. The orthogonal functions used are
the Zernike terms Rge, as occur in Ref.16, 17 for the
case of a resilient circular radiator in an infinite baffle, to
which an appropriate variable transformation is applied
so as to account for the geometry of the cap. A formula
will be developed that expresses the required coeflicients
in the standard solution of the Helmholtz equation in
terms of the Zernike expansion coefficients of the veloc-
ity profile on the cap. This then gives rise to a formula,
explicitly in terms of these Zernike coefficients, for the
pressure at any point on and outside the sphere. As ex-
amples of the resulting forward computation scheme, pro-
files of the Stenzel type (certain type of smooth functions
of the elevation angle that vanish at the rim of the cap
to any desired degree) are considered. The correspond-
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ing inverse problem, in which the expansion coefficients
of the unknown profile are estimated from the measured
pressure that the profile gives rise to, is also feasible.
This is largely due to the fact that the expansion terms
are orthogonal and complete so that for smooth veloc-
ity profiles only a few coefficients are required. Thus, for
such velocity profiles, the profile can be readily estimated
from pressure measurements around the sphere.

In Ref.16, 17 a similar approach has been used for ra-
diation from a circular radiator in an infinite baffle. A
special Zernike expansion of the exponential factor oc-
curring in the Rayleigh integral for the pressure yields
in Ref.16 an explicit formula for the on-axis pressure in
terms of the Zernike coefficients of the velocity profile on
the radiator. This formula is used for forward computa-
tion of the on-axis pressure as well as for solving the in-
verse problem of estimating the velocity profile through
its Zernike coeflicients from measured on-axis pressure

data. Furthermore, the 0th order Hankel transform of
the Zernike terms have a particular simple form in terms
of Bessel functions of the first kind. In Ref.16 this is
used to express the far-field pressure explicitly in terms
of the Zernike coefficients of the velocity profile on the
radiator. In Ref.17 a similar thing is done, via King’s
integral expression for the pressure, to find series expan-
sions for acoustical quantities such as the pressure at the
edge of the radiator, the radiator force on the radiator,
the radiated power and the directivity.

The results and methods in the present paper differ
from those in the previous literature’® 2! and from those
in Ref.16, 17 in the following manner. In Refs.18-21 the
attention is restricted to the case of a velocity profile
with constant radial or axial component. In this paper,
general axially symmetric profiles are allowed. Next, the
pressure in the whole space in and outside the sphere (and
not just on the axis or in the far field) is computed. This
gives naturally rise to expressions for the on-axis and for
the far-field pressure as in Ref.16, and to expressions for
the acoustical quantities, as considered in Ref.17, for the
case of radiation from a spherical cap on a spherical baf-
fle. Due to the different geometry than the one used in
Ref.16, 17, a variable transformation is required to pass
from orthogonal functions on the disk to orthogonal func-
tions on the cap. Furthermore, the expansion coefficients
required in the solution of the Helmholtz equation must
be expressed in terms of the expansion coeflicients of the
velocity profile on the cap. This is achieved here by using
a recent explicit result?%-27 on variable-scaling of Zernike
terms, a result that has not been used previously in the
acoustical setting.

The results in this paper are of a (semi-)analytical na-
ture which distinguish these from the ones obtained by
more numerically oriented method, such as in Ref.28 and
in Ref.29. In Ref.28 a boundary element method (BEM)
is used to predict acoustical radiation from axisymmet-
ric surfaces with arbitrary boundary conditions, and in
Ref.29 near-field acoustical holography (NAH) is used to
characterize acoustical radiators from near-field pressure
data. While these methods are powerful tools for the for-
ward and inverse problem, the analytic approach with a

simplified model can yield additional insights as to the
role of the various parameters and expansion coefficients.
In particular, in the forward method, the influence on the
pressure and related quantities of a particular Zernike
term in the expansion of the velocity profile is reflected
directly in terms of the involved expansion coeflicient of
which quite often only a few are needed. Furthermore,
the inverse method can also be used for design purposes
in which one has to match a desired, rather than a mea-
sured, pressure distribution in the field.

Il. BASIC FORMULAS AND OVERVIEW

Assume a general velocity profile V' (6, ) on a spherical
cap, given in spherical coordinates as

So={(r0,0)[r=R,0<0<6p, 0<p<2r}, (1)

with R the radius of the sphere with center at the origin
and 6y the angle between the z—axis (elevation angle
6 = 0) and any line passing through the origin and a
point on the rim of the cap. See Fig. 1 for the geometry
and the notations used in this paper. Thus it is assumed

FIG. 1. Geometry and notations. The area outlined with the
thick curves is the cap denoted by So.

that V' vanishes outside Sy. Furthermore, in loudspeaker
applications, the cap moves parallel to the z-axis, and so
V (8, ) will be identified with its z-component, and has
normal component

W(0,¢) =V (0,p)cosb . (2)

The average of this normal component over the cap,

1
L // W (0, ) sin0.d0 de , ()
A
So

is denoted by wp, where Ag, is the area of the cap, see
Eq. (10). Then the time-independent part p(r, 8, ) of the
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pressure due to a harmonic excitation of the membrane
is given by

p(r,0,¢) =

, o0 n o pImleos g) k) ime
—1poC Zn:—oo Zm:—n mn = n (COS ) me ’
(4)

see Ref.20 (Ch. 7) or Ref.21 (Ch. 19) (Helmholtz equa-
tion with spherical boundary conditions). Here pg is
the density of the medium, ¢ is the speed of sound in
the medium, & = w/c is the wave number and w is the
radial frequency of the applied excitation, and r > R,
0<6<m,0< ¢y <2r. Furthermore, P,llml(cos 0)eim¢ is
the spherical harmonic Y, in exponential notation (com-
pare with Ref.20 (Sec. 7.2), where sine-cosine notation

has been used), hg) is the spherical Hankel function, see
Ref.30 (Ch. 10), of order n, and W,,, are the expansion
coefficients of W(#,¢), 0 <0 < 7, 0 < ¢ < 2, relative
to the basis Y,"*(0, ¢). Thus

n+1/2 (n—|m|)!
27 (n+|m|)!

