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Abstract

It has been suggested by Morse and Ingard that the sound radiation of
a loudspeaker in a box is comparable with that of a spherical cap on a rigid
sphere. This has been established recently by the authors of this paper
who have developed a computation scheme for the forward and inverse
calculation of the pressure due to a harmonically excited, flexible cap on
a rigid sphere with an axially symmetric velocity distribution. In this
paper, the comparison is done for other quantities that are relevant for
audio engineers, viz. the baffle-step response, sound power and directivity,
and the acoustic center of the radiator.

0 Introduction

The sound radiation of a loudspeaker is often modeled by assuming the loud-
speaker cabinet to be a rigid infinite baffle around a circularly symmetric mem-
brane. Given a velocity distribution on the membrane, the pressure in front
of the baffle due to a harmonic excitation is then described by Rayleigh’s
integral [1] or by King’s integral [2]. The theory for this model has been

∗This paper is partly based on paper 7989 presented at the 128th Convention 2010 May
22–25 London, UK.
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firmly established, both analytically and computationally, in many journal pa-
pers [3, 4, 5, 6, 7, 8, 9, 10] and textbooks [11, 12, 13, 14]. The results thus ob-
tained are in good correspondence with what one obtains when the loudspeaker
is modeled as being a finite-extent box-like cabinet with a circular, vibrating
membrane [15, 16]. Here one should, however, restrict to the region in front of
the loudspeaker and not too far from the axis. The validity of the infinite-baffle
model becomes questionable, or even nonsensical, on the side region or behind
the loudspeaker [12, p. 181].

It has been suggested by Morse and Ingard [11, Sec. 7.2], that using a
sphere with a membrane on a spherical cap as a simplified model of a loud-
speaker whose cabinet has roughly the same width, height and depth, produces
comparable results as the true loudspeaker. An application for the cap model
is that it can be used to predict the polar behavior of a loudspeaker cabinet.
Pressure calculations for true loudspeakers can normally only be done by using
advanced numerical techniques [15, 16]. In the case of the spherical-cap model,
the pressure can be computed as the the solution of the Helmholtz equation
with spherical boundary conditions in the form of series involving the products
of spherical harmonics and spherical Hankel functions [17, Ch. 11.3], [18, Ch.
III, Sec. 6], [11, Ch. 7], [19, Ch. 19–21] using coefficients that are determined
from the boundary conditions at the sphere including the flexible cap. In [20]
there is a discussion on how the polar cap model for sphere radius R → ∞
agrees with the model that uses the flat piston in an infinite baffle. When the
cap aperture angle θ0 approaches π, the solution becomes that of the simple
pulsating sphere. Hence, the polar cap solution subsumes the solutions of the
two classic radiation problems. This very same issue, for the case of a piston,
has been addressed by Rogers and Williams [21]. In [22] the spherical-cap model
has been used to describe sound radiation from a horn.

In [23] the authors of the present paper make a detailed comparison, on the
level of polar plots, of the pressure (SPL) due to a true loudspeaker and the
pressure computed using the spherical-cap model. The standard computation
scheme for this model has been modified in [23] in the interest of solving the
inverse problem of estimating the velocity distribution on the membrane from
measured pressure data around the sphere. To accommodate the stability of
the solution of this inverse problem, an efficient parametrization of velocity pro-
files vanishing outside the cap in terms of expansion coefficients with respect to
orthogonal functions on the cap is used. This leads to a more complicated com-
putation scheme than the standard one, with the advantage that it can be used
in both forward and reversed direction. The emphasizes in the present paper is
on comparing acoustical quantities that can be obtained from the spherical-cap
model by forward computation, and so the more complicated scheme in [23] is
not needed. Hence the standard scheme is used in the present paper.

The quantities considered in this paper for comparing the results from a true
loudspeaker and those produced by using the spherical cap are:

• the baffle step response,

• sound power and directivity,
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• the acoustic center.

