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It has been argued that the sound radiation of a loudspeaker is modeled realistically by assuming the
loudspeaker cabinet to be a rigid sphere with a moving rigid spherical cap. Series expansions, valid
in the whole space on and outside the sphere, for the pressure due to a harmonically excited, flexible
cap with an axially symmetric velocity distribution are presented. The velocity profile is expanded in
functions orthogonal on the cap rather than on the whole sphere. This has the advantage that only
a few expansion coefficients are sufficient to accurately describe the velocity profile. An adaptation
of the standard solution of the Helmholtz equation to this particular parametrization is required.
This is achieved by using recent results on argument scaling in orthogonal Zernike polynomials. The
efficacy of the approach is exemplified by calculating various acoustical quantities with particular
attention to certain velocity profiles that vanish at the rim of the cap to a desired degree. These
quantities are: the sound pressure, polar response, baffle-step response, sound power, directivity,
and acoustic center of the radiator. The associated inverse problem, in which the velocity profile
is estimated from pressure measurements around the sphere, is feasible as well since the number of
expansion coefficients to be estimated is limited. This is demonstrated with a simulation.

PACS numbers: 43.38 Ar, 43.20 Bi, 43.20 Px, 43.40 At
Keywords: loudspeaker, loudspeaker characterization, Helmholtz equation with spherical boundary
conditions, flexible pole cap sound radiation, Legendre polynomial, Zernike expansion, scaling Zernike
polynomials

I. INTRODUCTION

The sound radiation of a loudspeaker is commonly
modeled by assuming the loudspeaker cabinet to be a
rigid infinite baffle around a circularly symmetric mem-
brane. Given a velocity distribution on the membrane,
the pressure in front of the baffle due to a harmonic ex-
citation is then described by the Rayleigh integral1 or
by King’s integral2. These integrals have given rise to
an impressive arsenal of analytic results and numerical
methods to determine the pressure and other acousti-
cal quantities in journal papers3–21 and textbooks22–28.
The results thus obtained are in good correspondence
with what one finds, numerically or otherwise, when the
loudspeaker is modeled as being a finite-extent box-like
cabinet with a circular, vibrating membrane. Here one
should, however, limit attention to the region in front of
the loudspeaker and not too far from the axis through
the middle of and perpendicular to the membrane. The
validity of the infinite-baffle model becomes questionable,
or even nonsensical, on the side region or behind the loud-
speaker26 (p. 181). An alternative model, with potential
for more adequately dealing with the latter regions, as-
sumes the loudspeaker to be a rigid sphere equipped with
a membrane in a spherical cap of the sphere.
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Eindhoven, Den Dolech 2, PT3.23, P.O Box 513, NL-5600 MB
Eindhoven, The Netherlands
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It has been argued by Morse and Ingard24 (Sec. 7.2),
that using the sphere as a simplified model of a loud-
speaker whose cabinet has roughly the same width,
height and depth, produces comparable acoustical results
as the true loudspeaker. This is illustrated in Fig. 1,
where the polar plots are shown for (a) a real measured
driver in a rectangular cabinet, (b) a rigid piston in an
infinite baffle, and (c) a rigid spherical cap in a rigid
sphere. In Sec. II this will be discussed in more detail,
but it can already be said that the plots clearly show that
the agreement between the polar plots of the loudspeaker
(a) and the spherical cap (c) is much larger than between
the plots of the loudspeaker (a) and the piston (b). An
application for the cap model is that it can be used to
predict the polar behavior of a loudspeaker cabinet.

Modeling the loudspeaker as a flexible spherical cap
on a rigid sphere has the attractive feature that the solu-
tion of the Helmholtz equation for the pressure is feasi-
ble in terms of spherical harmonics and spherical Hankel
functions, see Ref.22 (Ch.11.3), Ref.23 (Ch. III, Sec. 6),
Ref.24 (Ch. 7) and Ref.25 (Chs. 19–20). In Ref.7 there
is a discussion on how the polar cap model for sphere ra-
dius R →∞ agrees with the model that starts from the
flat piston in an infinite baffle. When the cap aperture
θ approaches π, the solution becomes that of the simple
pulsating sphere. Hence, the polar-cap solution subsumes
the solutions of the two classic radiation problems. The
mathematical results in Ref.7 comprise the product kR
in a crucial way. The authors of Ref.7 emphasize that,
physically, the case that kR → ∞ with wave number k
fixed and R → ∞ differs from the case that kR → ∞
with both k → ∞, R → ∞. This very same issue, for
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FIG. 1. (Color online) Polar plots of the SPL (10 dB/div.),
f= 1 kHz (solid curve), 4 kHz (dotted curve), 8 kHz (dashed-
dotted curve), and 16 kHz (dashed curve), corresponding for
c = 340 m/s and a = 3.2 cm to ka values: 0.591, 2.365, 4.731,
9.462. All curves are normalized such that the SPL is 0 dB at
θ=0. (a) Loudspeaker radius a = 3.2 cm, measuring distance
r = 1 m) in rectangular cabinet, (b) Rigid piston (a = 3.2 cm)
in infinite baffle, (c) Rigid spherical cap (aperture θ0 = π/8,
sphere radius R = 8.2 cm, r = 1 m, corresponding to kR
values: 1.5154, 6.0614, 12.1229, 24.2457) using Eqs. (7) and
(11). The parameters a, R, and θ0 are such—using Eq. (13)—
that the area of the piston and the cap are equal.

the case of a piston, has been addressed by Rogers and
Williams4.

In the present paper, the velocity profile is assumed
to be axially symmetric but otherwise general. It was
shown by Frankort29 that this is a realistic assumption
for loudspeakers, because their cones mainly vibrate in a

radially symmetric fashion. These loudspeaker velocity
profiles can be parameterized conveniently and efficiently
in terms of expansion coefficients relative to functions
orthogonal on the cap. Using the standard solution of the
Helmholtz equation with spherical boundary conditions,
a formula will be developed, explicitly involving these
expansion coefficients, for the pressure at any point on
and outside the sphere.

In the next section (Sec. II) a detailed overview of the
geometry and the basic formulas is given. In Sec. III
the forward computation scheme embodied by the piv-
otal Eqs. (21)–(23) is discussed in some detail for three
particular applications, viz. the baffle step (Sec. III.A),
a simple source on a sphere (Sec. III.B), and for the
case that the cap velocity profile is a Stenzel-type profile
(Sec. III.C). A Stenzel profile is a certain type of smooth
function of the elevation angle that vanishes at the rim
of the cap to any desired degree. Section IV provides the
results for the power and directivity. In Sec. V the low-
frequency limit for consideration of the acoustic center is
discussed. The developments in Secs. IV–V, that apply to
general symmetric velocity profiles, are illustrated using
the two standard examples occurring in literature, viz.
that of a uniformly moving cap in normal direction and
in axial direction. The inverse problem, in which the ex-
pansion coefficients of the unknown profile are estimated
from the measured pressure that the velocity profile gives
rise to, is also feasible. This is largely due to the fact that
the expansion terms are orthogonal and complete so that
for smooth velocity profiles only a few coefficients are re-
quired. Combining the inverse method with the forward
computation scheme of Sec. II, it is seen that one can
predict the acoustical quantities considered in Secs. IV–
V from a limited amount of measured pressure data. In
the reverse direction, the inverse method can be used to
design a velocity profile so as to meet certain specifica-
tions in the far field or near field of the radiator. While
the theory necessary to do so is discussed in Sec. VI, this
is not worked out further there. In Sec. VII the exten-
sion of the methodology to non-axial symmetric profiles
is briefly discussed. Finally, in Sec. VIII conclusions are
presented.