I L2TW (0, ) PE™ (cos )™ sin0.d6 dyp

Wmn =

where it should be observed that the integration over € in
Eq. (5) is in effect only over 0 < 6 < 6 since V vanishes
outside Sp.

In the case of axially symmetric velocity profiles V'
and W, written as V(6) and W (0), the Egs. (4) and (5)
become independent on ¢ and simplify to

- & (kr)
p(r,0,0) = —ipoc Y W, Py(cosl) ————, (6)
Z;) h? (kR)

and

W, = (n+1/2) / W (0) Py(cos0)sinfdd ,  (7)
0

respectively, with P, the Legendre polynomial of degree
n. The integration in Eq. (7) is actually over 0 < 6 < 6.
Since loudspeakers mainly vibrate in a radially symmet-
ric fashion, almost all attention in this paper is lim-
ited to axially symmetric velocity profiles V and W. In
Sec. VI the generalization to non-axial symmetric profiles
is briefly considered.

The case that W is constant wg on the cap Sy has been
treated in Ref.19 (Part III, Sec. 6), Ref.20 (p. 343), and
Ref.21 (Sec. 20.5), with the result that

1
W, = iwo(Pn,l(cos 60) — Pny1(cosby)) . (8)
The pressure p is then obtained by inserting W,, into
Eq. (6). Similarly, the case that V' is constant vy on Sy
has been treated by Ref.21 (Sec. 20.6), with the result
that

Wi, = Svo{ 225 (Pa(cos fg) — Poa(cos o))+

Py _a(cosfo) — Pu(cosbo))} . )

In Egs. (8) and (9) the definition P_,_; = P,, n =
0,1, -+, has been used to deal with the case n = 0 in

Eq. (8) and the cases n = 0,1 in Eq. (9). In Fig. 2 the
resemblance is shown between the polar plots of: a real
driver in a rectangular cabinet (Fig. 2-a), a rigid piston
in an infinite baffle (Fig. 2-b), and a rigid spherical cap
in a rigid sphere (Fig. 2-c) using Eqgs. (6) and (9). The
driver (Vifa MG10SD09-08, a = 3.2 cm) was mounted in
a square side of a rectangular cabinet with dimensions
13x13x18.6 cm and measured on a turning table in an
anechoic room at 1 m distance. Figure 2 clearly shows
that the resemblance between polar plots of the mea-
sured loudspeaker (a), and those of the sphere model (c)
is much better than the often used infinite baffle model
(b). In particular, at low frequencies the (solid) curve
in (b) is independent of the angle, which is not the case
for (a) and (c). At higher frequencies the overall shape
and in particular the notches of (b) does not exhibit the
resemblance such as between (a) and (c¢). Finally, for an-
gles between 90° an 270° the infinite baffle model (b) is
nonsensical. The area of the spherical cap is equal to

Ag, = 47 R?sin*(0y/2). (10)

If this area is chosen to be equal to the area of the flat
piston, there follows for the piston radius

a = 2Rsin(6y/2). (11)

The parameters used for Fig. 2 are ¢« = 3.2 cm, 0y =
w/8, R = 8.2 cm, are such—using Eq. (11)—that the
area of the piston and the cap are equal. The radius R
of the sphere is such that the sphere and cabinet have
comparable volumes, respectively 2.3 and 3.1 liter. If
R is such that the sphere volume is the same as that
of the cabinet, and 6y such that the area of the piston
and the cap are equal, one gets R = 9.0873 cm and 6
= 0.35399 rad (=20°). The corresponding polar plot—
Fig. 2-d—is very similar to Fig. 2-c, the deviations are
about 1 dB or less. Apparently, the actual value of the
volume is of modest influence.

It should be noted that the W,, in Egs. (8) and (9)
have slow decay, roughly like n='/2 (see Eq. (B5) in
Appendix B), and this shows that the representation of
W through its Legendre coefficients is highly inefficient.
While slow decay of W,, in Eq. (6) is not necessarily a
problem for the forward problem (where the pressure p is
computed from W using Eqgs. (6) and (7)), it certainly is
for the inverse problem. In the inverse problem, one aims
at estimating the velocity profile W (or V') from pressure
measurements around the sphere. This can be done, in
principle, by adopting a matching approach in Eq. (6)
in which the W,, are optimized with respect to match of
the measured pressure p and the theoretical expression
for p in Eq. (6) involving the W,,. Already for the sim-
plest case that W is constant, it is seen from the slow
decay of the W,, and the slow decay of P,(cosf) that a
very large number of terms are required in the Legendre
series W (0) = >0 W, P,,(cos 6).