In Sec. 1 the geometry and a detailed overview of the basic formulas and some
results of [23] are given. In Sec. 2 the baffle-step response computed using the
spherical-cap model and the one obtained from the loudspeaker are compared.
In Sec. 3 the same is done for the sound power and directivity, while in Sec. 4 the
acoustic center is considered. In Sec. 5 the conclusions and outlook for further
work are presented.

1 Geometry and basic formulas

Assume an axisymmetric velocity profile V (θ), in normal direction on a spherical
cap S0 given in spherical coordinates as

S0 = {(r, θ, ϕ) | r = R , 0 ≤ θ ≤ θ0 , 0 ≤ ϕ ≤ 2π} , (1)

with R the radius of the sphere with center at the origin and θ0 the aperture
angle of the cap measured from the center. The half-line θ = 0 is identified
with the positive z-direction in the Cartesian coordinate system, see Fig. 1
for the used geometry and notations. It is assumed that V vanishes outside
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Figure 1: Geometry and notations.

S0. Furthermore, as is commonly the case in loudspeaker applications, the cap
moves parallel to the z-axis, according to the component

W (θ) = V (θ) cos θ . (2)
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of V in the z-direction. The average of this z-component over the cap,

1
AS0

∫∫
S0

W (θ) sin θ dθ dϕ , AS0 = 4πR2 sin2(θ0/2) , (3)

with AS0 the area of the cap, is denoted by w0. The time-independent part
p(r, θ) of the pressure due to a harmonic excitation of the flexible membrane
with z-component W of the velocity distribution is given by

p(r, θ) = −iρ0c

∞∑
n=0

Wn Pn(cos θ)
h

(2)
n (kr)

h
(2)′
n (kR)

, (4)

see [11, Ch. 7] or [19, Ch. 19]. Here ρ0 is the density of the medium, c is
the speed of sound in the medium, k = ω/c is the wave number with ω the
radial frequency of the applied excitation, and r ≥ R, 0 ≤ θ ≤ π (the azimuthal
variable ϕ is absent due to the assumption of axisymetric profiles). Furthermore,
Pn is the Legendre polynomial of degree n [24], the coefficients Wn are given by

Wn = (n+ 1/2)
∫ π

0

W (θ)Pn(cos θ) sin θ dθ , n = 0, 1, · · · , (5)

and h
(2)
n and h

(2)′

n are the spherical Hankel function and its derivative of order
n = 0, 1, · · · , [24, Ch. 10].

The case that W = w0 is constant on the cap has been treated in [18,
Part III, Sec. 6], [11, p. 343] and [19, Sec. 20.5] with the result that

Wn =
1
2
w0(Pn−1(cos θ0)− Pn+1(cos θ0)) . (6)

The pressure p is then obtained by inserting these Wn into the right-hand-side
of Eq. (4). Similarly, the case that V = v0 is constant on S0 has been treated
in [19, Sec. 20.6], with the result that

Wn = 1
2v0{

n+1
2n+3 (Pn(cos θ0)− Pn+2(cos θ0))+
n

2n−1 (Pn−2(cos θ0)− Pn(cos θ0))} . (7)

In Eqs. (6) and (7) the definition P−n−1 = Pn, n = 0, 1, · · · , has been used to
deal with the case n = 0 in Eq. (6) and the cases n = 0, 1 in Eq. (7). In [23,
Eq. (20)], a formula for the expansion coefficients Wn in terms of expansion
coefficients of the profile W with respect to orthogonal functions on the cap is
given. This formula is instrumental in solving the inverse problem of estimating
the W from pressure data measured around the sphere. However, for the present
goals, that can be achieved by forward computation, this is not needed.

