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ABSTRACT
Wireless networks equipped with the CSMA protocol are
subject to collisions due to interference. For a given in-
terference range we investigate the tradeoff between colli-
sions (hidden nodes) and unused capacity (exposed nodes).
We determine the optimal sensing range that maximizes
throughput and critically depends on the activation rate of
nodes. For infinite line networks, we prove the existence of
a threshold: When the activation rate is below this thresh-
old the optimal sensing range is small (to maximize spatial
reuse). When the activation rate is above the threshold the
optimal sensing range is just large enough to preclude all
collisions. Simulations suggest that this threshold policy ex-
tends to more complex linear and non-linear topologies.
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1. INTRODUCTION
Carrier sense multiple-access (CSMA) type protocols form
a popular class of medium access protocols for wireless net-
works. The first CSMA protocol was introduced by Klein-
rock and Tobagi [10] in 1975, and has seen many incarna-
tions since, including the widely used 802.11 standard. In
this paper we provide an asymptotic analysis of large wire-
less networks operating under CSMA, in the presence of col-
lisions.

CSMA is a randomized protocol that allows individual nodes

to access the medium in a distributed manner. The absence
of a centralized scheduler creates more flexibility and allows
for the deployment of larger networks. An early example
of such a randomized procedure is the ALOHA protocol [1],
which forces nodes to wait for some random backoff period
before starting a transmission, in order to reduce the like-
lihood of nearby nodes transmitting simultaneously. The
latter event would cause the signals to interfere with each
other, and may result in a collision that renders the trans-
missions useless. CSMA improves upon ALOHA by letting
nodes sense their surroundings to detect the presence of
other transmitting nodes. If a node detects at least one
active (i.e. transmitting) node within its sensing range, its
backoff timer is frozen, deferring the countdown until the
channel is sensed clear. Using this mechanism, collisions
can be further reduced.

A key performance measure in wireless networks is through-
put, which we define as the average number of successful
transmissions per unit of time. Our goal is to investigate
the relation between the sensing range and the throughput.
The effect of the sensing range can be understood as follows.
A small sensing range allows for more simultaneous trans-
missions, but is less effective in reducing collisions. On the
other hand, a large sensing range admits less transmissions,
but also mitigates interference. The main contribution of
this paper is the examination of this tradeoff in relation to
its effect on the throughput.

The network is fully characterized by the sensing range and
the interference range. A node can only initiate a new
transmission when all nodes within its sensing range are in-
active, and this transmission is successful when all nodes
within the interference range of the destination node are
inactive, and fails otherwise. The network performance suf-
fers from two complementary issues: hidden nodes and ex-
posed nodes (see [15]). Hidden nodes are nodes located out-
side of the sensing range and therefore not detected by the
carrier-sensing mechanism, that may cause collisions at the
receivers end. Exposed nodes are nodes that are unnecessar-
ily silenced by CSMA, as they would not interfere with the
transmission that triggered the carrier-sensing mechanism.
As the sensing range grows, the number of hidden nodes
decreases, and the number of exposed nodes increases. In
recent years the carrier-sensing tradeoff between hidden and
exposed nodes has received much attention [11, 12, 18, 20].
Most of these analytic studies make the assumption that the
activity of nodes and their backoff processes are indepen-



dent, which greatly simplifies the analysis. The interaction
between nodes, however, should be taken into account, as it
is characteristic for the distributed control and has a large
impact on the performance of the network. We do take into
account this interaction, by keeping track of the activity of
nodes over time. The classical model for such interaction in
wireless networks is the one developed in Boorstyn and Ker-
shenbaum [4]. This model has been used in recent years to
study throughput-optimality [14] and fairness [7, 8, 17, 16]
in a setting without collisions. The stability region for large
wireless networks with collisions was investigated in [5].

In the spirit of [4], we model the network as a continuous-
time Markov process with interaction between the nodes, so
that nodes within a certain distance of an active node are
silenced, just as in CSMA. Such interaction is referred to
in statistical physics as hard-core interaction. This paper
is part of a larger program to study wireless networks via
hard-core models from statistical physics. Typical for such
models is the existence of a Gibbs measure that describes the
stationary distribution. This Gibbs measure is normalized
by the partition function, which involves a computationally
cumbersome summation over all possible configurations. A
substantial ingredient of this paper is to characterize and
approximate the partition function. We shall consider the
network, and thus the partition function, in the asymptotic
regime where the number of nodes in the network tends to
infinity. For such infinite line networks we are able to ob-
tain structural results on the joint effect of hidden nodes and
exposed nodes. We determine analytically the throughput-
optimal sensing range that achieves the best tradeoff be-
tween reducing hidden nodes and preventing exposed nodes.

The remainder of this paper is structured as follows. In Sec-
tion 2 we introduce the model, and derive some auxiliary
results. Section 3 discusses the main results on the carrier-
sensing tradeoff. In Section 4 we perform a detailed study
of the partition function. In Section 5 we validate the an-
alytical results for the line network by simulation, and we
investigate networks with more general topologies.

2. MODEL DESCRIPTION
We consider a linear array of 2n + 1 nodes, and we denote
the set of all nodes by N = {−n, . . . , n}. Whenever a node
activates, it transmits a single packet to a neighboring node.
With probability γ, the packet is intended for its right neigh-
bor, and with probability 1 − γ for its left neighbor. To ac-
commodate this, we introduce (pure destination) nodes n+1
and −(n + 1), which receive packets, but do not transmit
any packets themselves. We assume all nodes to have the
same sensing range β, so that node v has its backoff timer
frozen as long as at least one node w for which |v − w| ≤ β
is active (i.e. transmitting), in which case we say that node
v is blocked by node w.

We assume that all nodes are saturated, meaning that they
have an infinite supply of packets available. The duration of
the backoff period is assumed to be exponentially distributed
with mean 1/σ. Transmissions last for an exponentially dis-
tributed duration with unit mean. Under these assumptions,
the (2n + 1)-dimensional process that describes the activity
of nodes is a continuous-time Markov process. Each state of

the Markov process is described by

ω = (ω−n, . . . , ωn) ∈ {0, 1}2n+1, (1)

where ωv = 1 when node v is active, and ωv = 0 otherwise.
Let Ω ⊆ {0, 1}2n+1 be the set of all feasible states. Here
we call ω feasible if no two 1’s in ω are β positions or less
apart, i.e., ωvωw = 0 if 1 ≤ |v − w| ≤ β. Let ev denote
the vector with all zeros, except for a 1 at position v. The
Markov process that describes the activity of nodes is then
fully specified by the state space Ω and the transition rates

r(ω,ω′) =







σ if ω′ = ω + ev,
1 if ω′ = ω − ev,
0 otherwise.

(2)

It is well known that this is a reversible Markov process (see
[4, 13]) with limiting distribution

π(ω) =

{

Z−1
2n+1

∏2n+1
v=1 σωv if ω is feasible,

0 otherwise,
(3)

with Z2n+1 the partition function or normalization constant
of the probability distribution π. The partition function can
be defined recursively as (see [4, 13])

Zi =

{

1 + iσ i = 0, 1, . . . , β + 1,
Zi−1 + σZi−β−1 i ≥ β + 2.