In this paper a more efficient representation of W is
employed. This representation uses orthogonal functions
on the cap that are derived from Zernike terms

RY(p)=Pu(2p°—1),0<p<1,(=0,1,---, (12)
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FIG. 2. (Color online) Polar plots of the SPL (10 dB/div.),
f=1 kHz (solid curve), 4 kHz (dotted curve), 8 kHz (dashed-
dotted curve), and 16 kHz (dashed curve), corresponding for
¢ =340 m/s and a = 3.2 cm to ka values: 0.591, 2.365, 4.731,
9.462. (a) Loudspeaker (radius a = 3.2 cm, measuring dis-
tance r = 1 m) in rectangular cabinet. (b) Rigid piston (a
= 3.2 c¢m) in infinite baffle. (c) Rigid spherical cap (aper-
ture 8y = m/8, sphere radius R = 8.2 cm, » = 1 m) using
Egs. (6) and (9). The parameters a, R, and 6y are such—
using Eq. (11)—that the area of the piston and the cap are
equal. (d) same as (c) but with a sphere volume equal to that
of the cabinet, and R = 9.0873 cm and 6y = 0.35399 rad. All
curves are normalized such that the SPL is 0 dB at 6=0.

that were also used in Ref.16, 17. These Zernike terms
arise uniquely when the set of radially symmetric func-
tions p* = (22 +4%)? , j = 0,1,---, on the unit disk
22 +y? < 1 are orthogonalized with respect to the inner
product

A(z,y)B* (z,y)dzdy (13)
z24y2<1

for function A and B on the unit disk (also see Eq. (27)
and the text below Eq. (27)). Thus

1
=[] B R ) oy
z2+y2<1

1
i
—2 [ BB plodo = 37 . (1)
0

Because of the geometry of the spherical cap, a variable
transformation is required to pass from orthogonal func-
tion Rge on the disk to orthogonal functions on the cap.
This is achieved by setting

21
sin 50

03@<9>:R8¢( ),oseseo, (15)

sin %90
for £=0,1,---, see Appendix A. With
. 1
0 = 2arcsin(sgp) ; So = sin 590 , (16)

the inverse of the wvariable transformation used in
Eq. (15), it holds by completeness and orthogonality of
the Zernike terms that

W (2 arcsin(sop)) = wOZugRgg(p) ,0<p<1, (17)
=0

where the expansion coefficients wouy are given by
1
woue = 2(20+ 1) / W (2arcsin(sop)) R, (p)dp . (18)
0

It is this parametrization of W in terms of the expansion
coefficients u, that will be preferred in the sequel. This
parametrization is obtained by “warping” W according
to Eq. (16) and expanding the resulting warped function
as in Eqgs. (17)—(18), with so given in Eq. (16).

The efficiency of the representation in Eq. (17) is ap-
parent from the fact that a smooth profile W requires
only a limited number terms with coefficients u, of rela-
tively small amplitude in Eq. (17) to yield an accurate ap-
proximation of W (2arcsin(sgp)). For instance, the con-
stant profile W = wq on Sy is represented exactly by only
one such term, wyRY(p), in the expansion in Eq. (17), and
the profile W = v cos 8, corresponding to the case that V'
is constant vy on Sy, is represented exactly by two terms
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vo[(1— s2)RY(p) — s2R3(p)]. More complicated examples
arise when V or W is a multiple of the Stenzel profile

cos —00590)"
b

(n+1)( (19)

1 — cosfty
and these require n + 1 terms in the representation in
Eq. (17). These profiles vanish at the rim of Sy to degree
n and are considered in Sec. V and VI to illustrate the
methods developed in this paper.

In Sec. IIT it will be shown that the expansion in
Eq. (17) gives rise to the formula

W, = SOwOZ Rgfj—;-ll Rgn 1(50))Ug ’ (20)

expressing the coeflicients W,, required in Eq. (6) for
the pressure in terms of the expansion coefficients u, in
Eq. (17). From this a series expansion for the pressure
p in the whole space r > R, 6 € [0,7] and ¢ € [0,27]
follows as

p(’ra 03 SD) = —iPOCWO Z UZS@(Ta 0) ’ (21)
=0
where
Se(r,0) =
- n 2041 2041 h$? (kr)
2 (=1)"s0(R5, 15 (s0) — R3,, = (s0)) Pr(cos ) 27—,
n=¢ n2 (kR)
(22)
in which
Ry (p) = p" P (207 — 1) (23)

for integer m,m > 0 with n —m even and > 0 (R’ =0
otherwise) with P,ga’ﬁ) (z) the general Jacobi polyno-
mial®C. The functions

Apm(z,y) = RI™(p) ™ | 2= pcosa, y = psina,

(24)
are known in optics as the circle polynomials of
Zernike and they have been introduced recently in acous-
tics as well'®17. They have been shown by Bhatia and
Wolf3! to arise uniquely as orthogonal functions, see
Eq. (13), that satisfy form invariance under rotations of
the unit disk.

The main result in Eqgs. (20)—(23) provides the gener-
alization of the forward computation scheme in Egs. (6),
(8), (9) to general axially symmetric velocity profiles W.
Furthermore, it provides the basis for the inverse prob-
lem, in which the expansion coefficients u, are estimated
from measured pressure data around the sphere by adopt-
ing a best match approach in Eq. (21). From these es-
timated coefficients an estimate of W can be made on
basis of Eq. (17).