II. BASIC FORMULAS

Assume a general velocity profile V (θ, ϕ) on a spherical
cap, given in spherical coordinates as

S0 = {(r, θ, ϕ) | r = R , 0 ≤ θ ≤ θ0 , 0 ≤ ϕ ≤ 2π} , (1)

with R the radius of the sphere with center at the origin
and θ0 the angle between the z−axis (elevation angle θ =
0) and any line passing through the origin and a point on
the rim of the cap. See Fig. 2 for the used geometry and
notations. Thus it is assumed that V vanishes outside S0.
Furthermore, in loudspeaker applications, the cap moves
parallel to the z-axis, and so V (θ, ϕ) will be identified
with its z-component, and has normal component

W (θ, ϕ) = V (θ, ϕ) cos θ . (2)
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FIG. 2. Geometry and notations.

The average of this normal component over the cap,

1
AS0

∫∫
S0

W (θ, ϕ) sin θ dθ dϕ , (3)

is denoted by w0, where AS0 is the area of the cap, see
Eq. (12). Then the time-independent part p(r, θ, ϕ) of the
pressure due to a harmonic excitation of the membrane
is given by

p(r, θ, ϕ) =

−iρ0c
∑∞
n=−∞

∑n
m=−nWmn P

|m|
n (cos θ) h(2)

n (kr)

h
(2)′
n (kR)

eimϕ ,

(4)
see Ref.24 (Ch. 7) or Ref.25 (Ch. 19) (Helmholtz equation
with spherical boundary conditions). Here ρ0 is the den-
sity of the medium, c is the speed of sound in the medium,
k = ω/c is the wave number and ω is the radial fre-
quency of the applied excitation, and r ≥ R, 0 ≤ θ ≤ π,
0 ≤ ϕ ≤ 2π. Furthermore, P |m|n (cos θ)eimϕ is the spheri-
cal harmonic Y mn in exponential notation (compare with
Ref.24 (Sec. 7.2), where sine-cosine notation has been
used), h(2)

n is the spherical Hankel function, see Ref.30
(Ch. 10), of order n, and Wmn are the expansion coeffi-
cients of W (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, relative to the
basis Y mn (θ, ϕ). Thus

W (θ, ϕ) =
∑∞
n=−∞

∑n
m=−nWmnP

|m|
n (cos θ)eimϕ (5)

and

Wmn = n+1/2
2π

(n−|m|)!
(n+|m|)!∫ π

0

∫ 2π

0
W (θ, ϕ)P |m|n (cos θ)e−imϕ sin θ dθ dϕ ,

(6)

where it should be observed that the integration over θ in
Eq. (6) is in effect only over 0 ≤ θ ≤ θ0 since V vanishes
outside S0.

In the case of axially symmetric velocity profiles V and
W , written as V (θ) and W (θ), the right-hand sides of
Eqs. (4) and (6) become independent of ϕ and simplify
to23–25

p(r, θ, ϕ) = −iρ0c

∞∑
n=0

Wn Pn(cos θ)
h

(2)
n (kr)

h
(2)′
n (kR)

, (7)

and

W (θ) =
∞∑
n=0

WnPn(cos θ) (8)

with

Wn = (n+ 1/2)
∫ π

0

W (θ)Pn(cos θ) sin θ dθ , (9)

respectively, with Pn the Legendre polynomial of degree
n. The integration in Eq. (9) is actually over 0 ≤ θ ≤ θ0.
Since loudspeaker cones mainly vibrate in a radially sym-
metric fashion, almost all attention in this paper is lim-
ited to axially symmetric velocity profiles V and W . In
Sec. VI the generalization to non-axial symmetric profiles
is briefly considered.

The case that W is constant w0 on the cap S0 has been
treated in Ref.23 (Part III, Sec. 6), Ref.24 (p. 343), and
Ref.25 (Sec. 20.5), with the result that

Wn =
1
2
w0(Pn−1(cos θ0)− Pn+1(cos θ0)) . (10)

The pressure p is then obtained by inserting Wn into
Eq. (7). Similarly, the case that V is constant v0 on S0

has been treated by Ref.25 (Sec. 20.6), with the result
that

Wn = 1
2v0{

n+1
2n+3 (Pn(cos θ0)− Pn+2(cos θ0))+
n

2n−1 (Pn−2(cos θ0)− Pn(cos θ0))} . (11)

In Eqs. (10) and (11) the definition P−n−1 = Pn, n =
0, 1, · · · , has been used to deal with the case n = 0 in
Eq. (10) and the cases n = 0, 1 in Eq. (11). In Fig. 1 the
resemblance is shown between the polar plots of: a real
driver in a rectangular cabinet (Fig. 1-a), a rigid piston
in an infinite baffle (Fig. 1-b), and a rigid spherical cap
in a rigid sphere (Fig. 1-c) using Eqs. (7) and (11). The
driver (vifa MG10SD09-08, a = 3.2 cm) was mounted in
a square side of a rectangular cabinet with dimensions
13x13x18.6 cm and measured on a turning table in an
anechoic room at 1 m distance.

The area of a spherical cap is equal to

AS0 = 4πR2 sin2(θ0/2). (12)

If this area is chosen to be equal to the area of the flat
piston, there follows for the piston radius a that

a = 2R sin(θ0/2). (13)

The parameters used for Fig. 1 are a = 3.2 cm, θ0 =
π/8, R = 8.2 cm, are such—using Eq. (13)—that the
area of the piston and the cap are equal. The radius R
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of the sphere is such that the sphere and cabinet have
comparable volumes, respectively 2.3 and 3.1 liters. If R
is such that the sphere volume is the same as that of the
cabinet, and θ0 such that the area of the piston and the
cap are equal, one gets R = 9.0873 cm and θ0 = 0.35399.
The corresponding polar plot—not shown here—is very
similar to Fig. 1-c, the deviations are about 1 dB or less.
Apparently, the actual value of the volume is of modest
influence. If we keep R fixed and change the cap area by
changing the aperture θ0 however, the influence can be
significant. To illustrate this, polar plots are shown in
Fig. 3 for constant V , using Eqs. (7) and (11). Figure 3
clearly shows that for increasing aperture until, say, θ0 =
π/2, the radiation becomes more directive. However, in
the limit case θ0 = π there is only one non-zero Wn

in Eqs. (10) and (11), viz. Wn = δ0n for constant W
and Wn = δ1n for constant V (δ: Kronecker’s delta),
respectively. In the case of constant W this is a non-
directive pulsating sphere. In the case of constant V we
get

p(r, θ) = −iρ0c V cos θ
h

(2)
1 (kr)

h
(2)′

1 (kR)
, (14)

plotted in Fig. 4. This case is discussed in Ref.27 (Sec. 4.-
2) as the transversely oscillating rigid sphere. It is readily
seen that p(r, θ)/p(r, 0) = cos θ.