(4)

The sequence (Zi)
∞
i=0 is well studied. In fact, for a network

with i nodes, Zi represents the partition function, defined
as the summation of probability over all possible states.
Straightforward calculations show that the the generating
function GZ(x) of Zi can be written as (see e.g. Pinksy and
Yemini [13])

GZ(x) =

∞
∑

i=1

Zix
i =

x − 1 + σxβ+1 − σx

(x − 1)(1 − x − σxβ+1)
. (5)

Let λ0, . . . , λβ denote the β + 1 roots of

λβ+1 − λβ − σ = 0. (6)

Applying partial fraction expansion to (5) yields the follow-
ing result (proved in Section 6):

Proposition 1. The partition function Zi is given by

Zi =

β
∑

j=0

cjλ
i
j , i = 0, 1, . . . , (7)

where λj are the roots of (6), and

cj =
λβ+1

j

(β + 1)λj − β
. (8)

To model interference, we introduce an interference range η.
A transmission succeeds if and only if at the start of this
transmission no nodes within distance η of the receiving
node are already active. This type of interference is referred
to in the literature as the perfect capture collision model [4].
Note that neither (2) nor (3) depends on η, as collisions
have no impact on the dynamics of the system. Using the
sensing range β and interference range η we can define for-
mally hidden nodes and exposed nodes. Denote by Hr (Hl)
the set of hidden nodes due to transmissions from node 0
to node 1 (node -1): all nodes outside the sensing range of



0, but within the interference range of the receiving node 1.
By Er (El) we denote the set of nodes to which this transmis-
sion is exposed, so all nodes within the sensing range of 0,
but outside the interference range of the receiving node. For
completeness we let Br (Bl) denote the set of all remaining
nodes that block transmissions from node 0 to 1 (−1). This
yields:

Hr = {v ∈ N | |v| ≥ β + 1, |v − 1| ≤ η},
Hl = {v ∈ N | |v| ≥ β + 1, |v + 1| ≤ η},
Er = {v ∈ N | |v| ≤ β, |v − 1| ≥ η + 1},
El = {v ∈ N | |v| ≤ β, |v + 1| ≥ η + 1},
Br = {v ∈ N | |v| ≤ β, |v − 1| ≤ η},
Bl = {v ∈ N | |v| ≤ β, |v + 1| ≤ η}.

An example is given in Figure 1(a). Node 3 is a hidden node,
as it interferes with the transmission from node 0 to node 1
(η = 2) despite the carrier-sensing mechanism (β = 1). In
Figure 1(b) node 0 is an exposed node because it would not
interfere (η = 2) with the transmission from node 2 to node 3
and is therefore unnecessarily silenced by the carrier-sensing
mechanism (β = 2).

-1 0 1 2 3 4

β
η

(a) Node 3 is a hidden node, and
may interfere with the transmission
between nodes 0 and 1.

-2 -1 0 1 2 3

βη

(b) Node 0 is an exposed node, unnecessarily
silenced by the transmission between nodes 2
and 3.

Figure 1: Examples of hidden and exposed nodes.

We focus on node 0 (the node in the middle of the network)
and in particular its throughput θn(β, η, σ) defined as the
average number of successful transmissions per unit of time.

Proposition 2. The throughput of node 0 is given by

θn(β, η, σ) = σ
Zn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
. (9)

Proof. Denote by θr (θl) the rate of successful transmis-
sion of node 0 to node 1 (node -1), so θn(β, η, σ) = θr + θl.
The activation attempts to node 1 (node -1) occur accord-
ing to a Poisson process with rate σγ (σ(1 − γ)). We first
consider activation attempts to node 1. Whether or not an
activation attempt is successful depends on the state of the
system. Define

A1 = {ω ∈ Ω | ∃v ∈ Br ∪ Er : ωv = 1},
A2 = {ω ∈ Ω | ∀v ∈ Br ∪ Er : ωv = 0, ∃v ∈ Hr : ωv = 1},
A3 = {ω ∈ Ω | ∀v ∈ Br ∪ Er ∪ Hr : ωv = 0}.

When the system is in state ω ∈ A1, the attempt is blocked
and node 0 remains in its current state. When the system
is in a state ω ∈ A2, node 0 is not blocked so it activates.
However, at least one hidden node is active so the trans-
mission fails does not contribute to the throughput. When
the system in in state ω ∈ A3, the perfect capture assump-
tion guarantees a successful transmission. It follows from the
PASTA property (cf. [2]) that the probability of an arbitrary
activation attempt resulting in a successful transmission is
equal to the limiting probability of the system being in a
state ω ∈ A3,

∑

ω∈A3
π(ω). So the rate of successful trans-

missions initialized (and thus the throughput) is given by

θr = σγ
∑

ω∈A3

π(ω). (10)

From the definitions of Br, Er and Hr we see that

A3 = {ω ∈ Ω | ∀v ∈ (D1 ∪ D2)
c : ωv = 0}, (11)

where

D1 = {−n, . . . ,−max{β, η − 1} − 1},
D2 = {max{β, η + 1} + 1, . . . , n}. (12)

Let ZD denote the partition function for a subset of nodes
D ⊆ N . Then

θr = σγ
ZD1∪D2

ZN
. (13)

The model on the line has the property that by conditioning
on the activity of one of the nodes, its state space can be
decomposed, leading to two smaller instances of the same
model on the line. In particular, we know that ZD1∪D2

=
ZD1

ZD2
(see [4, Equation (15)]), so that

θr = σγ
ZD1

ZD2

ZN

= σγ
Zn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
, (14)

where Zi := Z{−n,−n+i−1} denotes the partition function of
a network with i consecutive nodes on a line. Similarly,

θl = σ(1 − γ)
Zn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
. (15)

and (9) follows.

3. MAIN RESULTS
Our principal aim is to choose the sensing range β so that
throughput θn(β, η, σ) is maximized. Define

β∗
n = argmax

β
θn(β, η, σ). (16)



Determining β∗
n corresponds to quantifying and optimizing

the tradeoff between preventing collisions through interfer-
ence (preventing hidden nodes by setting β large) and al-
lowing harmless transmissions (preventing exposed nodes by
setting β small). We want to obtain structural insights in
how to choose β∗

n, and for this purpose the expressions for
Zi in (7) and θn(β, η, σ) in (9) are too cumbersome. There-
fore, we investigate the throughput in the regime where the
network becomes large (n → ∞), so that (9) simplifies con-
siderably, allowing for more explicit analysis. The analytic
results that we obtain for the infinite network provide re-
markably sharp approximations for the finite network; see
Section 5.1. All proofs that are not given in this section are
provided in Section 6.