In Sec. IV the forward computation scheme embodied
by the Eqgs. (21)—(23) is discussed in some detail. It is
shown how the results in Eqgs.(8)—(9) arise for the two
special cases considered there, and the matter of conver-
gence of the series in Eq. (22) and some computational

31,32

issues are addressed. In Sec. V the forward method is
exemplified for the case that V or W is a Stenzel-type
profile, see Eq. (19). In Sec. VI the inverse method is
illustrated in simulation. In Sec. VII the extension of the
methodology to non-axial symmetric profiles is briefly
discussed. In Sec. VIII the results of this paper are dis-
cussed, applications of these to audio engineering phe-
nomena and quantities are considered, and some issues
for future investigations are mentioned. The conclusions
are presented in Sec. IX. Finally, in Appendix A the or-
thogonality of the functions CY, in Eq. (15) is established,
in Appendix B, the asymptotics of the terms in the series
for Sy in Eq. (22) as n — oo is given which is required for
the convergence matter in Sec. IV, and in Appendix C
the R} are given in the form of a Discrete Cosine Trans-
form which allows fast and reliable computation of the
Zernike terms of large degree.

11l. DERIVATION OF THE MAIN RESULT

In this section the main result of Egs. (20)—(23) on the
coefficients W, required in the solution of the Helmholtz
equation and the pressure p due to an axially symmet-
ric, radial velocity component W(6) vanishing outside
the spherical cap Sy is proved. Our initial aim is to show
Eq. (28) that expresses W, in terms of W (#), warped
according to Eqgs. (16) and (17), and the scaled Zernike
terms RY, (sop). Then a result from the scaling theory
of Zernike terms is used to establish Eq. (20) and, subse-
quently, Egs. (22) and (23). Thus from Eq. (7) and the
substitutions p = cosf, p = 2y? — 1 it follows that

W, = (n+ 1/2) W(G)Pn(COSG)sinﬂdF) =
4(n+1/2) fcos 160 W(aurccos(2y2 —1)P,(2y? = 1)y dy .
(25)
Next, the substitution y = +/1 —x2 is made, and it is
used that

)P, (%), arccos(1 — 2z%) = 2arcsin x .
(26)

Po(=2) = (-1

This gives

S0

/W(2 arcsinz) P, (222 — 1) dz
0

W, = 2(2n+ 1)(=1)"

(27)
where sy = sin %90 as in Eq. (16). Next, the definition
RS, (z) = P,(22% — 1), see Eq. (12), is used, the substi-
tution z = sgp with 0 < p < 1 is made, and it follows
that

W, = 2(2n+1)(-1)"s (28)
28
Jo W(2aresin(sop)) RS, (sop)pdp -

Now there is the following general result?6:27
scaling of the polynomials R?, see Eq. (23):

t+1 1
=> —(Rh(e) =
t

on argument

R(ep) R ()R (p) - (29)

s+1 €
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Here r and s are integers > 0 with s — r even and > 0
(recall that R} = 0 when n < m) and ¢ in the summation
in Eq. (29) assumes the values r,r +2,--+ ;s ; € and p
are arbitrary > 0. Using this result with

r=0,s=2n,e=5), p=p (30)

in Eq. (28), together with Eq. (18), it follows that
W = (—1)"sowo »_(R3ut4 (s0) — Ran (s0))ue - (31)
=0

This is Eq. (20). Then Eq. (21) for p, with Sy given by
Eq. (22), follows upon inserting the result of Eq. (31) for
W, into Eq. (6) and interchanging the summations over
n and £.

IV. DISCUSSION OF THE MAIN RESULT

In this section the main result in Eqgs. (20)—(23) is dis-
cussed in some detail. It is shown how the special cases of
constant W or constant V' on the cap arise, see Egs. (6)—
(9). Furthermore, the order of magnitude of the terms in
the series for Sy in Eqgs. (22) as n — oo is indicated. The
latter analysis shows that, especially when r is not large
compared to R, many terms n are required. In Sec. IV.C
it is proposed to compute (high-degree) Zernike polyno-
mials by employing their representation in Eq. (23) in
terms of Jacobi polynomials where the latter are com-
puted using Mathematica. An alternative method, based
on an expression for R (p), using the Discrete Cosine
Transform, is presented in Appendix C.

A. Special case W = wo on Sy

The result in Eq. (8) for the special case that W is con-
stant wg on Sp does not immediately follow from Eq. (20).
As already noted, ug = 1, u; = ug = --- = 0 in this case.
Due to the various recurrence relations®C that exist for
the Jacobi polynomials, the result in Eq. (20) can be
brought into a variety of different forms. As one of these,
there holds forn =1,2,---

250(Rgp41(50) — Rbp_1(s50)) =
RgnJrQ(SO) - R(Q)n72(80)) )
and the Eq. (8) for W, follows using that, see Eq. (12),

(32)

RS, (s0) = Pr(2sin? 160 — 1) = (33)
Py(—cos) = (—1)k Py(cos ) .

In principle, recursion techniques can also be used to es-
tablish the result in Eq. (9) for W, in the case that V is
constant vy on Sp.

B. Special case W is a simple source on S,

If the polar cap aperture 6y is decreasing, in the limit
the cap will act as a simple source. Using Eqgs. (21)-(23)

and by proper normalization by the cap area Ag,, using
Eq. (10), and the definition of wy by Eq. (3), there holds

p(r,0,9) ipocw i@n—l— 1)P,,(cos0) hg)(kﬂ’)
» Uy = —1po 0 n YN
= n (kR)
(34)

In Fig. 3 the corresponding polar plot is illustrated, where
the same sphere radius and frequencies are used as in
Fig. 2-c.