In Fig. 2, taken from [23, Fig. 2] the resemblance is shown between the polar
plots of: a real driver in a rectangular cabinet (Fig. 2-a), a rigid piston in an
infinite baffle (Fig. 2-b), and a rigid spherical cap in a rigid sphere (Fig. 2-c) us-
ing Eqs. (4) and (7). The driver (vifa MG10SD09-08, a = 3.2 cm) was mounted
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Figure 2: Polar plots of the SPL (10 dB/div.), f= 1 kHz (solid curve), 4 kHz
(dotted curve), 8 kHz (dashed-dotted curve), and 16 kHz (dashed curve), corre-
sponding for c = 340 m/s and a = 3.2 cm to ka values: 0.591, 2.365, 4.731, 9.462.
All curves are normalized such that the SPL is 0 dB at θ=0. (a) Loudspeaker
radius a = 3.2 cm, measuring distance r = 1 m) in rectangular cabinet, (b) Rigid
piston (a = 3.2 cm) in infinite baffle, (c) Rigid spherical cap (aperture θ0 = π/8,
sphere radius R = 8.2 cm, r = 1 m, corresponding to kR values: 1.5154, 6.0614,
12.1229, 24.2457) using Eqs. (4) and (7), constant velocity V = v0 = 1 m/s.
The parameters a, R, and θ0 are such that the area of the piston and the cap
are equal.
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in a square side of a rectangular cabinet with dimensions 13x13x18.6 cm and
measured on a turntable in an anechoic room at 1 m distance.

The area AS0 of the spherical cap is given in Eq. (3). If this area is chosen
to be equal to the area of the flat piston (a disk with radius a), there follows

a = 2R sin(θ0/2). (8)

The parameters used for Fig. 2, a = 3.2 cm, θ0 = π/8 and R = 8.2 cm, are
such that the area of the piston and the cap are equal, while the sphere and
the cabinet have comparable volumes (2.3 and 3.1 l, respectively). If R were
chosen such that the sphere and cabinet have equal volume, the polar plot
corresponding to the spherical cap model is hardly different from the one in
Fig. 2-c, with deviations of about 1 dB or less, see [23, Fig. 2-c,d]. Apparently,
the actual value of the volume is of modest influence. It is hard to give strict
bounds to deviations of the actual size, but as a rule of thumb one can choose
the volume of the sphere the same as that for the real cambinet, and the area
of the cap the same as that of the driver. To gain more insight in this matter
we keep R fixed and change the cap area by changing the aperture θ0. To
illustrate that the influence can be significant, polar plots are shown in Fig. 3
for constant V = v0 = 1 m/s, using Eqs. (4) and (7). Figure 3 clearly shows
that for increasing aperture angle θ0 until, say, θ0 = π/2, the radiation becomes
more directive.

In the limit case θ0 = π there is only one non-zero Wn in Eqs. (6) and (7),
viz. Wn = δ0n for constant W and Wn = δ1n for constant V , respectively (δ:
Kronecker’s delta). In the case of constant W this is a non-directive pulsating
sphere. In the case of constant V there holds

p(r, θ) = −iρ0c v0 cos θ
h

(2)
1 (kr)

h
(2)′

1 (kR)
. (9)

The latter case is discussed in Ref. [13, Sec. 4.-2] as the transversely oscillating
rigid sphere. It is readily seen that p(r, θ)/p(r, 0) = cos θ as is plotted in Fig. 4.
Finally, consider the case of a simple source with a δ-mass b at the point (0, 0, z =
R). This can be obtained by taking W (θ) = w0 = b/AS0 0 ≤ θ ≤ θ0, and
letting θ0 decrease to 0. Since Pn(1) = 1 for all n, Eq. (5) gives Wn = (2n+ 1)b
for all n as θ0 goes to 0, and there results

p(r, θ) = −iρ0c b

∞∑
n=0

(2n+ 1)Pn(cos θ)
h

(2)
n (kr)

h
(2)′
n (kR)

. (10)