We start by presenting the limiting expression for θn(β, η, σ)
as the size of network becomes infinite:

Proposition 3. Let λ0 denote the unique positive real
root of (6). Then

θ(β, η, σ) = lim
n→∞

θn(β, η, σ) = σ
λ

β−f(β)
0

(β + 1)λ0 − β
, (17)

where

f(β) =







2η if 0 ≤ β ≤ η − 1,
η + β + 1 if η − 1 ≤ β ≤ η + 1,
2β if β ≥ η + 1.

(18)

Proof. From Rouché’s theorem (see De Bruijn [6]) it
readily follows that λ0 > |λj | for j = 1, . . . , β, and so from
(7) we get

Zi = c0λ
i
0 (1 + o(1)) , i → ∞, (19)

and hence

lim
n→∞

θn(β, η, σ) = lim
n→∞

σ
c0λ

n−max{β,η−1}
0 c0λ

n−max{β,η+1}
0

c0λ
2n+1
0

= σc0λ
−max{β,η−1}−max{β,η+1}−1
0 ,

which yields (18).

Now that we have the limiting expression for the throughput
in (17) we opt for an asymptotic analysis. That is, instead
of searching for β∗

n, we shall search for its asymptotic coun-
terpart

β∗ = argmax
β

θ(β, η, σ), (20)

where we henceforth consider θ as a continuous function of β.
In Section 5.1 we show that the errors |θn − θ| and |β∗

n −β∗|
become small, already for moderate values of n. Because
we consider from here onwards an infinite line of nodes, all
nodes have the same number of nodes within their sensing
range. This removes all boundary effects, and all nodes have
the same throughput, which is why just investigating node 0
is sufficient to investigate the entire network.

Proposition 4. β∗ ∈ [η − 1, η + 1].

The result of Proposition 4 can be understood as follows.
By increasing β beyond η + 1, no additional collisions are
prevented, but an increasing number of nodes is silenced.
On the other hand, the nodes that become unblocked when
decreasing β below η − 1, cause collisions when activated.
Note that for all values β ∈ [η − 1, η + 1], we can rewrite
(17) as

θ(β, η, σ) = g(β) · (λ0(β))β−η−1

β + 1
(21)

with

g(β) =
λ0(β) − 1

λ0(β) − β
β+1

→ 1, β → ∞. (22)

We are now in the position to present our main result. While
we already know that the optimal sensing range is contained
in the interval [η − 1, η + 1], we shall be more specific.

Theorem 1. There exists a threshold interval [σmin, σmax]
such that

β∗ =

{

η − 1 if σ ≤ σmin,
η + 1 if σ ≥ σmax,

(23)

and β∗ ∈ (η − 1, η + 1) if σ ∈ (σmin, σmax).

The proof of Theorem 1 follows from a detailed study of
θ(β, η, σ) which involves implicit differentiation with respect
to β (since λ0(β) is defined implicitly).

Theorem 1 can be interpreted as follows (see Figure 2).
When the nodes are aggressive (σ large) nodes activate very
quickly after finishing their previous transmissions. In the
language of statistical physics, the system temperature de-
creases, and the system typically gets stuck in maximal in-
dependent sets of active nodes (the configurations with the
highest energy level). When the system is in a maximal inde-
pendent set, and if collisions are not ruled out, an activating
node suffers a collision almost surely. This explains why for
σ large, the optimal sensing range is β = η + 1, preventing
collisions completely. On the other hand, when nodes are
not aggressive (σ small) collisions become rare, as few nodes
are active simultaneously. In this case, throughput is best
served by increasing the spatial reuse, that is, decreasing the
sensing range. This explains the result of Theorem 1 for σ
small.

σσmin σmax

β∗

η − 1

η + 1

Figure 2: The optimal range β∗ plotted as a function
of σ.

Note that Theorem 1 does not give the exact value for β∗

for σ ∈ (σmin, σmax). We shall not pursue this further. In-



stead, we prove in our next result that the threshold interval
[σmin, σmax] is small. Introduce the constant τ = (

√
5−1)/2.

Theorem 2. Let κ = τ
η+1

. The threshold interval is
bounded as

[σmin, σmax] ⊆ [κ(1 + κ)η−1, κ(1 + κ)η+1]. (24)

The bounds in (24) for σmin and σmax are sharp; see Sec-
tion 5.1 for an example.

Proposition 5. The length of the threshold interval is
asymptotically given as

σmax − σmin ∼ 2eτ

7 + 4τ

(

1

η + 1

)2

as η → ∞. (25)

Here we say that f(η) ∼ g(η) if f(η)/g(η) → 1 as η → ∞.
From Proposition 5 we see that the length of the threshold
interval is O(η−2). Therefore, the interval length decreases
rapidly as a function of η, and we can speak of an almost
immediate jump from one regime (β∗ = η − 1) to the other
(β∗ = η + 1).

3.1 Throughput limiting behavior
We now consider some limiting regimes for which we can
make more explicit statements about the throughput. From
Theorem 2 we can already see that the threshold interval
moves in the direction of zero as η becomes large, which
implies that the β∗ = η + 1 already for small values of σ.
The next result shows that in the regime where η becomes
large, the maximum throughput tends to zero.

Proposition 6. Let σ > 0 be fixed. As η → ∞,

max
β

θ(β, η, σ) =
1

η + 2

(

1 + O
(

1

ln(η + 1)

))

. (26)

For β ≥ η+1 our model reduces to a model without collisions
that was studied extensively in [4, 13, 3, 19, 9, 16]. In
particular, one immediately obtains from (17) the following
result:

Corollary 1. Let β ≥ η + 1. Then

θ(β, η, σ) = σ
λ−β

0

(β + 1)λ0 − β
. (27)

This result was also derived in [13, 3, 19, 9]. On inspection of
(27) we see that the throughput is approximately 1

β+1
when

either σ or β is large. This can be understood as follows.
For large σ, the high activity rate allows for configurations
close to the maximal independent: a configuration in which
one out of every β + 1 nodes in active. For β large, when
a node deactivates a large number of neighboring nodes be-
come eligible for activation. The time until the first such
node activates goes to 0 when β increases.

Corollary 2. Let β ≤ η. Then

lim
σ→∞

θn(β, η, σ) = 0. (28)

Proof. From (39) it follows that

λ0(σ) = σ
1

1+β + O(1), σ → ∞. (29)

Substituting (29) into the throughput (17), and using that
f(β) > 2β when β ≤ η, yields

θn(β, η, σ) =
σ(σ

1
1+β + O(1))β−f(β)

(β + 1)(σ
1

1+β + O(1)) − β
→ 0, (σ → ∞),

(30)
which gives (28).

Figure 3 shows the throughput plotted against the activity
rate σ for η = 7 and various values of β. Clearly, when
β ≤ η, the throughput gradually drops to 0, whereas for
β ≥ η + 1, the throughput approaches the limit 1/(β + 1).
This confirms Corollaries 1 and 2.

Figure 3: The throughput θ(β, η, σ) plotted against σ
for η = 7 and various values of β.