FIG. 3. (Color online) Polar plots of the SPL (10 dB/div.) of
a simple source on a sphere of radius R =0.082 m. Frequency
f =1kHz (solid curve), 4 kHz (dotted curve), 8 kHz (dashed-
dotted curve), and 16 kHz (dashed curve), at distance r =
1 m, using Eqs. (34). All curves are normalized such that the
SPL is 0 dB at 6=0.

C. Convergence analysis of the series S; and computational
aspects

As already said, for smooth velocity profiles W only
a limited number of coefficients u, in the expansion in
Eq. (17) have to be considered. In Appendix B it is
shown that the terms

20+1 20+1 h7(12)(k7")
so(Ra, 11 (s0) — B3, (s0)) P (cos Q)W (35)
in the series defining S; in Eq. (22) are of the order of
magnitude

kR (R)nﬂand kR (R)nﬂ7

(CESIEE (CESIE )

r r
respectively, when 6 is near 0 or 7w and away from 0 and T,
respectively. Here it is assumed that 6 is not close to 0
or . The estimate of the order of magnitude is accurate
when £ is fixed and n exceeds 1 (kr)2. It then follows from
the analysis in Ref.33 (Sec. 5) that the truncation error

after the N'B term in the series of Eq. (22) for Sy has
order of magnitude kN~*/2(R/r)N and kN~Y(R/r)N, re-
spectively, for the corresponding f-ranges. Hence, when
r is allowed to approach R, a relatively large number of
terms is required in the series for Sy.
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Implementation of Egs. (21) and (22) requires compu-
tation of the quantity in Eq. (35), normally for low or
moderate values of ¢ and possibly for large values of n.
These computations have been done for the present paper
in Mathematica. The Zernike polynomials and Legendre
polynomials occurring in Egs. (35) can be expressed in

terms of Jacobi polynomials Pj(o"ﬁ)7 see Egs. (12) and
(23), and Mathematica computes these polynomials, vir-
tually without any restrictions to the values of the pa-
rameters « and 3 or to the degree j, provided that a
sufficient precision has been set. If this is not applicable
then the method discussed in Appendix C might be useful
because Eq. (C2) is very robust against precision prob-
Next, h%z)(kr) and hgtz)/(k;R) must be computed.

Now hg), can be expressed in terms of hg), hfil, see

Ref.30, Eqs. 10.1.19-22, and the evaluation of the h(?)-
functions can be done in Mathematica, virtually without

lems.

any restriction to the order j and argument z of hgz)(z).

Finally, h,(lz)/(kR) occurs in the numerator in Eq. (35),

and for this it should be checked that hg)/ has no real
zeros. By Ref.30, Eq. 10.1.6,

W (), 9n()) = G (W(2) — G(hn() = 5 (30)
and by Ref.30, Subsec. 10.1.1,
W' (2) = Go2) — il (2) (3)

in which j; () and y/,(z) are real for real z. Hence,

1

(2)/ > 2: ./ Py 2 / 2 2
[ ()7 = 17 (2 Hyn (2)° = 214 (1 ()1 + lyn (2)]?)
(39

showing that hgf)l(z) is bounded away from 0.

V. STENZEL-TYPE PROFILES AND FORWARD
COMPUTATION

Consider the profile

7OS6S607

(40)
with V) (9) = 0 for §y < 0 < 7 (asusual), K = 0,1,---.
Then a simple computation shows that

(K +1)(1-

K
) () — o5 (K + 1 cos B — cos B
VERHO) = vy (K + )( 1 —cosby )

V) (2arcsin(sop)) = vé P)E 0<p<t.
(41)
The right-hand side of Eq. (41) is the Stenzel profile,

considered extensively in Ref.16. Thus

V(K)(2arcsm (sop)) —vOK)ZqéKR ,0<p<1,
(42)
where
g = (K+1)(-1)" e264] ([g) (=01, K
E+1<K+]§+1>7 s Ly ) .
(43)

From
WE) () = VI () cos ) = "
(1 = cos 0)VEFTD(6) + (cos o) VI (6)
it follows that
W) (2arcsin(sop)) = wOK) Z ugK RY,(p),0<p<1
(45)
where
K K+1+cosby (i
and, forE:O,l,-u JK+1

oK
uy{) - w% 5 [K (1 —cos® )4y K+1) + (cos QO)QEK)}'

K+2
(47)
Thus one can compute the pressure using the formulas
in Egs. (21)—(23) with u, = u&K).
In Fig. 4 polar plots are displayed of the SPL
(10 dB/div.) of a spherical cap (fp = 7/8, R = 8.2 cm,
= 1 m) with various Stenzel velocity profiles, K=0
(solid curve), K=1 (dotted curve), K=2 (dashed-dotted
curve), and K=3 (dashed curve), (a) f = 4 kHz, (b) f =
8 kHz. It appears that the difference between the various
velocity profiles are more pronounced at higher frequen-
cies. Also, the cap becomes less directive for higher K
values because in the limit K — oo it would behave like
a simple source on a sphere. Furthermore, it appears
that the solid curves (K = 0) for (a) f = 4 kHz and (b)
f = 8 kHz are the same as the dotted and dashed-dotted
curves, respectively in Fig. 2-c, while different formulas
were involved.