It should be noted that the Wn in Eqs. (10) and (11)
have poor decay, roughly like n−1/2, and this shows that
the representation of W through its Legendre coefficients
is highly inefficient. While poor decay of Wn in Eq. (7)
is not necessarily a problem for the forward problem
(where the pressure p is computed from W using Eqs. (7)
and (9)), it certainly is so for the inverse problem. In the
inverse problem, one aims at estimating the velocity pro-
file W (or V ) from pressure measurements around the
sphere. This can be done, in principle, by adopting a
matching approach in Eq. (7) in which the Wn are opti-
mized with respect to match of the measured pressure p
and the theoretical expression for p in Eq. (7) involving
the Wn. Even for the simplest case where W is constant,
it is seen from the poor decay of the Wn and the poor
decay of Pn(cos θ) that a very large number of terms are
required in the Legendre series in Eq. (8).

In this paper a more efficient representation of W is
employed. This representation uses orthogonal functions
on the cap that are derived from Zernike terms

R0
2`(ρ) = P`(2ρ2 − 1) , 0 ≤ ρ ≤ 1 , ` = 0, 1, · · · , (15)

that were also used in Refs.18–20. See, in particular,
Ref.20, Sec. 2 for motivation of this choice. Because of
the geometry of the spherical cap, a variable transforma-
tion is required to pass from orthogonal functions R0

2` on
the disk to orthogonal functions on the cap. In Ref.20,
Appendix A, it is shown that the functions

R0
2`

( sin 1
2θ

sin 1
2θ0

)
, 0 ≤ θ ≤ θ0 , ` = 0, 1, · · · , (16)

are orthogonal on the cap. With

θ = 2 arcsin(s0ρ) ; s0 = sin
1
2
θ0 , (17)
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FIG. 3. (Color online) Polar plots of the SPL (10 dB/div.),
f= 1 kHz (solid curve), 4 kHz (dotted curve), 8 kHz (dashed-
dotted curve), and 16 kHz (dashed curve), Rigid spherical cap
for various aperture θ0, (sphere radius R = 8.2 cm, r = 1 m)
using Eqs. (7) and (11). All curves are normalized such that
the SPL is 0 dB at θ=0.
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FIG. 4. Polar plot for a sphere (θ0 = π) moving with constant
velocity V in the z-direction, using Eqs. (7) and (11). In this
case W1 = 1, Wn is equal to zero for all values n 6= 1.

the inverse of the variable transformation used in
Eq. (16), it follows then by orthogonality of the Zernike
terms that

W (2 arcsin(s0ρ)) = w0

∞∑
`=0

u`R
0
2`(ρ) , 0 ≤ ρ ≤ 1 , (18)

where the expansion coefficients w0u` are given by

w0u` = 2(2`+ 1)
∫ 1

0

W (2 arcsin(s0ρ))R0
2`(ρ)ρdρ . (19)

It is this parametrization of W in terms of the expansion
coefficients u` that will be preferred in the sequel. This
parametrization is obtained by ‘warping’ W according to
Eq. (17) and expanding the warped function as Eqs. (18)–
(19) with s0 as in Eq. (17).

The efficiency of the representation in Eq. (18) is
apparent from the fact that a smooth profile W re-
quires only a limited number of coefficients u` of rel-
atively small amplitude yield an accurate approxima-
tion of W (2 arcsin(s0ρ)). For instance, the constant pro-
file W = w0 on S0 is represented exactly by only one
term w0R

0
0(ρ) in the expansion in Eq. (18), and the pro-

file W = v0 cos θ, corresponding to the case that V is
constant v0 on S0, is represented exactly by two terms
v0[(1− s20)R0

0(ρ)− s20R0
2(ρ)]. More complicated examples

arise when V or W is a multiple of the Stenzel profile

(n+ 1)
(cos θ − cos θ0

1− cos θ0

)n
, (20)

and these require n + 1 terms in the representation in
Eq. (18). These profiles vanish at the rim of S0 to degree
n and are considered in Sec. III.C and VI to illustrate
the methods developed in this paper.

It it shown20 that the expansion in Eq. (18) gives rise
to a series expression for the pressure p in the whole space
outside and on the sphere. The main result is that for
r ≥ R, θ ∈ [0, π] and ϕ ∈ [0, 2π]

p(r, θ, ϕ) = −iρ0cw0

∞∑
`=0

u`S`(r, θ) , (21)

where

S`(r, θ) =
∞∑
n=`

(−1)ns0(R2`+1
2n+1(s0)−R2`+1

2n−1(s0))Pn(cos θ) h(2)
n (kr)

h
(2)′
n (kR)

,

(22)
in which

Rmn (ρ) = ρmP
(0,m)
n−m

2
(2ρ2 − 1) , (23)

for integer n,m ≥ 0 with n −m even and ≥ 0 (Rmn ≡ 0
otherwise) with P

(α,β)
k (x) the general Jacobi polyno-

mial30. These polynomials Rmn (ρ) are called Zernike
polynomials in optics32,33 and they were introduced re-
cently in acoustics as well18. This main result provides
the generalization of the forward computation scheme in
Eqs. (7), (10), (11) to general axially symmetric velocity
profiles W . Furthermore, it provides the basis for the
inverse problem, in which the expansion coefficients u`
are estimated from measured pressure data around the
sphere by adopting a best match approach in Eq. (21).
From these estimated coefficients an estimate of W can
be made on basis of Eq. (18). The matter of convergence
of the series in Eq. (22) and some computational issues
are addressed elsewhere20. An alternative way20 to cal-
culate the pressure p(r, θ) is by using Eq. (7), where the
Wn are now given by

Wn = (−1)ns0w0

n∑
`=0

(R2`+1
2n+1(s0)−R2`+1

2n−1(s0))u` , (24)

rather than Eq. (9). This is particularly interesting for
the forward computation scheme with velocity profiles
that vanish smoothly at the rim of the cap as these re-
quire only a limited number of terms in Eq. (7).

III. APPLICATIONS OF THE MAIN RESULT

In this section the main result in Eqs. (21)–(23) is illus-
trated by considering three applications, viz. the baffle
step, simple source on a sphere, and Stenzel velocity pro-
files.