4. PARTITION FUNCTION ROOTS
In this section we study the roots λ0, . . . , λβ of (6) in more
detail. In particular, we derive exact infinite-series expres-
sions for the roots that are used in this paper both for nu-
merical purposes (in Section 5) and to prove Corollary 2.
Our main tool will be Lagrange inversion (see [6]), and de-
pending on the value of σ, this gives two different infinite-
series expressions. Let (x)n = Γ(x + n)/Γ(x) denote the
Pochhammer symbol.

Proposition 7. For small σ > 0,

λ0(σ) = 1 +
∞
∑

l=1

(−1)l−1(βl)l−1

l!
σl, (31)

λj(σ) =

∞
∑

l=1

(l/β)l−1

l!
wl

j , j = 1, 2, . . . , β, (32)

where wj = σ1/βe2πı(j−1/2)/β . The series expansions in (31)
and (32) converge for

0 ≤ σ ≤ ββ

(β + 1)β+1
=: ξ(β), (33)

and diverge otherwise.



Proof. We first consider the case j = 0. Set µ0 = λ0−1,
so µ0 satisfies µ0(1+µ0)

β = σ. Hence for small values of |σ|
we have

µ0 =
∞
∑

l=1

1

l!

(

d

dµ

)l−1
[

(

µ

µ(1 + µ)β

)l
]

µ=0

σl

=

∞
∑

l=1

(−1)l−1(βl)l−1

l!
σl. (34)

Next we consider the case that j = 1, . . . , β. We now write
(6) as

λβ(1 − λ) = −σ, λ(1 − λ)1/β = wj , (35)

where

wj = σ1/βe2πı(j−1/2)/β . (36)

Now we get for |wj | sufficiently small

λj =

∞
∑

l=1

1

l!

(

d

dλ

)l−1
[

(

λ

λ(1 − λ)1/β

)l
]

λ=0

wl
j

=

∞
∑

l=1

(l/β)l−1

l!
wl

j . (37)

The radii of convergence of the series in (34) and (37) are
easily obtained from the asymptotics

Γ(x + 1) = xx+1/2e−x
√

2π(1 + O(x−1), x → ∞, (38)

of the Γ-function, used to examine the Pochhammer quan-
tities (x)n = Γ(x + n)/Γ(x) and the factorials l! = Γ(l + 1)
that occur in both series. This yields the result that both
series converge when |σ| ≤ ξ(β) and diverge for |σ| > ξ(β).

When |σ| = ξ(β) the terms in either series are O(l−3/2).

Proposition 8. For large σ > 0,

λj(σ)−1 =
∞
∑

l=1

(

−l
β+1

)

l−1

l!
v−l

j , (39)

where vj = σ1/(β+1)e2πıj/(β+1). The series expansion in (39)
converges for

σ ≥ ξ(β), (40)

and diverges otherwise.

Proof. We can treat the cases j = 0 and j = 1, . . . , β
simultaneously now. We write (6) in the form

1

λ

(

1 − 1

λ

)
−1

β+1

=

(

1

σ

) 1
β+1

= v−1, (41)

where we let

v−1 = v−1
j =

(

1

σ

) 1
β+1

e−2πı j
β+1 , j = 0, 1, . . . , β (42)

with σ
− 1

β+1 > 0 in (42). We get for sufficiently large σ that

(letting u = 1/λ)

1

λj
=

∞
∑

l=1

1

l!

(

d

du

)l−1
[

(

u

u(1 − u)−1/(β+1)

)l
]

u=0

v−l
j

=
∞
∑

l=1

( −l

β + 1

)

l−1

v−l
j

l!
. (43)

The Pochhammer quantity ( −l
β+1

)l−1 vanishes if and only if
l = 1, 2, . . . is a multiple of β +1. The radius of convergence
of the series in (43) is again determined by the asymptotics
of the Γ-function in (38). Here it must also be used that

Γ(−J) =
−1

Γ(J + 1)

π

sin πJ
, J > 0. (44)

It follows that the series in (43) is convergent when |σ| ≥
ξ(β) and divergent when |σ| < ξ(β). When |σ| = ξ(β) the

terms in the series are O(l−3/2).

Figure 4 shows the roots of (6) drawn in the complex λ-plane
for β = 4. Each line corresponds to a root as a function of σ,
and the dots represent the threshold |σ| = ξ(β). The dashed
curved encircling the origin 0 and the point 1 is the image of
v ∈ C with |v| = σ1/(β+1) under the mapping given by the
inverse of the right-hand side of (39) with vj replaced by v.
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Figure 4: The roots of λβ+1 + λβ = σ as functions of
σ in (31), (32) and (39), for β = 4.

5. DISCUSSION AND OUTLOOK
The distinguishing feature of this paper is the presence of
node interaction when making the tradeoff between hidden
nodes and exposed nodes. In order to get a handle on the
throughput function (and hence the partition function) we
studied the wireless network in the asymptotic regime on
the infinitely many nodes. This resulted in a tractable lim-
iting expression for the throughput of node zero (and hence
any other node) that allowed us to prove the following two
results:

(i) To optimize the throughput, one should always choose a
sensing range β that is close to the interference range η, and



in fact the optimal sensing range is contained in the interval
[η − 1, η + 1] (see Proposition 4).

(ii) The sensing range β∗ that optimizes the throughput
equals η − 1 for less aggressive systems (small σ) and η + 1
for aggressive systems (large σ). In fact, we were able to
show the existence of a threshold interval for σ that dis-
tinguishes these two regimes (Theorem 1). This important
result provides (partial) justification for the frequently made
assumption that no collisions occur. Indeed, one key take
away is that if σ is large enough, ruling out all collisions by
setting β = η + 1 is optimal.

We have further shown that the threshold interval is in many
cases small, which implies that one can speak of an almost
immediate jump from one regime (β∗ = η − 1) to the other
(β∗ = η + 1). We have argued that indeed, when the ag-
gressiveness of the system is large enough, say σ larger than
some value σ∗, the system no longer gains from the potential
benefits of more flexibility (small β), and just settles for the
situation with no collisions.

We shall now discuss two remaining issues. In Section 5.1
we investigate to what extent the asymptotic results give
accurate predictions for finite line networks. In Section 5.2
we investigate whether the notions of two regimes and a
critical threshold carry over to more general topologies.

5.1 Finite versus infinite line networks
We shall now look at the approximation error |θn−θ| and the
resulting error in the optimal sensing range. To investigate
the error we plot θn and θ in Figure 5, represented by the
dashed line and the solid line, respectively. All results for θn

were obtained by using (9) in combination with the infinite-
series expressions for the roots in Section 4.