VI. INVERSE PROBLEM

The Egs. (21)—(23) show how to compute the pressure
in the space r > R due to a harmonically excited (wave
number k) membrane on the spherical cap 0 < 6 < 6
with a known radial component W of a velocity profile.
In the reverse direction, the Egs. (21)—(23) can serve as
the basis for a method for estimating W from measure-
ments of the pressure p in the space r > R that W gives
rise to. Such a profile W can usually be estimated ac-
curately by a limited number of expansion coeflicients
up in Eq. (17), and these can be estimated by taking a
matching approach in Eq. (22) in which the u, are chosen
such that they optimize the match between the measured
pressure and the theoretical expression involving the wuy
at the right-hand side of Eq. (22). Given measurements,
see Fig. 1,

p; = D;(P;) , P; = rj(cosp;sinfd;,sing;sinf;, cosb;) ,
(48)
where 7 = 0,1,---,J, the numbers dy,¢/ = 0,1,--- , L,
are chosen such that

J
Z pj —
§=0

D|?sind;

Zdzse (rj,0;
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FIG. 4. (Color online) Polar plots of the SPL (10 dB/div.) of
a spherical cap (fp = /8, R = 8.2 cm, r = 1 m) with vari-
ous Stenzel velocity profiles, K=0 (solid curve), K=1 (dotted
curve), K=2 (dashed-dotted curve), and K =3 (dashed curve).
(a) f = 4 kHz, (b) f = 8 kHz. All curves are normalized such
that the SPL is 0 dB at 6=0.

is minimal. The solution of this minimization problem
can be obtained by using ‘Solve’ of Mathematica, or by
other means. Then wq,us,¢=0,1,---, L are estimated
by setting

d(]:—Z‘p()CU)(),’LL[:d[/d(]7 E:O,l, ,L. (50)

There are various questions that arise in connection
with the above optimization problem, such as number
and choice of the measurement points P;, choice of L,
condition of the linear systems that occur, influence of
noise and of systematic errors (such as incorrect setting
of R and/or 6y), etc. It is out of the scope of the present
paper to address any of these issues in detail. Instead,
just one simulation example is given.

Simulation example

Take R=8.2cm, 0y =7/4, k =w/c=2nf/c with c =
340 m/s, f= 4 kHz, so that kR = 6. The measurement

points P;(r;,0;, ;) are taken in the form

. 1 . 1
) ) T(J2 — 5 . 2 J3— 5 .
Ro/I — T(jl) ; M = 9(]2) , M = @(.73) s
J2 JS
(51)
Withjlzly"'a‘]1:47 j2:17”"J2:6’ j3:

1, -+, J3 = 6. Such a set of measurement points yields
a convenient implementation of the solution of the opti-
mization problem but does not need to be optimal in any
other respect (matters as optimal choice of the measure-
ment points are outside the scope of this paper). The
profile W is chosen to be

WE(Q) =V E) (@) cosh, 0<0 <6y, (52)

where V%) (0) is the K th Stenzel-type profile as in Sec. V
(see Egs. (40), (44)), and K = 2. We require for this

- ]. m/S, and by E(]S. (4(;) aIld (4;)
we ge IeS[)eC 1ve y wWo = wO al

(K
example vy = v,

X K+1 K
W = s R s )
53

Using g, ., q; ~ given by Eq. (43), the pressure p is
computed in accordance with Eq. (21) with u, = uE,K).
Measurements p; are obtained in simulation by adding
complex white noise (by adding scaled random num-
bers by Mathematica’s ‘RandomComplex[-1 - I, 1 + I,
Length[p]]” where the scaling is such that the SNR be-
comes 40 dB) to the computed p(P;). The non-zero co-
efficients of W) are estimated by taking L = K + 1
in the optimization problem, and this yields estimates
Wy, Ug, -+, Ug41 of wo, ug, -+, ug41. Figure 5 shows
the input profile W) of Eq. (52) using Eq. (40) directly
(solid curve) together with the reconstructed profiles

(K+1) (K)

K sin 26
W) = af) > ek (—2-) , 0<0< 0,
g sin 500

+

~
I

(54)
without noise (dotted curve) and with noise (dashed-
dotted curve) added to the pressure points p;. The re-
covered 4y are computed by solving Eq. (49) and using
Egs. (50), (45), and sg from (16). Figure 5 shows that
the (noiseless) reconstructed profile (dotted curve) co-
incides with the input profile (solid curve), and that the
recovered profile using the noisy pressure points (dashed-
dotted curve) is very similar to the other two curves.
The method appears to be robust for noise contami-
nation. Figure 6 shows the pressure points at various
angles and distances vs. index i, using Eq. (51) and
i = js+ (j2 — 1)J3 + (j1 — 1)JoJ3, with the pressure
points |p;| without noise (filled circles), pressure points
|p;| with noise (squares), and recovered pressure points
(45° rotated squares). Note that the noiseless and recov-
ered pressure points are nearly coincident, which again
shows that the method appears to be robust for noise
contamination. Figure 7 shows the corresponding polar
plot of the velocity profile of Fig. 5. The solid curve in
Fig. 7 is for the near field (r = 0.0975 m) and the dotted
curve for the far field (r = 1 m).
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FIG. 5. (Color online) Input profile W) /(K +1) (K = 2
and 0y = w/4) of Eq. (52) using Eq. (40) directly (solid curve)
together with the reconstructed profiles W) without noise
(dotted curve) and with noise added to the pressure points p;
(dashed-dotted curve). The (noiseless) reconstructed profile
(dotted curve) coincides with the input profile (solid curve).
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FIG. 6. (Color online) (a) Pressure points at various angles
and distances vs. index 4, using Eq. (51) and ¢ = j3 + (j2 —
1)Js + (j1 — 1)J2Js, with the pressure points |p;| without
noise (filled circles), pressure points |p;| with noise (squares),
and recovered pressure points (45° rotated squares). The
noiseless and recovered pressure points are nearly coinci-
dent. (b) enlarged portion of (a) from 90 < ¢ < 110, and
0.6 < log(|p|) < 1.3

FIG. 7. (Color online) Polar plots (10 dB/div.) in the near
field (solid curve, 7 = 0.0975 m) and in the far field (dotted
curve, r = 1 m), corresponding to the parameters of the sim-
ulation example and the velocity profile of Fig. 5. All curves
are normalized such that the SPL is 0 dB at 6=0.