A. Special case baffle step

At low frequencies the baffle of a loudspeaker is small
compared to its wavelength and radiates due to diffrac-
tion effects in the full space (4π-field). At those low fre-
quencies the radiator does not benefit from the baffle in
terms of gain. At high frequencies the loudspeaker ben-
efits from the baffle which yields a gain of 6 dB. This
transition is the well-known baffle step. The center fre-
quency of this transition depends on the size of the baffle.
Olson31 has documented this for twelve different loud-
speaker enclosures, including the sphere, cylinder, and
rectangular parallelepiped. All those twelve enclosures
share the common feature of increasing gain by about
6 dB when the frequency is increased from low to high.
The exact shape of this step depends on the particular
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enclosure. For spheres the transition is smoothest, while
for other shapes undulations are manifest, in particular
for cabinets with edgy boundaries. In Fig. 5 the baffle
step is shown for a polar cap (θ0 = π/8) on a sphere of
radius R=0.082 m using Eqs. (7) and (11), for different
observation angles θ = 0 (solid curve), θ = π/9 (dotted
curve), θ = 2π/9 (dashed-dotted curve), and θ = 3π/9
(dashed curve). Compare the curves of Fig. 5 with the
measurements using the experimental loudspeaker dis-
cussed in Sec. II. It appears that there is a good re-
semblance between the measured frequency response of
the experimental loudspeaker. The undulations, e.g., for
θ = 3π/9 (dashed curve) at 7.4, 10, and 13.4 kHz cor-
respond well. Although these undulations are often at-
tributed to the non-rigid cone movement of the driver
itself, our pictures show that it is mainly a diffraction
effect. Furthermore, it can be observed that even on-axis
(θ = 0) there is a gradual decrease of SPL at frequencies
above about 10 kHz. It can be shown from the asymp-
totics of the spherical Hankel functions that for θ = 0,
k → ∞, and r � R, the sound pressure p(r, θ) given by
Eq. (21) decays at least as O(k−1/3). This is in contrast
with a flat piston in an infinite baffle. There, the on-axis
pressure does not decay. This is discussed further at the
end of Sec. IV.A.

B. Special case W is a simple source on S0

If the polar cap aperture θ0 decreases towards 0, the
cap acts as a simple source. It follows from Eqs. (21)–
(23) and by proper normalization by the cap area AS0 ,
using Eq. (12), and the definition of w0 in Eq. (3), that

p(r, θ, ϕ) = −iρ0cw0

∞∑
n=0

(2n+ 1)Pn(cos θ)
h

(2)
n (kr)

h
(2)′
n (kR)

.

(25)
In Fig. 6 the corresponding polar plot is illustrated, where
the same sphere radius and frequencies are used as in
Fig. 1-c. It appears that the difference between the re-
sponse at θ=0 and π is not large, especially for low fre-
quencies. This is discussed further in Sec. V with regard
to the acoustic center.

C. Stenzel-type profiles and forward computation

Consider the profile

V (K)(θ) = v
(K)
0 (K + 1)

(cos θ − cos θ0
1− cos θ0

)K
, 0 ≤ θ ≤ θ0 ,

(26)
with V (K)(θ) = 0 for θ0 < θ ≤ π (as usual), K = 0, 1, · · · .
Then a simple computation shows that

V (K)(2 arcsin(s0ρ)) = v
(K)
0 (K + 1)(1− ρ2)K , 0 ≤ ρ ≤ 1 .

(27)
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FIG. 5. (Color online) (a) Baffle step of a polar cap (θ0 =
π/8) on a sphere of radius R =0.082 m, θ = 0 (solid curve),
θ = π/9 (dotted curve), θ = 2π/9 (dashed-dotted curve),
and θ = 3π/9 (dashed curve), at distance r = 1 m, using
Eqs. (21)–(23). All curves are normalized such that the SPL
is 0 dB at 100 Hz. (b) Frequency response of a driver (same as
Fig. 1-a, a = 3.2 cm) mounted in a square side of a rectangular
cabinet with dimensions 13x13x18.6 cm, where the parameter
is the observation angle θ. The loudspeaker was measured
in an anechoic room at 1 m distance. The on-axis response
was normalized to 0 dB at 200 Hz, the other curves were
normalized by the same amount.
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FIG. 6. (Color online) Polar plots of the SPL (10 dB/div.) of
a simple source on a sphere of radius R =0.082 m. Frequency
f = 1 kHz (solid curve), 4 kHz (dotted curve), 8 kHz (dashed-
dotted curve), and 16 kHz (dashed curve), at distance r =
1 m, using Eqs. (25). All curves are normalized such that the
SPL is 0 dB at θ=0.
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The right-hand side of Eq. (27) is the Stenzel profile,
considered extensively in Ref.18. Thus

V (K)(2 arcsin(s0ρ)) = v
(K)
0

K∑
`=0

q
(K)
` R0

2`(ρ) , 0 ≤ ρ ≤ 1 ,

(28)
where

q
(K)
` = (K+1)(−1)`

2`+ 1
`+ 1

(
K
`

)
(
K + `+ 1

K

) , ` = 0, 1, · · · ,K .

(29)
From

W (K)(θ) = V (K)(θ) cos θ =
K+1
K+2 (1− cos θ0)V (K+1)(θ) + (cos θ0)V (K)(θ) ,

(30)

it follows that

W (K)(2 arcsin(s0ρ)) = w
(K)
0

K+1∑
`=0

u
(K)
` R0

2`(ρ) , 0 ≤ ρ ≤ 1 ,

(31)
where

w
(K)
0 =

K + 1 + cos θ0
K + 2

v
(K)
0 , (32)

and, for ` = 0, 1, · · · ,K + 1 ,

u
(K)
` =

v
(K)
0

w
(K)
0

[K + 1
K + 2

(1− cos θ0)q(K+1)
` + (cos θ0)q(K)

`

]
.

(33)
Thus one can compute the pressure using the formulas
in Eqs. (21)–(23) with u` = u

(K)
` .

0.1 0.2 0.3 0.4
Θ

1

2

3

4
W HKL

FIG. 7. (Color online) Stenzel profiles for K=0 (solid curve),
K=1 (dotted curve), K=2 (dashed-dotted curve), and K=3
(dashed curve), using Eqs. (26) and (30) and θ0 = π/8.

In Fig. 7 Stenzel profiles are plotted for K=0 (solid
curve), K=1 (dotted curve), K=2 (dashed-dotted curve),
and K=3 (dashed curve). In Fig. 8 polar plots are
displayed of the SPL (10 dB/div.) of a spherical cap
(θ0 = π/8, R = 8.2 cm, r = 1 m) with various Sten-
zel velocity profiles, K=0 (solid curve), K=1 (dotted

curve), K=2 (dashed-dotted curve), and K=3 (dashed
curve), (a) f = 4 kHz, (b) f = 8 kHz. It appears that
the difference between the various velocity profiles are
more pronounced at higher frequencies. Also, the cap
becomes less directive for higher K values because in the
limit K → ∞ it would behave like a simple source on
a sphere. Furthermore, it appears that the solid curves
(K = 0) for (a) f = 4 kHz and (b) f = 8 kHz are the same
as the dotted and dashed-dotted curves, respectively in
Fig. 1-c. Note that Figs. 1-c and 8 were produced using
two different sets of formulas, viz. Eqs. (7) and (11) for
Fig. 1-c and Eqs. (21) and (33) for Fig. 8, and that they
yield the same plots.
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(b)

FIG. 8. (Color online) Polar plots of the SPL (10 dB/div.) of
a spherical cap (θ0 = π/8, R = 8.2 cm, r = 1 m) with vari-
ous Stenzel velocity profiles, K=0 (solid curve), K=1 (dotted
curve), K=2 (dashed-dotted curve), andK=3 (dashed curve).
(a) f = 4 kHz, (b) f = 8 kHz. All curves are normalized such
that the SPL is 0 dB at θ=0.