We take n = 100 (i.e., 201 nodes), η = 4, and we let β
increase from 1 to 100. In Figure 5(a) σ = 0.25, and in
Figure 5(b) σ = 5. For β small the error |θn(β) − θ(β)| is
negligible, but the error increases as β increases. This can be
explained by the observation that for larger β, the number
of roots of (6) increases, as does the number of roots dis-
carded by the approximation. This phenomenon becomes
more pronounced for larger values of σ. The non-monotone
behavior of θn is caused by the fact that for finite n, the sys-
tem is directed to maximal independent sets of active nodes,
in particular for σ large, and these sets change dramatically
with β. The most important observation is that the error
|θn − θ| is small for those values of β that lead to a large
throughput. Figure 6 is similar to Figure 5, but instead of
fixing n and varying β, we set β = 16 and vary n. In Fig-
ure 6(a) we take σ = 0.2 and in Figure 6(b) we take σ = 5.
The quality of the approximation increases with n.

Figure 7 shows the optimal sensing range plotted against σ,
for η = 5. Each of the Figures 7(a)-7(d) shows the optimal
range β∗

n(σ) for finite n. We take η = 5 for all figures, and let
σ increase from 0.15 to 0.19. The vertical lines indicate the
bounds on the threshold interval from Theorem 2, and we see
that these bounds are sharp. The optimal sensing range β∗

for n → ∞ behaves as predicted by Theorem 1, jumping
from η − 1 before the threshold interval, to η + 1 after this
interval, and β∗

n shows a similar pattern. We conclude that
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(a) σ = 0.25.
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Figure 5: The throughput θn (dashed) and θ (solid)
plotted against β (with n = 100).
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(a) σ = 0.2.
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Figure 6: The throughput θn (dashed) and θ (solid),
plotted against n (with β = 16).

n = ∞ provides a good approximation for the behavior of
finite-sized networks, already for small and moderate values
of n
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(a) n = 15.
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(d) n = 30.

Figure 7: The optimal sensing range β∗
n (dashed)

and β∗ (solid) plotted against σ around the threshold
interval for various values of n.

5.2 General topologies
To investigate more general topologies, we first need a more
elaborate description of the model. In addition to nodes,
we introduce directed links between nodes that represent
the possibility of transmissions taking place between these
nodes. For two nodes to be able to transmit data, we require
them to be within (Euclidian) distance m of each other. We
assume links are formed between all nodes within distance
m. Each node has activation rate σ, and the destination of
a transmission is chosen uniformly from all links originating



from the activating node. The blocking range and inter-
ference range are also defined according to the Euclidian
distance.

First we consider 16 nodes placed on a 4 × 4 grid at unit
distance from each other. The grid is wrapped around (the
top is connected to the bottom, and the left side to the right
side) so the network is fully symmetric and all nodes have the
same environment (and the same throughput), eliminating
boundary effects. We set m = 1 and construct links between
neighboring nodes (see Figure 8(a)). We take η = 1 and
β = 0, 1, 1.5, 2.

Figure 8(b) shows the average per-node throughput plotted
against σ. For σ small we see that β = 0 (i.e. β = η −m) is
throughput-optimal, and for σ large it turns out β = 2 (β =
η + m) is optimal. Moreover, when β is such that it allows
collisions (β < 2), we see that the throughput decreases
when σ increases, while for β = 2 the throughput approaches
a non-zero limiting value for large σ.

(a) 16 nodes on a 4×
4 grid.

(b) The throughput θ of an ar-
bitrary node in a grid, plotted
against σ.

Figure 8: A grid network and the corresponding per-
node throughput.

We next show in Figure 9 a randomly generated network
with 16 nodes. The transmission ranges are indicated by
the circles, and links are displayed as lines. We assume a
transmission range of m = 1 and interference range η = 1.6.
Links are formed between all nodes within distance m and
when a node activates it uniformly chooses a node within
distance m as the receiver.

Figure 9: Random network with 16 nodes.

The simulation results are shown in Figure 10. The av-
erage per-node throughput is plotted against σ for β =

Figure 10: The average per-node throughput plot-
ted against σ.

0.2, 0.3, 1, 1.3, 1.5. Figure 10 shows resemblance with Fig-
ure 3 for the infinite line. For β small the throughput
drops as σ increases, as collisions let deteriorate the through-
put. For large β collisions are precluded, and the average
throughput stabilizes. Moreover, we see that the optimal
sensing range β∗ again depends on σ. For σ < 0.1 we have
β∗ = 0.3 (this is not visible in the picture), whereas for
σ > 0.1 the optimal sensing range is β∗ = 1.

The tradeoff for individual nodes in an irregular network
is more complicated. Although we see a similar threshold
interval (σmin, σmax) that separates two sensing regimes, the
position of the threshold interval and the optimal sensing
ranges may differ between nodes. This depends on the direct
surroundings of the node, as well as on the entire network
structure.

5.3 Future work
Wireless networks equipped with CSMA on complex topolo-
gies form highly relevant objects for further study. In partic-
ular, we have raised the question whether a threshold inter-
val for the activity rate σ exists, which says that the optimal
sensing ranges equals βL for σ below the interval, and βU

for σ above the interval. For the two examples in Section
5.2 there is indeed such a threshold interval, but a more
thorough study is needed.

Obtaining numerical results for complex topologies with many
nodes is challenging. For one thing, the state space no
longer decomposes (as with the line network), so that the
calculation of the partition function becomes more involved.
In determining the stationary distribution, and hence the
throughput of nodes, the brute-force method would be to
sum over all possible configurations, but that will become
computationally cumbersome, already for moderate instances
of the network. Alternative approaches would be to use limit
theorems, for instance for highly dense networks with many
nodes. We conjecture that in such networks we would again
find a threshold interval that distinguishes two regimes for
the optimal sensing range.

6. REMAINING PROOFS
6.1 Proof of Proposition 1
We write the generating function from (5) as

Z(x, σ) =
P (x)

S(x)
, (45)



where

P (x) = 1 + σ
xβ+1 − x

x − 1
, S(x) = 1 − x − σxβ+1. (46)

It is shown in [13] that the equation S(x) = 0 has β+1 roots
xj , j = 0, 1, . . . , β, and exactly one of them, x0 is real and
positive. To prove Proposition 1 we first need to establish
that these roots are distinct.

Proposition 9. The roots of S(x) = 0 are distinct.

Proof. When S(x) = S′(x) = 0, we have

1 − x − σxβ+1 = 0 = 1 + σ(β + 1)xβ. (47)

This implies that x = 1 + 1
β

> 1 and so that σ = 1−x
xβ+1 < 0.

However, σ was assumed to be non-negative.

Now we proceed with the proof of Proposition 1. Let λj =
1/xj , then λ = λj satisfies (6). Using that all zeros of S are
distinct, we have for Z(x, σ) the partial fraction expansion

Z(x, σ) =

β
∑

j=0

P (xj)

S′(xj)

1

x − xj
. (48)

Now

P (xj)

S′(xj)
=

1 + σ
x

β+1

j
−xj

xj−1

−1 − (β + 1)σxβ
j

=
−x−β

j

1 + (β + 1)xβ
j

=
−x−β

j

1 + (β + 1)
1−xj

xj

=
−λβ

j

(β + 1)λj − β
. (49)

Here it has been used that

1

1 − xj
=

−1

σxβ+1
j

, σxβ
j =

1 − xj

xj
. (50)

Then for |x| < x0 we have

Z(x, σ) =

β
∑

j=0

P (xj)

S′(xj)

∞
∑

i=0

−xi

xi+1
j

(51)

=

∞
∑

i=0

xi

(

β
∑

j=0

λβ+1
j

(β + 1)λj − β
λi

j

)

, (52)

as required.