This case is illustrated in [23, Fig. 3] from which it is apparent that the response
at θ = 0 and θ = π are of the same order of magnitude, especially at low
frequencies. This is discussed further in Sec. 3.2 in connection with the acoustic
center.
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Figure 3: Polar plots of the SPL (10 dB/div.), f= 1 kHz (solid curve), 4 kHz
(dotted curve), 8 kHz (dashed-dotted curve), and 16 kHz (dashed curve), Rigid
spherical cap for various aperture θ0, (sphere radius R = 8.2 cm, r = 1 m) using
Eqs. (4) and (7), constant velocity V = v0 = 1 m/s. All curves are normalized
such that the SPL is 0 dB at θ=0.
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Figure 4: Polar plot for a sphere (θ0 = π) moving with constant velocity V = v0
= 1 m/s in the z-direction, using Eqs. (4) and (7). In this case W1 = 1, Wn is
equal to zero for all values n 6= 1.

2 Comparison for baffle-step responses

At low frequencies the baffle of a loudspeaker is small compared to its wavelength
and radiates due to diffraction effects in the full space (4π-field). At those low
frequencies the radiator does not benefit from the baffle in terms of gain. At
high frequencies the loudspeaker benefits from the baffle which yields a gain
of 6 dB. This transition is the well-known baffle step. The center frequency of
this transition depends on the size of the baffle. Olson [25] has documented
this for twelve different loudspeaker enclosures, including the sphere, cylinder,
and rectangular parallelepiped. All those twelve enclosures share the common
feature of increasing gain by about 6 dB when the frequency is increased from
low to high. The exact shape of this step depends on the particular enclosure.
For spheres the transition is smoothest, while for other shapes undulations are
manifest, in particular for cabinets with sharp-edged boundaries. In Fig. 5-a the
baffle step is shown for a polar cap (θ0 = π/8, constant velocity V = v0 = 1 m/s)
on a sphere of radius R=0.082 m using Eqs. (4) and (7), for different observation
angles θ = 0 (solid curve), θ = π/9 (dotted curve), θ = 2π/9 (dashed-dotted
curve), and θ = 3π/9 (dashed curve). Compare the curves of Fig. 5-a with the
measurements using the experimental loudspeaker (Fig. 5-b) discussed in Sec. 1
and that of a rigid piston in an infinite baffle (Fig. 5-c), using [12, 13, 14]

pi(θ)/pi(θ = 0) = J1(ka sin(θ))/(ka sin(θ)) (11)

for the normalized pressure. It appears that there is a good resemblance be-
tween the measured frequency response of the experimental loudspeaker. The
undulations, e.g., for θ = 3π/9 (dashed curve) at 7.4, 10, and 13.4 kHz corre-
spond well. Although these undulations are often attributed to the non-rigid
cone movement of the driver itself, our pictures show that it is mainly a diffrac-
tion effect. Furthermore, it can be observed that even on-axis (θ = 0) there
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is a gradual decrease of SPL at frequencies above about 10 kHz. It can be
shown from the asymptotics of the spherical Hankel functions that for θ = 0,
k → ∞, and r � R, the sound pressure p(r, θ) decays at least as O(k−1/3).
This is in contrast with a flat piston in an infinite baffle (Fig. 5-c). There, the
on-axis pressure does not decay, and the baffle step is absent. This is discussed
further at the end of Sec. 3.2. Although it is highly speculative, and should
be validated for different drivers and cabinets, one might expect that the ratio
of the pressure of the cap using Eqs. (4), (7), and that of the pressure for the
piston in an infinite baffle using Eq. (11) can assist in interpreting published
loudspeaker response curves which are measured under standardized (infinite
baffle) conditions. For typical loudspeakers at low frequencies the loss is theo-
retically 6 dB, but is counteracted by room placement - a range of 3 to 6 dB
is usually allowed. At sufficiently high frequencies the piston does not benefit
from the baffle because it is highly directional. Finally, the tests were made
using a high-quality 3.5-inch loudspeaker. In such a unit, the first cone breakup
mode usually occurs around 10 kHz. However the present one does not exhibit
a clear breakup mode, because it is very well damped. This was verified with a
PolyTec PSV-300-H scanning vibrometer with an OFV-056 laser head.