VIl. EXTENSION TO NON-AXIALLY SYMMETRIC
PROFILES

Loudspeaker membranes vibrate mainly in a radially
symmetric fashion, in particular at low frequencies. At
higher frequencies, break-up behavior can occur, and
then it may be necessary to consider non-radially sym-
metric profiles. In the present context, where a loud-
speaker is modeled as consisting of a rigid spherical cab-
inet with a resilient spherical cap, this requires consider-
ation of non-axially symmetric velocity profiles V (6, ¢)
and W (6, ) on Sp. Thus, the general formula in Eq. (5)
has to be considered now. The methodology of this paper
is extended to this situation by considering the expansion
on the disk 0 < p<1,0< ¢ < 2m,

W (2arcsin(sop, ¢)) =

= = |ml ml ;
m
wo Y Za\m|+zsR|m|+2s(P)€ “,

m=—o0 s=0

(55)

with the general polynomials R}"(p) given by Eq. (23).
This then leads to a series expansion for the pressure p
of the form

p(T, g, (,0)) =

—ipcwg Y. > a:ZstTmS(T’e"p) )

m=—o00 s=0

(56)

where

S |m| hiE (kr)
Tins(r,0,¢) = n;:ml QunsPn " (cos 0) n? (kR) (57)

and where the quantities @),,,s are to be discussed be-
low. The formula in Eq. (56) can be used for forward
computation, when the profile W and its expansion co-
efficients a\%l 4o, are known, as well as for solving the
inverse problem in which the profile W is estimated via

Sound radiation from a spherical cap 9



its expansion coefficients from measured pressure data
around the sphere r = R.

The Qmns in Eq. (57) are obtained by inserting the ex-
pansion in Eq. (55) into the integral expression in Eq. (5)
for Wi, Upon integration over ¢, this yields

Quins = 4(n +1/2)s3tfmlhalel (58)
where
m 1 m m
W=y P =283 R L (ppdp . (59)

The evaluation of the J-integrals is still feasible in semi-
analytic form using the general scaling result in Eq. (29),
but is quite a bit more complicated than in the case that
m = 0. This is due to the fact that P™(1 —2z?) is given
by the complicated expression

Pr(1 — 2¢2) = Lkmllpm (g _ g2ym/2 plmom) ( _ 9,2y
(60)
with Pj(a,ﬁ) the general Jacobi polynomials. Therefore,

the evaluation of the Ji! as R!2I+25

function PJLml (1 — 2s3p?) requires dedicated results from
the theory of polynomial expansions. This is outside the
scope of the present paper.

-coefficients of the

VIIl. DISCUSSION AND OUTLOOK

In this paper the foundation is laid for a method to
perform forward and inverse sound pressure computa-
tions for a spherical cap on an otherwise rigid sphere
with a non-uniform velocity profile. This method nat-
urally applies to spherically shaped loudspeakers, but it
appears that even non-spherical loudspeakers with a cone
shaped driver have polar responses that resemble quite
well the polar responses produced by the spherical model
for frequencies from low frequencies to well over 10 kHz.
Thus the spherical model can be used more generally to
predict loudspeaker behavior and for loudspeaker design
purposes. In the forward problem, the velocity profile is
assumed to be known and the sound pressure is expressed
in the whole space on and outside the sphere as a series
involving the special functions Sy of Eq. (22), with coeffi-
cients uy the expansion coefficients of the velocity profile
warped as in Eq. (16) and (17). This yields a versatile
tool, both for the forward problem of computing p from
the velocity profile and for the inverse problem. In the
inverse problem, the velocity profile is unknown and is
estimated in terms of Zernike expansion coefficients from
pressure data measured around the sphere by adopting
a matching approach based on the series solution just
mentioned for the pressure. Well-behaved velocity pro-
files are already adequately represented by only a few
terms of their Zernike expansion. Therefore, the Zernike
series approach is convenient for both the forward prob-
lems and the inverse problem.

The inverse procedure has not been fully worked out
in the present paper due to a variety of practical issues
that need to be addressed. Among these practical issues
are

e choice of the measurement points,
e condition of the linear systems that arise,

e influence of wave number k, radius R and aperture
angle 26,

¢ influence of noise,

e influence of misalignment of the measurement
points, for instance, due to wrong choice of origin,

e influence of inclination of the axis,
e incorrect setting of the radius of the radiator,

while various combinations of these issues should also be
considered. The authors intend to work out the method
for the loudspeaker assessment with attention for the
above mentioned points.

In the present paper we have considered only the pres-
sure in the field. However, having the required field point
pressure in analytical form, various acoustical quantities
become available in an analytical form. In investigations
that are carried out presently, a remarkable resemblance
is seen between measured quantities—like baffle-step re-
sponse, sound power, directivity, and acoustic center—
from the loudspeaker of Fig. 2-a and the corresponding
quantities computed using the spherical model.