6.2 Proof of Proposition 4
As introduced earlier,

µ0 = λ0 − 1. (53)

Then µ0 depends on β and σ, we have µ0 > 0, and

µ0(1 + µ0)
β = σ. (54)

By implicit differentiation with respect to β, we get from (54)
that

∂µ0

∂β
=

−µ0(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0
. (55)

In particular, both µ0 and λ0 decrease as a function of β > 0.

Consider the case that 0 ≤ β ≤ η − 1. Using λβ
0 = σ

λ0−1
we

get

θ(β, η, σ) = σ2 λ−2η
0

(λ0 − 1)((β + 1)λ0 − β)

= σ2 λ−2η
0

µ0(1 + µ0 + βµ0)
. (56)

Now λ−2η
0 increases as a function of β, and we shall show

that µ0(1+µ0 +βµ0) decreases in β > 0. We have from (55)
that

∂

∂β
[µ0(1 + µ0 + βµ0)] =

∂

∂β
[βµ2

0 + µ0 + µ2
0]

= µ2
0 −

1 + 2(1 + β)µ0

1 + µ0 + βµ0
µ0(1 + µ0) ln(1 + µ0)

≤ µ0(µ0 − (1 + µ0) ln(1 + µ0)) < 0, (57)

where the last inequality follows from x ln x > x − 1, x > 1.
We conclude that θ increases as a function of β ∈ (0, η − 1].

Next we consider the case that β ≥ η + 1. From λβ
0 = σ

λ0−1
we get

θ(β, η, σ) = σ
λβ

0

(β + 1)λ0 − β
=

λ0 − 1

(β + 1)λ0 − β

=
µ0

1 + µ0 + βµ0
. (58)

Now

∂

∂β

(

µ0

1 + µ0 + βµ0

)

=

∂µ0

∂β
− µ2

0

(1 + µ0 + βµ0)2
< 0, (59)

see (55), as so θ decreases as a function of β ≥ η + 1. Since
θ depends continuously on β > 0, the result follows.

6.3 Proof of Theorem 1
The proof of the result as stated in Theorem 1 requires ex-
panding several other results. We consider β ∈ [η − 1, η + 1]
so that

θ(β, η, σ) = σ
λ−η−1

0

(β + 1)λ0 − β
= σ

(1 + µ0)
η−1

1 + µ0 + βµ0
. (60)

From (55) it follows from a straightforward but somewhat
lengthy computation that

∂

∂β
[θ(β, η, σ)] =

−σµ0(1 + µ0)
−η−1

(1 + µ0 + βµ0)2

×
(

1 − (η + 2 +
β

1 + µ0 + βµ0
) ln(1 + µ0)

)

.

(61)

Let

F (β, σ) = (η + 2 +
β

1 + µ0 + βµ0
) ln(1 + µ0). (62)

Then we have for β ∈ [η − 1, η + 1] that

F (β, σ) > 1 ⇒ θ increases strictly at β, (63)

F (β, σ) < 1 ⇒ θ decreases strictly at β. (64)

We analyze F (β, σ) in some detail, especially for values of
β, σ such that F (β, σ) = 1. We recall here that µ0 =
µ0(β, σ) is a function of β and σ as well.



We fix β > 0, and we compute

∂

∂β
F (β, σ)

=

[

η + 1

µ0 + 1
+

1 + β

1 + µ0 + βµ0
− β(1 + β) ln(1 + µ0)

(1 + µ0 + βµ0)2

]

∂µ0

∂η
.

(65)

We easily get from (54) by implicit differentiation that

∂µ0

∂σ
=

µ0(1 + µ0)

σ(1 + µ0 + βµ0)
> 0. (66)

Furthermore, it is easily see from (54) that µ0(β, σ) → 0 as
σ ↓ 0 and that µ0(β, σ) → ∞ as σ → ∞. Hence, µ0(β, σ)
increases from 0 to ∞ as σ increases from 0 to ∞. Moreover,

η + 1

µ0 + 1
> 0, 1 >

β ln(1 + µ0)

1 + µ0 + βµ0
. (67)

It follows from (66) and (67) that ∂
∂σ

F (β, σ) > 0. Then,
from (62) and from the fact that µ0 increases from 0 to ∞
as σ increases from 0 to ∞, we have that F (β, σ) increases
from 0 to ∞ as σ increases from 0 to ∞. Therefore, for any
β > 0, there is a unique σ = σ(β) such that

F (β, σ) = F (β, σ(β)) = 1. (68)

We shall next show that σ(β) increases in β ∈ [η − 1, η + 1].
By implicit differentiation in (68), we have for β ∈ [η−1, η+
1]

0 =
d

dβ
[F (β, σ(β))] = Fβ(β, σ(β))+σ′(β)Fσ(β, σ(β)), (69)

where Fβ and Fσ denote the respective partial derivatives
(and σ′(η ± 1) is the left and right derivative for + and −,
respectively). We already know that Fσ > 0, and we shall
show now that Fβ(β, σ(β)) < 0. To that end, we compute,
using (55) that

∂

∂β
[F (β, σ)]

= − ln(1 + µ0)
[

(η + 2 +
β

1 + µ0 + βµ0
)

µ0

1 + µ0 + βµ0

− 1 + µ0 − β(1 + β)µ′
0

(1 + µ0 + βµ0)2

]

. (70)

Next, from (62) and (68) we have that

µ0 ≥ ln(1 + µ0) =
1

η + 2 + β
1+µ0+βµ0

, (71)

and so

∂F

∂β
(β, σ(β))

≤− ln(1 + µ0)

[

1

1 + µ0 + βµ0
− 1 + µ0 − β(1 + β)µ′

0

(1 + µ0 + βµ0)2

]

σ=σ(β)

=
−β ln(1 + µ0)

(1 + µ0 + βµ0)2
[

µ0 + (1 + β)µ′
0

]

σ=σ(β)

=
−µ0β ln(1 + µ0)

(1 + µ0 + βµ0)2

[

1 − (1 + β)
(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0

]

σ=σ(β)

,

(72)

where (55) has been used once more. Finally, from (68),

(1 + β)
(1 + µ0) ln(1 + µ0)

1 + µ0 + βµ0

∣

∣

∣

σ=σ(β)

=
(1 + β)(1 + µ0)

(η + 2)(1 + µ0 + βµ0) + β

∣

∣

∣

σ=σ(β)
< 1 (73)

since 0 < β ≤ η + 1 and µ0 > 0. Hence, Fβ(β, σ(β)) < 0 as
required. It now follows from (69) and from Fσ(β, σ(β)) > 0
that σ′(β) > 0 when β ∈ [η − 1, η + 1].