3 Comparison for power and directivity

3.1 Sound power

The sound power is meaningful in various respects. Firstly, it is used in efficiency
calculations which we do not consider here. Secondly, it is important regarding
sound radiation. Different loudspeakers may share a common, rather flat, on-
axis SPL-response, while their off axis-responses differ considerably. Therefore
we consider the power response as important. We restrict ourselves to axisym-
metric drivers and we do not discuss horn loudspeakers. The power is defined
as the intensity pv∗ integrated over the sphere Sr of radius r ≥ R,

P =
∫
Sr

pv∗dSr , (12)

where p and v are the pressure and velocity at an arbitrary point on the sphere
Sr. Using Eq. (4) for the pressure and

v =
−1
ikρ0c

∂p

∂n
(13)

we get

v(r, θ, ϕ) =
∞∑
n=0

Wn Pn(cos θ)
h

(2)′

n (kr)

h
(2)′
n (kR)

. (14)

By the orthogonality of the Legendre polynomials it follows that

P =
∫
Sr
pv∗dSr = 2π

∫ π
0
p(r, θ)v∗(r, θ)r2 sin θdθ =

−iρ0c
∑∞
n=0

|Wn|2
n+1/2

2πr2h(2)
n (kr)(h(2)′

n (kr))∗

|h(2)′
n (kR)|2

.
(15)
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Figure 5: Frequency responses for θ = 0 (solid curve), θ = π/9 (dotted curve),
θ = 2π/9 (dashed-dotted curve), and θ = 3π/9 (dashed curve). (a) Baffle step
of a polar cap (θ0 = π/8) on a sphere of radius R =0.082 m, at distance r =
1 m, using Eqs. (4), (7) (constant velocity V = v0 = 1 m/s). All curves are
normalized such that the SPL is 0 dB at 100 Hz. (b) Frequency response of a
driver (same as Fig. 2-a, a = 3.2 cm) mounted in a square side of a rectangular
cabinet with dimensions 13x13x18.6 cm. The loudspeaker was measured in an
anechoic room at 1 m distance. The on-axis response was normalized to 0 dB
at 200 Hz, the other curves were normalized by the same amount. (c) Response
of a rigid piston (a=3.2 cm) in a infinite baffle in the far field. All curves are
normalized such that the SPL is 0 dB at 100 Hz.
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Using Ref. [24], Eq. 10.1.6,

W{jn(z), yn(z)} = jn(z)y′n(z)− j′n(z)yn(z) =
1
z2
, (16)

where W in Eq. (16) denotes the Wronskian, we get

<[P ] =
2πρ0c

k2

∞∑
n=0

|Wn|2

(n+ 1/2)|h(2)′
n (kR)|2

. (17)

Note that Eq. (17) has been derived without using any (near-field or far-field)
approximation. The real part of the acoustical power is independent of r, which
is in accordance with the conservation of power law. For low frequencies Eq. (17)
is approximated as

<[P ] = 4πρ0cW
2
0 k

2R4 . (18)

To illustrate Eq. (17), the normalized power <[P ]
2πρ0cv20R

2 is plotted in Fig. 6,
where a cap with various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted
curve), and θ0 = π/10 (dashed-dotted curve) is moving with a constant velocity
V = v0=1 m/s (using Eq. (7)).

5 10 15 20
kR
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ReHPL

Figure 6: The power <[P ]
2πρ0cv20R

2 of a rigid spherical cap moving with a constant
velocity (V = v0 = 1 m/s) and various apertures, θ0 = 5π/32 (solid curve),
θ0 = π/8 (dotted curve), and θ0 = π/10 (dashed-dotted curve), sphere radius
R = 8.2 cm using Eqs. (7) and (17).