IV. POWER AND DIRECTIVITY

The power is defined as the intensity pv∗ integrated
over the sphere Sr of radius r ≥ R,

P =
∫
Sr

pv∗dSr , (34)
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where p and v are the pressure and velocity at an arbi-
trary point on the sphere. Using Eq. (7) for the pressure
and

v =
−1
ikρ0c

∂p

∂n
(35)

we get

v(r, θ, ϕ) =
∞∑
n=0

Wn Pn(cos θ)
h

(2)′

n (kr)

h
(2)′
n (kR)

. (36)

By the orthogonality of the Legendre polynomials it fol-
lows that

P =
∫
Sr
pv∗dSr = 2π

∫ π
0
p(r, θ)v∗(r, θ)r2 sin θdθ =

−iρ0c
∑∞
n=0

|Wn|2
n+1/2

2πr2h(2)′
n (kr)(h(2)′

n (kr))∗

|h(2)′
n (kR)|2

.

(37)
Using Ref.30, Eq. 10.1.6,

W{jn(z), yn(z)} = jn(z)y′n(z)− j′n(z)yn(z) =
1
z2
, (38)

where W in Eq. (38) denotes the Wronskian, we get

<[P ] =
2πρ0c

k2

∞∑
n=0

|Wn|2

(n+ 1/2)|h(2)′
n (kR)|2

. (39)

Note that Eq. (39) has been derived without using any
(near-field or far-field) approximation. The real part of
the acoustical power is independent of r, which is in ac-
cordance with the conservation of power law. For low
frequencies Eq. (39) is approximated as

<[P ] = 4πρ0cW
2
0 k

2R4 . (40)

To illustrate Eq. (39), the normalized power <[P ]
2πρ0cv20R

2

is plotted in Fig. 9, where a cap with various apertures,
θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted curve), and
θ0 = π/10 (dashed-dotted curve) is moving with a con-
stant velocity v0 (using Eq. (10)).

Next, we compare the calculated power with the power
measured in a reverberation room using the experimen-
tal loudspeaker discussed in Sec. II. Here we assumed
the pole cap moving with a constant acceleration (a0 =
ikcv0)—corresponding with a frequency independent cur-
rent of a constant amplitude through the loudspeaker.
Figure 10 shows plots of the calculated power for a rigid
spherical cap moving with a constant acceleration and
various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8
(dotted curve), and θ0 = π/10 (dashed-dotted curve), to-
gether with the power obtained from the measured loud-
speaker (dashed-irregular curve). It appears that the cal-
culated power for θ0 = π/8 (dotted curve) and the power
from the measured loudspeaker (dashed-irregular curve)
are quite similar, while there was no special effort done
to obtain a best fit. A slightly larger aperture than the
‘round’ value θ0 = π/8, which we use in many exam-
ples in the paper, would have resulted in a better fit.
The low-frequency behavior of Fig. 10 follows directly by
multiplying Eq. (40) with 1/(kc)2 because of the constant
acceleration of the cap.
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FIG. 9. (Color online) The power <[P ]

2πρ0cv
2
0R

2 of a rigid spheri-

cal cap moving with a constant velocity v0 and various aper-
tures, θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted curve), and
θ0 = π/10 (dashed-dotted curve), sphere radius R = 8.2 cm
using Eqs. (10) and (39).
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FIG. 10. (Color online) The power <[P ]c

2πρ0a
2
0R

4 [dB] vs. kR

(log. axis) of a rigid spherical cap moving with a constant ac-
celeration and various apertures, θ0 = 5π/32 (solid curve),
θ0 = π/8 (dotted curve), and θ0 = π/10 (dashed-dotted
curve), sphere radius R = 8.2 cm using Eqs. (10) and (39),
together with power from the measured loudspeaker (dashed-
irregular curve). The logarithmic horizontal axis runs from
kR=0.1–20, corresponding to a frequency range from 66 Hz–
13.2 kHz.

A. Directivity

The far-field pressure can be calculated by substituting
the asymptotic value30 (Ch. 10)

h(2)
n (kr) ≈ in+1 e−ikr

kr
(41)

in Eq. (7), which leads to

p(r, θ) ≈ ρ0c
e−ikr

kr

∞∑
n=0

inWn

h
(2)′
n (kR)

Pn(cos θ) . (42)
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In Kinsler et al.26 (Sec. 8.9), the far-field relation is writ-
ten as

p(r, θ, ϕ) = pax(r)H(θ, ϕ), (43)

in which pax(r) is the pressure at θ = 0, and H(θ, ϕ) is
dimensionless with H(0, 0)=1. Since there is no ϕ depen-
dence, we delete it. This leads to

pax(r) = ρ0c
e−ikr

kr

∞∑
n=0

inWn

h
(2)′
n (kR)

, (44)

and

H(θ) =
p(r, θ)
pax(r)

=

∑∞
n=0

inWn

h
(2)′
n (kR)

Pn(cos θ)∑∞
n=0

inWn

h
(2)′
n (kR)

. (45)

The total radiated power Π in the far field follows from
Eq. (34) and the far-field relation v = p/(ρ0c) as

Π =
∫
Sr

1
ρ0c
|p|2dSr =

1
ρ0c
|pax(r)|2r2

∫ 2π

0

∫ π
0
|H(θ, ϕ)|2 sin θ dθ dϕ .

(46)

For a simple (non-directive) source at the origin to
yield the same acoustical power on Sr, the pressure ps
should satisfy

Π =
1
ρ0c

4πr2|ps(r)|2 . (47)

Therefore, the directivity defined as

D = |pax(r)|2/|ps(r)|2 , (48)

follows from Eqs. (46) and (47), using the orthogonality
of the Legendre polynomials, as

D =
2|
∑∞
n=0

in+1Wn

h
(2)′
n (kR)

|2∑∞
n=0

|Wn|2

(n+1/2)|h(2)′
n (kR)|2

. (49)

The directivity index DI = 10 log10D [dB] vs. kR is
plotted in Fig. 11. For comparison the directivity

Drp =
(ka)2

1− J1(2ka)/ka
(50)

of a rigid piston in an infinite baffle26 is plotted in Fig. 11
(with ka = kR/2.5, so that the π/8-cap and piston have
the same area), as the light-long-dashed curve starting
at 3 dB. At low frequencies the directivity Drp is 3 dB
because the piston is radiating in the 2π-field, while the
caps are radiating in the 4π-field. At higher frequencies
the curve almost coincides with the dotted curve which
corresponds to the θ0 = π/8 cap.