We have now shown that σ(β) increases in β ∈ [η−1, η +1].
Next we let

σmin := σ(η − 1) < σ(η + 1) =: σmax. (74)

For σ ∈ [σmin, σmax] there is defined the inverse function
β(σ) ∈ [η−1, η +1] that increases in σ. It follows then from

F (β(σ), σ) = 1, Fβ(β(σ), σ) < 0 (75)

and (61)-(64) that θ(β, η, σ) is maximal at β = β(σ) when
σ ∈ [σmin, σmax].

We shall now complete the proof of Theorem 1. Let β ∈
[σmin, σmax], and assume that σ ≤ σmin. Then σ < σ(β) and
so F (β, σ) < F (β, σ(β)) = 1 since F increases in σ. Hence,
θ strictly decreases at β. Similarly, θ strictly increases at
β ∈ (η − 1, η + 1) when σ ≥ σmax. It follows that θ strictly
decreases in β ∈ [η − 1, η + 1] when σ ≤ σmin and that θ
strictly increases in β ∈ [η−1, η+1] when σ ≥ σmax. Finally,
when σ ∈ (σmin, σmax), we have that

F (η − 1, σ) > F (η − 1, σmin)

= 1 = F (η + 1, σmax) > F (η + 1, σ), (76)

showing that θ strictly increases at β = η − 1 and strictly
decreases at β = η + 1, and assumes its maximum at β =
β(σ).

6.4 Proof of Theorem 2
We shall show below that

(η+2+
η − 1

1 + ηκ
) ln(1+κ) < 1 < (η+2+

η + 1

1 + (η + 2)κ
) ln(1+κ)

(77)
when κ = τ/(η +1). Assuming this, we recall that (for fixed
β > 0) µ0 strictly increases in σ and vice versa. When now

σ− = κ(1 + κ)η−1, (78)

we have that F (η − 1, σ−) < 1 and so σ− < σmin since F is
increasing in σ. Similarly, when

σ+ = κ(1 + κ)η+1, (79)

we have from (77) that F (η +1, σ+) > 1, and so σ+ > σmax.
Therefore,

σmax − σmin < σ+ − σ− = κ(1 + κ)η+1((1 + κ)2 − 1)

= 2

(

1 +
τ

η + 1

)η−1 (
τ

η + 1

)(

1 +
τ

η + 1

)

≤ 2eτ

(

τ

η + 1

)2

(1 +
τ

η + 1
). (80)



It remains to show (77). As to the first inequality in (77)
we have

1 − (η + 2 +
η − 1

1 + ηκ
) ln(1 + κ) > 1 − (η + 2 +

η − 1

1 + ηκ
)κ

=
1

1 + ηκ
(1 − (η + 1)κ − η(η + 2)κ2)

>
1

1 + ηκ
(1 − (η + 1)κ − ((η + 1)κ)2) = 0 (81)

when κ = τ/(η + 1) since 1 − τ − τ 2 = 0. As to the second
inequality of (77) we have

1 − (η + 2 +
η + 1

1 + (η + 2)κ
) ln(1 + κ)

< 1 − (η + 2 +
η + 1

1 + (η + 2)κ
)(κ − 1

2
κ2)

=
1

1 + (η + 2)κ

(

1 − (η + 1)κ − ((η + 1)κ)2−

κ2(η + 3/2 − 1

2
(η + 2)2κ)

)

. (82)

With κ = τ/(η + 1) we have

1 − (η + 1)κ − ((η + 1)κ)2 = 0 (83)

as before, and

η +
3

2
− 1

2
(η + 2)2κ = η +

3

2
− (η + 2)2

2(η + 1)
τ > 0, η ≥ 0 (84)

since τ = 1
2
(
√

5 − 1) < 3
4

(which is the minimum value of

2(η + 3/2)(η + 1)(η + 2)−2, η ≥ 0). This shows the second
inequality in (77).

6.5 Proof of Proposition 5
To prove Proposition 5 we need the following result:

Proposition 10. With β = η + γ where −1 ≤ γ ≤ 1, we
have

σ(β) = µ(1 + µ)η+γ , (85)

where

µ =
τ

η + α + O(η−1)
, α =

(5 + 2γ)τ + 1

2(2τ + 1)
, (86)

and the O holds uniformly in γ ∈ [−1, 1].

Proof. We have σ(β) = µ(1+µ)β where µ is the unique
solution of the equation

(η + 2 +
β

1 + (1 + β)µ
) ln(1 + µ) = 1. (87)

We know from the proof of Theorem 2 that µ = O(η−1).
Multiplying (87) by 1 + (1 + β)µ and developing

ln(1 + µ) = µ − 1

2
µ2 + O(µ3), (88)

we get

(ηβ+
1

2
η+

3

2
β+1)µ2+(η+1)µ−1 =

1

2
(η+2)(β+1)µ3+O(η−2).

(89)

Next let α ∈ R be independent of η and use β = η + γ to
write

ηβ+
1

2
η+

3

2
β+1 = (η+α)2+(2+γ−2α)η+

3

2
γ+1−α2. (90)

Together with η + 1 = η + α + 1 − α, we obtain

(η + α)2µ2 + (η + α)µ − 1

=
1

2
(η + 2)(η + γ + 1)µ3 − ((2 + γ − 2α)η +

3

2
γ + 1 − α2)µ2

− (1 − α)µ + O(η−2). (91)

We now take α such that the whole second member of (91)
is O(η−2). Using that µ = τ

η
+ O(η−2), this leads to

1

2
τ 3 − (2 + γ − 2α)τ 2 − (1 − α)τ = 0, (92)

and this yields the α in (86). The polynomial x2 +x−1 = 0
has a zero of first order at x = τ . Hence with α as in (86) we
see from (η+α)2µ2 +(η+α)µ−1 = O(η−2) that (η+α)µ =
τ + O(η−2). This gives the result.

Now we proceed to prove Proposition 5. We use the result
of Proposition 10. Thus

σ(η + γ) = µ(1 + µ)η+γ , (93)

µ =
τ

η + α + O(η−1)
=

τ

η + α
(1 + O(η−2)). (94)

By elementary considerations

σ(η+γ)

=
τ

η + α
(1 +

τ

η + α
)η+γ(1 + O(η−2))

=
τ

η + α
exp[(η + γ)(

τ

η + α
− τ 2

2(η + α)
)](1 + O(η−2))

=
τeτ

η + α
(1 +

(γ − α)τ − 1
2
τ 2

η
)(1 + O(η−2)). (95)

Then letting γ = ±1 and

α(1) =
7τ + 1

2(2τ + 1)
, α(−1) =

3τ + 1

2(2τ + 1)
(96)

in accordance with Proposition 10, it follows that

σ(η + 1) − σ(η − 1) =
τeτ

η2

(

α(−1) − α(1) + (1 − α(1))τ

+ (1 + α(−1))τ
)

+ O(η−3)

=
τeτ

η2

2τ 2

2τ + 1
+ O(η−3). (97)

Finally, it follows easily from τ 2 + τ = 1 that τ 3(7 + 4τ ) =
2τ + 1.