There are presently available numerical methods that
can be used both for the forward problem, for instance,
Boundary Element Methods (BEM)?®, and for the in-
verse problem, for instance, Near-field Acoustic Hologra-
phy (NAH)?°. These methods can be deployed in case of
general geometries and yield the pressure with arbitrary
accuracy. However, for a general understanding and to
get a feeling for the influence of the various parameters
on both the pressure and associated quantities, the avail-
ability of a simple analytic, in certain respects adequate
model, as the one that we have here, is of complementary
value.

IX. CONCLUSIONS

Appropriately warped Legendre polynomials provide
an efficient and robust method to describe velocity pro-
files of a resilient spherical cap on a rigid sphere. Only
a few coefficients are necessary to approximate various
velocity profiles, in particular Stenzel profiles. The polar
plot of a rigid spherical cap on a rigid sphere is already
quite similar to that of a real loudspeaker, and is useful
in the full 4n-field. The spherical-cap model yields po-
lar plots that exhibit good full range similarity with the
polar plots from real loudspeakers. It thus outperforms
the more conventional model in which the loudspeaker
is modeled as a rigid piston in an infinite baffle. The
cap model can be used to predict the polar behavior of
a loudspeaker cabinet. The presented method enables
one to solve the inverse problem of calculating the actual
velocity profile of the cap radiator using (measured) on-
and off-axis sound pressure data. This computed velocity
profile allows the extrapolation to far-field loudspeaker
pressure data, including off-axis behavior.
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APPENDIX A: ORTHOGONALITY OF C9,

From the definition in Eq. (15) and orthogonality of
the RY, as in Eq. (14) it follows that

0
/ C2,(0)C0, (6) sin 0 do —

sin =6 sin 16 1 1
RS Ry, | —2— | sin =0 d(sin =) =
/ (sm 190) 2k (Sin ;90) ) (sin 2 )

25gk 52
204170

(A1)

Here sy = sin 16, as in Eq. (16) and the substitution
p = sy sinif has been used so that Eq. (14) can be
applied.

APPENDIX B: LARGE n BEHAVIOR OF THE TERMS IN
EQ.(36)

The large-n behavior of the terms in Eq. (35) is deter-
mined by the large-n behavior of the three factors

R¥+1L (s P,(cosf), ————" .
2n— 1( 0))7 ( ) h7(12) (kR)
(B1)
Here sy = sin %90, r > R, and £ is assumed to be fixed.
It follows from the definition of R} in Eq. (23) and
Ref.34 (Thm. 8.21.12) that

so(R3nt 4 (s0) — B3t (s0)) =
(71) - (590tan%90)1/2~
{0nt1J2e11((n + 1)00) + dn 241 (n0)}

so (R34 (s0)

(B2)

with absolute error of the order 6, L/2,-3/2 Here Jopyq is
the Bessel function of the first kmd and of order 2¢ + 1,
and 0 < 6, dp+1 < 1. It is assumed here that 6, € (0, )
is not close to m. When 6y is also not close to 0, it
follows from the asymptotics of Josr1(2) as z — oo, see
Ref.30 (Ch. 9) that

1
vn+1

as n — oo, with constant implied by the O-symbol of
order unity.

0)) = O( ) (B3

so(R3h (s0) — Ry, (s

Next, by Ref.34 (Thm. 8.21.6)

6 \1/2
Py (cos ) = (@) Jo((n+1/2))  (B4)
as n — oo, with absolute error of the order %/2n—3/2,
Here 6 € (0,7) is not close to w.  Using that
P, (cos(m — 6)) = (—1)"P,(cosb), it is concluded from
|Jo(2)] <1 and the asymptotics of Jo(z) as z — oo, see
Ref.30 (Ch. 9), that

1
vn+1

as n — oo and where 0 € [0, 7] is arbitrary and 6 € (0, )

is away from 0 and 7, respectively. The constants implied

by the O-symbols in Eq. (B5) are of the order unity.
Finally, from Ref.30 (Ch. 10),

P,(cosf) = O(1) and O

) (B5)

Wi (z) = ir 2

, (B6)
h,(f) (Z) _ (271—1)

—(n+ 1=l

as n — oo, with relative errors of the order 2%/4n. Thus

hf)(kr) _ —kR (E)nnLl

= B
hﬁf)'(kR) n+1 (B7)

as n — 0o, with relative error of the order (kr)?/4n when
r> R.

From Egs. (B3), (B5) and (B7) the claims on the order
of magnitude of the terms in Eq. (35) for large n and fixed
¢ follow.

APPENDIX C: COMPUTATION OF R WITH LARGE n

The R"(p) are polynomials in p of degree n, given
explicitly as

R (o i(n—s)( )12,

s=0

(C1)

where p = %(n — m). This explicit form is for some

software awkward to use in computations for large n:
when m = 0, n = 40, loss-of-digits occurs in 15 decimal
places. Form =0, 1, --- fixed, and M =0, 1, --- fixed,
the R} can be computed for n = m, m+2, ,m—+2M
in the form of a DCT (Discrete Cosine Transform) as3®

N-1
1 2k 2mmk
Z Un( pcosi)cos UM , 0<p<1,
= N
(C2)
where U, is the Chebyshev polynomial of degree n and
of the second kind, and N is any integer > 2(m + M).
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