Next, we compare the calculated power with the power measured in a re-
verberation room using the experimental loudspeaker discussed in Sec. 1. Here
we assumed the pole cap moving not with a constant velocity but with with a
constant acceleration (V ′ = ikcV )—corresponding with a frequency indepen-
dent current of a constant amplitude through the loudspeaker. Figure 7 shows
plots of the calculated power for a rigid spherical cap moving with a constant
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acceleration and various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted
curve), and θ0 = π/10 (dashed-dotted curve), together with the power obtained
from the measured loudspeaker (dashed-irregular curve). It appears that the

0.2 0.5 1. 2. 5. 10. 20.
kR

50

55

60

65

ReHPL

Figure 7: The power <[P ]c
2πρ0a2

0R
4 [dB] vs. kR (log. axis) of a rigid spherical

cap moving with a constant acceleration (V ′ = ikcV ) and various apertures,
θ0 = 5π/32 (solid curve), θ0 = π/8 (dotted curve), and θ0 = π/10 (dashed-
dotted curve), sphere radius R = 8.2 cm using Eqs. (7) and (17), together
with the power from the measured loudspeaker (dashed-irregular curve). The
logarithmic horizontal axis runs from kR=0.1–20, corresponding to a frequency
range from 66 Hz–13.2 kHz.

calculated power for θ0 = π/8 (dotted curve) and the power from the measured
loudspeaker (dashed-irregular curve) are quite similar, while there was no spe-
cial effort done to obtain a best fit. A slightly larger aperture than the ‘round’
value θ0 = π/8, which we use in many examples in the paper, would have re-
sulted in a better fit. The low-frequency behavior of Fig. 7 follows directly by
multiplying Eq. (18) with 1/(kc)2 because of the constant acceleration of the
cap.

3.2 Directivity

The far-field pressure can be calculated by substituting the asymptotic value [24,
Ch. 10]

h(2)
n (kr) ≈ in+1 e−ikr

kr
(19)

in Eq. (4), which leads to

p(r, θ) ≈ ρ0c
e−ikr

kr

∞∑
n=0

inWn

h
(2)′
n (kR)

Pn(cos θ) . (20)
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In Kinsler et al. [12, Sec. 8.9], the far-field relation is written as

p(r, θ, ϕ) = pax(r)H(θ, ϕ), (21)

in which pax(r) is the pressure at θ = 0, and H(θ, ϕ) is dimensionless with
H(0, 0)=1. Since there is no ϕ dependence, we delete it. This leads to

pax(r) = ρ0c
e−ikr

kr

∞∑
n=0

inWn

h
(2)′
n (kR)

, (22)

and

H(θ) =
p(r, θ)
pax(r)

=

∑∞
n=0

inWn

h
(2)′
n (kR)

Pn(cos θ)∑∞
n=0

inWn

h
(2)′
n (kR)

. (23)

The total radiated power Π in the far field follows from Eq. (12) and the far-field
relation v = p/(ρ0c) as

Π =
∫
Sr

1
ρ0c
|p|2dSr =

1
ρ0c
|pax(r)|2r2

∫ 2π

0

∫ π
0
|H(θ)|2 sin θ dθ dϕ .

(24)

For a simple (non-directive) source at the origin to yield the same acoustical
power on Sr, the pressure ps should satisfy

Π =
1
ρ0c

4πr2|ps(r)|2 . (25)

Therefore, the directivity defined as

D = |pax(r)|2/|ps(r)|2 , (26)

follows from Eqs. (23)–(25), using the orthogonality of the Legendre polynomi-
als, as

D =
2|
∑∞
n=0

in+1Wn

h
(2)′
n (kR)

|2∑∞
n=0

|Wn|2

(n+1/2)|h(2)′
n (kR)|2

. (27)

The directivity index DI = 10 log10D [dB] vs. kR is plotted in Fig. 8 for a
cap moving with constant velocity V . For comparison the directivity