Now consider the case that kR → ∞. Then using
h

(2)′

n (kR) ≈ ine−ikR/kR , it follows that D is approxi-
mated by

D ≈
2|
∑∞
n=0Wn|2∑∞

n=0
|Wn|2

(n+1/2)

=
2|W (θ = 0)|2∫ π

0
|W (θ)|2 sin θdθ

, (51)
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FIG. 11. (Color online) The directivity index DI =
10 log10D [dB] vs. kR (log. axis) of a rigid spherical cap
with various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8
(dotted curve), and θ0 = π/10 (dashed-dotted curve), and
sphere radius R = 8.2 cm using Eqs. (10) and (49). The
light-long-dashed curve starting at 3 dB is the directivity for
a rigid piston in an infinite baffle, using Eq. (50). The loga-
rithmic horizontal axis runs from kR=0.1–25, corresponding
to a frequency range from 66 Hz–16.5 kHz.

or, in words, by the ratio of |W (θ = 0)|2 and the aver-
age value of |W (θ)|2 over the sphere. Equations (49) and
(51) show that the directivity—which is a typical far-
field acoustical quantity—is fully determined in a simple
manner by the velocity profile of the pole cap, which can
be easily derived from measurements, e.g., with a laser-
Doppler meter. This procedure is not elaborated here. A
similar result was obtained for a flexible radiator in an
infinite flat baffle19. In the flat baffle case the directivity
increases with (ka)2. For the cap case, there is indeed an
initial increase with (kR)2, but at very high frequencies,
there is a decrease of the directivity. These high frequen-
cies are in most cases out of the audio range, but may
be of importance for ultrasonics. The deviation of the
(kR)2-behavior appears in Fig. 11 for θ0 as low as 5π/32
(solid curve). This effect may seem counterintuitive or
even non-physical, however, the on-axis (θ = 0) pressure
decreases for high frequencies as well (see Fig. 5). This
will decrease the numerator in Eq. (48) of the directivity.
This effect does not occur with a piston in an infinite baf-
fle, which has a constant, non-decreasing on-axis sound
pressure, but a narrowing beam width.

V. THE ACOUSTIC CENTER

The acoustic center of a reciprocal transducer can be
defined as the point from which spherical waves seem to
be diverging when the transducer is acting as a source.
There are more definitions, however, see Ref.34 for an
overview and discussion. This concept is mainly used for
microphones. Recently, the acoustic center was elabo-
rated35 for normal sealed-box loudspeakers as a partic-
ular point that acts as the origin of the low-frequency
radiation of the loudspeaker. At low frequencies, the ra-
diation from such a loudspeaker becomes simpler as the
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wavelength of the sound becomes larger relative to the
enclosure dimensions, and the system behaves externally
as a simple source (point source). The difference from
the origin to the true acoustic center is denoted as ∆. If
p(r, 0) and p(r, π) are the sound pressure in front and at
the back of the source, respectively, then ∆ follows from

|p(r, 0)|
r + ∆

=
|p(r, π)|
r −∆

, (52)

as

∆ = r
|q| − 1
|q|+ 1

, (53)

where

q = p(r, 0)/p(r, π). (54)

The pole-cap model is used to calculate the function q

æ

æ

æ

æ

æ
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æ

æ
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FIG. 12. (Color online) The function 20 log10 |q| [dB] vs.
kR (log. axis) given by Eq. (54) of a rigid spherical cap with
various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted
curve), and θ0 = π/10 (dashed-dotted curve), using Eqs. (7)
and (11), and a simple source on a sphere using Eq. (25)
(dashed curve), all at r = 1 m and sphere radius R = 8.2 cm.
The solid circles are from a real driver (same as Fig. 1-a, a =
3.2 cm) mounted in a square side of a rectangular cabinet.
The logarithmic horizontal axis runs from kR=0.02–30, cor-
responding to a frequency range from 13 Hz–19.8 kHz.

via Eq. (7), see Fig. 12. Subsequently, this model is used
to compute the acoustic center with Eq. (53). Assume
that kR� 1 and R/r � 1, and also that Wn is real with
Wn of at most the same order of magnitude as W0. Then
two terms of the series in Eq. (7) are sufficient, and using
Pn(1) = 1 and Pn(−1) = (−1)n, q can be written as

q ≈
(
W0

h
(2)
0 (kr)

h
(2)′
0 (kR)

+W1
h
(2)
1 (kr)

h
(2)′
1 (kR)

)/
(
W0

h
(2)
0 (kr)

h
(2)′
0 (kR)

−W1
h
(2)
1 (kr)

h
(2)′
1 (kR)

)
.

(55)

Because kR � 1, the small argument approximation of
the spherical Hankel functions

h
(2)′

0 (z) ≈ −i
z2
, h

(2)′

1 (z) ≈ −2i
z3

, (56)

can be used, and together with the identity

h
(2)
1 (kr)

h
(2)
0 (kr)

=
1
kr

(1 + ikr) , (57)

we get

q ≈
(

1+
W1

2W0
(1+ikr)

R

r

)/(
1− W1

2W0
(1+ikr)

R

r

)
. (58)

By our assumptions we have | W1
2W0

(1+ ikr)Rr | � 1 and so

q ≈ 1 +
W1

W0

R

r
(1 + ikr) . (59)

Finally, assuming that (kr)2 � 2|W0
W1
| rR , there holds

|q| ≈ 1 +
W1

W0

R

r
, (60)

and if W1R
W0r

� 1 there holds

ϕq = arg q ≈ arctan
W1

W0

ωR

c
, (61)

where it has been used that W1/W0 is real and k = ω/c.
Substitution of Eq. (60) into Eq. (53) results in

∆ ≈ R W1

2 W0
. (62)

Note that this result is real, independent of k and r, and
only mild assumptions were used. The delay between
the front and at the back of the source is equal to τ =
dϕq/dω. Using Eqs. (61) and (62), and assuming kR �
W0
W1

we get

τ ≈ 2∆
c
. (63)

For the case W is constant the Wn follow from Eq. (10)
resulting in

∆ ≈ 3
4
R(1 + cos θ0) . (64)

If θ0 = π and W is constant, the radiator is a pulsating
sphere, and has according to Eq. (64) its acoustical center
at the origin. For the case V is constant the Wn follow
from Eq. (11) resulting in

∆ ≈ R
(

cos θ0 +
1

1 + cos θ0

)
. (65)

If θ0 = π and V is constant, the notion of acoustical cen-
ter does not make sense, because of the notches in the po-
lar plot at low frequencies, see Fig. 4. The absolute error
in the approximation of ∆/R by Eq. (65) (for f=1 Hz,
R=8.2 cm, r=100 m, and 0 ≤ θ0 ≤ π/2) is < 5 10−7.
Figure 12 shows that for that case the low-frequency
asymptote is flat to about kR = 0.4 corresponding to
264 Hz. Hence the approximation of ∆/R by Eq. (65) is
rather accurate up to this frequency. The relative acous-
tic center difference ∆/R vs. θ0 is plotted in Fig. 13 for
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W is constant (solid curve) and V is constant (dotted
curve), using Eqs. (64) and (65), respectively. Note that
∆/R=3/2 for θ0 = 0 in both cases that V and W are
constant. This agrees with what would be given by the
simple source on a sphere, see Sec. III.B. This follows
also from Eq. (25): we have W0=1 and W1=3, and by
Eq. (62) we obtain ∆/R=3/2. This is for low frequen-
cies also shown in Ref.34 (Fig. 3, Eqs. 18–19). Further, it
appears that for modest apertures, say θ0 ≤ 0.5 the dif-
ference between the right-hand sides of Eqs. (64) and (65)
is very small and is of O(θ40). From this we may conclude
that—at low frequencies (kR ≤ 0.4)—the acoustic cen-
ter for a loudspeaker lies about 0–0.5 R in front of the
loudspeaker, where R is the radius in the case of a spher-
ical cabinet, or some other dimensional measure of the
cabinet. At higher frequencies the acoustic center shifts
further away from the loudspeaker. For example between
kR=1 (660 Hz) and kR=2 (1.32 kHz), q is about 5 dB
(see Fig. 12) corresponding (using Eq. (53)) to ∆ = 3.4R
= 28 cm.