6.6 Proof of Proposition 6
Since σ > 0 is fixed, it follows from (see the proof of Theo-
rem 2)

σmax < σ+ =
τ

η + 1

(

1 +
τ

η + 1

)η+1

<
τeτ

η + 1
(98)



that σmax < σ when η is large enough. By Theorem 1

max θ = θ(η + 1) =
λ0 − 1

(η + 2)λ0 − η − 1
=

µ0

(η + 2)µ0 + 1

=
1

η + 2

1

1 + 1
(η+2)µ0

, (99)

where µ0 is the unique positive real µ root of µ(1+ µ)η+1 =
σ. We shall show that

(η + 2)µ0 ≥ ln σ, (100)

(η + 2)µ0 = ln(η + 1) + O(ln ln(η + 1)), η → ∞, (101)

uniformly in σ ∈ [ǫ, M ], where ǫ > 0 and M > ǫ are fixed.
To show (100), we note from µ0(1 + µ0)

η+1 = σ that

(η + 1)µ0 ≥ (η + 1) ln(1 + µ0) = ln σ − ln µ0. (102)

Next σ = µ0(1 + µ0)
η+1 ≥ µη+2

0 , and so ln µ0 ≤ 1
η+2

ln σ.
Therefore

(η + 1)µ0 ≥ lnσ − 1

η + 2
ln σ =

η + 1

η + 2
lnσ, (103)

and (100) follows. As to (101), we first observe from (55)
that µ0 decreases in η when σ > 0 is fixed. Hence L =
limη→∞ µ0 exists, and it follows from µ0(1+µ0)

η+1 = σ that
L = 0. Thus, µ0 decreases to 0 as η → ∞. Then, from (102)
we get that (η+1)µ0 increases to ∞ as η → ∞. All this holds
uniformly in σ ∈ [ǫ, M ]: since µ0 increases in σ, the right-
hand side of (102) is bounded below by ln ǫ− lnµ0(σ = M).
Now take η0 > 0 such that (η + 1)µ0 ≥ σ when η ≥ η0 and
ǫ ≤ σ ≤ M . Then from µ0(1 + µ0)

η+1 = σ we have

(η+1) ln(1+µ0) = ln σ−lnµ0 ≤ ln(η+1)µ0−lnµ0 ≤ ln(η+1)
(104)

when η ≥ η0 and ǫ ≤ σ ≤ M . Hence, when η ≥ η0,

µ0 ≤ exp

[

ln(η + 1)

η + 1

]

−1 =
ln(η + 1)

η + 1
+O

(

(

ln(η + 1)

η + 1

)2
)

,

(105)
where the O holds uniformly in σ ∈ [ǫ, M ]. Then, by (102),

(η + 1)µ0 ≥ lnσ − ln

(

exp

[

ln(η + 1)

η + 1

]

− 1

)

= lnσ − ln(
ln(η + 1)

η + 1

(

1 + O
(

ln(η + 1)

η + 1

))

= ln(η + 1) − ln ln(η + 1) + ln σ + O
(

ln(η + 1)

η + 1

)

,

(106)

with O holding uniformly in σ ∈ [ǫ, M ] and η ≥ η0. From (105)
and (106) we get (100) uniformly in σ ∈ [ǫ, M ].
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Space filling and depletion. Journal of Applied
Probability, 41(3):691–702, 2004.

[4] R. Boorstyn and A. Kershenbaum. Throughput
analysis of multihop packet radio. In Proc. of ICC,
pages 1361–1366, 1980.

[5] C. Bordenave, D. McDonald, and A. Proutière.
Performance of random medium access control, an
asymptotic approach. In Proc. of ACM Sigmetrics,
pages 1–12, 2008.

[6] N. G. de Bruijn. Asymptotic methods in analysis.
Dover Publications Inc., New York, third edition,
1981.

[7] D. Denteneer, S. Borst, P. Van de Ven, and G. Hiertz.
IEEE 802.11s and the philosophers’ problem.
Statistica Neerlandica, 62(3):283–298, 2008.

[8] M. Durvy, O. Dousse, and P. Thiran. Modeling the
802.11 protocol under different capture and sensing
capabilities. In Proc. of INFOCOM, pages 2356–2360,
2007.

[9] M. Durvy, O. Dousse, and P. Thiran. Self-organization
properties of CSMA/CA systems and their
consequences on fairness. IEEE Transactions on
Information Theory, 55(3), 2009.

[10] L. Kleinrock and F. Tobagi. Packet switching in radio
channels: part I - carrier sense multiple-access modes
and their throughput-delay characteristics. IEEE
Transactions on Communications, 23(12):1400–1416,
1975.

[11] T. Lin and J. Hou. Interplay of spatial reuse and
SINR-determined data rates in CSMA/CA-based,
multi-hop, multi-rate wireless networks. In Proc. of
INFOCOM, pages 803–811, 2007.

[12] H. Ma, R. Vijaykumar, S. Roy, and J. Zhu.
Optimizing 802.11 wireless mesh networks based on
physical carrier sensing. IEEE/ACM Transactions on
Networking, 2009 (to appear).

[13] E. Pinsky and Y. Yemini. The asymptotic analysis of
some packet radio networks. IEEE Journal on Selected
Areas in Communications, 4(6):938–945, 1986.

[14] S. Rajagopalan, J. Shin, and D. Shah. Network
adiabetic theorem: An efficient randomized protocol
for contention resolution. In Proc. of ACM
Sigmetrics/Performance, pages 133–144, 2009.

[15] F. Tobagi and L. Kleinrock. Packet switching in radio
channels: part II - the hidden terminal problem in
carrier sense multiple-access and the busy-tone
solution. IEEE Transactions on Communications,
23(12):1417–1433, 1975.

[16] P. van de Ven, J. van Leeuwaarden, T. Denteneer, and
A. Janssen. Spatial fairness in wireless multi-access
networks. In Proc. of ValueTools, 2009.

[17] X. Wang and K. Kar. Throughput modelling and
fairness issues in CSMA/CA based ad-hoc networks.
In Proc. of INFOCOM, pages 23–34, 2005.

[18] X. Yang and N. Vaidya. On the physical carrier sense
in wireless ad hoc networks. In Proc. of INFOCOM,
pages 2525–2535, 2005.

[19] M. Zafer and E. Modiano. Blocking probability and
channel assignment in wireless networks. IEEE
Transactions on Wireless Communications,
5(4):869–879, 2006.

[20] H. Zhai and Y. Fang. Physical carrier sensing and
spatial reuse in multirate and multihop wireless ad hoc
networks. In Proc. of INFOCOM, pages 1–12, 2006.