0.0 0.5 1.0 1.5
Θ0

0.8

1.0

1.2

1.4

D

R

FIG. 13. (Color online) The relative acoustic center difference
∆/R vs. θ0 using Eq. (64) for W is constant (solid curve) and
using Eq. (65) for V is constant (dotted curve).

The polar response |p(r, θ)/p(r, 0)| at low frequencies
can be computed in a similar way as q in Eq. (58). The
minus sign in the denominator at the right-hand side of
Eq. (58) is due to P1(cosπ) = −1. Using now P1(cos θ) =
cos θ and interchanging the numerator and denominator
of Eq. (58) yields

p(r, θ)
p(r, 0)

≈(
1 +

W1

2W0
(1 + ikr)

R

r
cos θ

)/(
1 +

W1

2W0
(1 + ikr)

R

r

)
.

(66)

Assuming that (kr)2 � 2|W0
W1
| rR , Eq. (66) can be approx-

imated by ∣∣∣p(r, θ)
p(r, 0)

∣∣∣ ≈ 1 + (cos θ − 1)
W1

2W0

R

r
. (67)

Equation (67) clearly shows that the deviation from
omni-directional radiation is proportional to the ratios
W1/2W0 and R/r, while it is independent of the fre-
quency for low frequencies. For fixed W1/2W0 and R/r
the polar pattern is not truly omni-directional at low fre-
quencies. This is because the acoustic center does not
coincide with the origin in general .

VI. INVERSE PROBLEM

The Eqs. (21)–(23) show how to compute the pressure
in the space r ≥ R due to a harmonically excited (wave
number k) membrane on the spherical cap 0 ≤ θ ≤ θ0
with a known radial component W of a velocity profile.
In the reverse direction, the Eqs. (21)–(23) can serve as
the basis for a method for estimating W from measure-
ments of the pressure p in the space r ≥ R that W gives
rise to. This yields a method for far-field loudspeaker as-
sessment from near-field data (generalized Keele scheme)
see18 where this was applied to predict far-field sound
pressure data from near-field measured pressure data.
Because the pressure data can be collected in the (rel-
ative) near-field of a loudspeaker, this avoids the use of
anechoic rooms that would be necessary if the far-field
were to be assessed directly. The profile W can usually
be estimated accurately by a limited number of expansion
coefficients u` in Eq. (18), and these can be estimated by
taking a matching approach in Eq. (22) in which the u`
are chosen such that they optimize the match between
the measured pressure and the theoretical expression in-
volving the u` at the right-hand side of Eq. (22). Given
measurements, see Fig. 1,

p̂j = p̂j(Pj) , Pj = rj(cosϕj sin θj , sinϕj sin θj , cos θj) ,
(68)

where j = 0, 1, · · · , J, the numbers d`, ` = 0, 1, · · · , L,
are chosen such that

J∑
j=0

|p̂j −
L∑
`=0

d`S`(rj , θj)|2 sin θj , (69)

is minimal. The solution of this minimization problem
can be obtained by standard linear algebra methods.
Then w0 , u` , ` = 0, 1, · · · , L are estimated by setting

d0 = −iρ0cw0 , u` = d`/d0 , ` = 0, 1, · · · , L . (70)

There are various questions that arise in connection
with the above optimization problem, such as number
and choice of the measurement points Pj , choice of L,
condition of the linear systems that occur, influence of
noise and of systematic errors (such as incorrect setting
of R and/or θ0), etc. It is out of the scope of the present
paper to address any of these issues in detail. Instead,
one representative simulation example is given.

Simulation example

Take R = 8.2 cm, θ0 = π/4, k = ω/c = 2πf/c with c =
340 m/s, f= 4 kHz, so that kR = 6. The measurement
points Pj(rj , θj , ϕj) are taken in the form

R 2j1/J1 = r(j1) ,
π(j2 − 1

2 )
J2

= θ(j2) ,
2π(j3 − 1

2 )
J3

= ϕ(j3) ,

(71)
with j1 = 1, · · · , J1 = 4; j2 = 1, · · · , J2 = 6; j3 =
1, · · · , J3 = 6. Such a set of measurement points yields
a convenient implementation of the solution of the opti-
mization problem but does not need to be optimal in any
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other respect (not aimed at here, as said). The profile W
is chosen to be

W (K)(θ) = V (K)(θ) cos θ , 0 ≤ θ ≤ θ0 , (72)

where V (K)(θ) is the Kth Stenzel-type profile as in
Sec. III.C (see Eqs. (26), (30)), and K = 2. We require
for this example v0 = v

(K)
0 = 1 m/s, and by Eqs. (32)

and (33) we get respectively w0 = w
(K)
0 and

u
(K)
` = K+2

K+1+cos θ0

[
K+1
K+2 (1− cos θ0)q(K+1)

` + (cos θ0)q(K)
`

]
.

(73)
Using q

(K+1)
` , q(K)

` given by Eq. (29), the pressure p is
computed in accordance with Eq. (21) with u` = u

(K)
` .

Measurements p̂j are obtained in simulation by adding
complex white noise (SNR= 40 dB) to the computed
p(Pj). The non-zero coefficients of W (K) are estimated
by taking L = K + 1 in the optimization problem,
and this yields estimates ŵ0, û0, · · · , ûK+1 of w0,
u0, · · · , uK+1. Figure 14 for the case K=2 shows the
Stenzel profile W (K) of Eq. (72) using Eq. (20) directly
(solid curve) together with the reconstructed profiles

Ŵ (K)(θ) = ŵ
(K)
0

K+1∑
`=0

û`R
0
2`

( sin 1
2θ

sin 1
2θ0

)
, 0 ≤ θ ≤ θ0 ,

(74)
without noise (dotted curve) and with noise (dashed-
dotted curve) added to the pressure points p̂j . The re-
covered û` are computed by solving Eq. (69) and using
Eqs. (70), (31), and Eqs.(16)–(18). Figure 14 shows that
the (noiseless) reconstructed profile (dotted curve) coin-
cides with the Stenzel profile (solid curve), and that the
recovered profile using the noisy pressure points (dashed-
dotted curve) is very similar to the other two curves. The
method appears to be robust for noise contamination.
Figure 15 shows the corresponding polar plot of the ve-
locity profile of Fig. 14. The solid curve in Fig. 15 is for
the near field (r = 0.0975 m) and the dotted curve for
the far- field (r = 1 m). It appears that the near field is
more directive than the far field.

VII. EXTENSION TO NON-AXIALLY SYMMETRIC
PROFILES

Loudspeaker membranes vibrate mainly in a radially
symmetric fashion, in particular at low frequencies. At
higher frequencies, break-up behavior can become man-
ifest, and then it may be necessary to consider non-
radially symmetric profiles. In the present context, where
a loudspeaker is modeled as consisting of a rigid spher-
ical cabinet with a flexible spherical cap, this requires
consideration of non-axially symmetric velocity profiles
V (θ, ϕ) and W (θ, ϕ) on S0. This is beyond the scope of
the present paper and is discussed elsewhere20.

VIII. CONCLUSIONS

Appropriately warped Legendre polynomials provide
an efficient and robust method to describe velocity pro-
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FIG. 14. (Color online) Stenzel profile W (K)/(K+ 1) (K = 2
and θ0 = π/4) of Eq. (72) using Eq. (20) directly (solid curve)

together with the reconstructed profiles Ŵ (K) without noise
(dotted curve) and with noise added to the pressure points p̂j
(dashed-dotted curve). The (noiseless) reconstructed profile
(dotted curve) coincides with the input profile (solid curve).
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FIG. 15. (Color online) Polar plots (10 dB/div.) in the near
field (solid curve, r = 0.0975 m) and in the far field (dotted
curve, r = 1 m), corresponding to the parameters of the sim-
ulation example and the velocity profile of Fig. 14. All curves
are normalized such that the SPL is 0 dB at θ=0.

files of a flexible spherical cap on a rigid sphere. Only a
few coefficients are necessary to approximate various ve-
locity profiles. The polar plot of a rigid spherical cap on
a rigid sphere has been shown to be quite similar to that
of a real loudspeaker, and is useful in the full 4π-field.
The spherical-cap model yields polar plots that exhibit
good full range similarity with the polar plots from real
loudspeakers. It thus outperforms the more conventional
model in which the loudspeaker is modeled as a rigid
piston in an infinite baffle. The cap model can be used
to predict, besides polar plots, various other acoustical
quantities of a loudspeaker. These quantities include the
sound pressure, baffle-step response, sound power, direc-
tivity, and the acoustic center. At low frequencies (kR ≤
0.4) the acoustic center for a loudspeaker lies about 0–
0.5 R in front of the loudspeaker, where R is the radius
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in the case of a spherical cabinet, or some other dimen-
sional measure of the cabinet. At higher frequencies the
acoustic center shifts further away from the loudspeaker.
The method presented herein enables one to solve the in-
verse problem of calculating the actual velocity profile of
the cap radiator using (measured) on- and off-axis sound
pressure data. This computed velocity profile allows the
extrapolation to far-field loudspeaker pressure data, in-
cluding off-axis behavior. Because the pressure data can
be collected in the (relative) near-field of a loudspeaker,
this avoids the use of anechoic rooms that would be nec-
essary if the far-field were to be assessed directly.
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12 T. Hélie, and X. Rodet. Radiation of a pulsating portion
of a sphere: Application to horn radiation. Acta Acustica
united with Acustica, 89(4), 565–577, July/August 2003

13 R.J. McGough, T.V. Samulski, and J.F. Kelly. An effi-
cient grid sectoring method for calculations of the near-
field pressure generated by a circular piston. J. Acoust.
Soc. Am., 115(5):1942–1954, May 2004.

14 T.D. Mast, and F. Yu. Simplified expansions for radia-
tion from a baffled circular piston. J. Acoust. Soc. Am.,
118:3457–3464, 2005.

15 T.J. Mellow. On the sound field of a resilient disk in an
infinite baffle. J. Acoust. Soc. Am., 120:90–101, 2006.

16 J.F. Kelly, and R.J. McGough. An annular superposition
integral for axisymmetric radiators. J. Acoust. Soc. Am.,
121:759–765, 2007.

17 Xiaozheng Zeng, and R.J. McGough. Evaluation of the an-
gular spectrum approach for simulations of near-field pres-
sures. J. Acoust. Soc. Am., 123(1):68–76, January 2008.

18 R.M. Aarts, and A.J.E.M. Janssen. On-axis and far-field
sound radiation from resilient flat and dome-shaped radia-
tors. J. Acoust. Soc. Am., 125(3):1444-1455, March 2009.

19 R.M. Aarts, and A.J.E.M. Janssen. Sound radiation quan-
tities arising from a resilient circular radiator. J. Acoust.
Soc. Am., 126(4):17761787, Oct. 2009.

20 R.M. Aarts, and A.J.E.M. Janssen. Sound radiation from
a resilient spherical cap on a rigid sphere. J. Acoust. Soc.
Am., 127(4), April 2010.

21 R.M. Aarts, and A.J.E.M. Janssen. Estimating the ve-
locity profile and acoustical quantities of a harmonically
vibrating loudspeaker membrane from on-axis

22 P.M. Morse, and H. Feshbach. Methods of theoretical
physics. McGraw-Hill, 1953.

23 H. Stenzel, and O. Brosze. Guide to computation of sound
phenomena (published in German as Leitfaden zur Berech-
nung von Schallvorgängen), 2nd ed. Springer-Verlag,
Berlin, 1958.

24 P.M. Morse, and K.U. Ingard. Theoretical acoustics.
McGraw-Hill Book Company, New York, 1968.

25 E. Skudrzyk. The Foundations of Acoustics. Springer-
Verlag, New York, 1971, ASA-reprint 2008.

26 L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders.
Fundamentals of Acoustics. Wiley, New York, 1982.

27 A.D. Pierce. Acoustics, An Introduction to Its Physical
Principles and Applications. Acoustical Society of America
through the American Institue of Physics, 1989.

28 D.T. Blackstock. Fundamentals of physical Acoustics. John
Wiley & Sons, New York, 2000.

29 F.J.M. Frankort. Vibration and Sound Radiation of Loud-
speaker Cones. Ph.D. dissertation, Delft University of
Technology, 1975.

30 M. Abramowitz, and I.A. Stegun. Handbook of Mathemat-
ical Functions. Dover, New York, 1972.

31 Harry F. Olson. Direct radiator loudspeaker enclosures. J.
Audio Eng. Soc. 17(1), 22–29, Jan. 1969.

32 A.J.E.M. Janssen, and P. Dirksen. Concise formula for the
Zernike coefficients of scaled pupils. J. Microlith., Micro-
fab., Microsyst., 5(3), 030501, July-Sept. 2006.

33 A.J.E.M. Janssen, S. van Haver, P. Dirksen, and J.J.M.
Braat. Zernike representation and Strehl ratio of optical
systems with variable numerical aperture. J. of Modern
Optics, 55(7), 1127–1157, April 2008.

34 Finn Jacobsen, Salvador Barrera Figueroa, and Knud Ras-
mussen. A note on the concept of acoustic center. J.
Acoust. Soc. Am., 115(4):1468–1473, April 2004.

35 John Vanderkooy. The acoustic center: A new concept for
loudspeakers at low frequencies. AES Convention paper

6912 presented at the 121th Convention, San Francisco,
Oct. 5–8, 2006.

Modeling a loudspeaker as a flexible spherical cap on a rigid sphere 13