Drp =
(ka)2

1− J1(2ka)/ka
(28)

of a rigid piston in an infinite baffle [12] is plotted in Fig. 8 (with ka = kR/2.5,
so that the π/8-cap and piston have the same area), as the light-long-dashed
curve starting at 3 dB. At low frequencies the directivity Drp is 3 dB because
the piston is radiating in the 2π-field, while the caps are radiating in the 4π-
field. At higher frequencies the curve almost coincides with the dotted curve
which corresponds to the θ0 = π/8 cap.
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Figure 8: The directivity index DI = 10 log10D [dB] vs. kR (log. axis) of a
rigid spherical cap with various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8
(dotted curve), and θ0 = π/10 (dashed-dotted curve), moving with constant
velocity V and sphere radius R = 8.2 cm using Eqs. (7) and (27). The light-long-
dashed curve starting at 3 dB is the directivity for a rigid piston in an infinite
baffle, using Eq. (28). The logarithmic horizontal axis runs from kR=0.1–25,
corresponding to a frequency range from 66 Hz–16.5 kHz.

Now consider the case that kR→∞. Then using h(2)′

n (kR) ≈ ine−ikR/kR ,
it follows that D is approximated by

D ≈
2|
∑∞
n=0Wn|2∑∞

n=0
|Wn|2

(n+1/2)

=
2|W (θ = 0)|2∫ π

0
|W (θ)|2 sin θdθ

, (29)

or, in words, by the ratio of |W (θ = 0)|2 and the average value of |W (θ)|2 over
the sphere. Equations (27) and (29) show that the directivity—which is a typical
far-field acoustical quantity—is fully determined in a simple manner by the
velocity profile of the pole cap, which can be easily derived from measurements,
e.g., with a laser-Doppler meter. This procedure is not elaborated here. A
similar result was obtained for a flexible radiator in an infinite flat baffle [10].
In the flat baffle case the directivity increases with (ka)2. For the cap case, there
is indeed an initial increase with (kR)2, but at very high frequencies, there is a
decrease of the directivity. These high frequencies are in most cases out of the
audio range, but may be of importance for ultrasonics. The deviation of the
(kR)2-behavior appears in Fig. 8 for θ0 as low as 5π/32 (solid curve). This effect
may seem counterintuitive or even non-physical, however, the on-axis (θ = 0)
pressure decreases for high frequencies as well (see Fig. 5). This will decrease
the numerator in Eq. (26) of the right-hand side of Eq. (26). This effect does not
occur with a piston in an infinite baffle, which has a constant, non-decreasing
on-axis sound pressure, but a narrowing beam width.
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4 The acoustic center

The acoustic center of a reciprocal transducer can be defined as the point from
which spherical waves seem to be diverging when the transducer is acting as
a source. There are more definitions, however, see Ref. [26] for an overview
and discussion. This concept is mainly used for microphones. Recently, the
acoustic center was elaborated [27, 28] for normal sealed-box loudspeakers as
a particular point that acts as the origin of the low-frequency radiation of the
loudspeaker. At low frequencies, the radiation from such a loudspeaker becomes
simpler as the wavelength of the sound becomes larger relative to the enclosure
dimensions, and the system behaves externally as a simple source (point source).
The difference from the origin to the true acoustic center is denoted as ∆. If
p(r, 0) and p(r, π) are the sound pressure in front and at the back of the source,
respectively, then ∆ follows from

|p(r, 0)|
r + ∆

=
|p(r, π)|
r −∆

, (30)

as

∆ = r
|q| − 1
|q|+ 1

, (31)

where
q = p(r, 0)/p(r, π). (32)

The pole-cap model is used to calculate the function q via Eq. (4), see Fig. 9.
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Figure 9: The function 20 log10 |q| [dB] vs. kR (log. axis) given by Eq. (32) of
a rigid spherical cap with various apertures, θ0 = 5π/32 (solid curve), θ0 = π/8
(dotted curve), and θ0 = π/10 (dashed-dotted curve), using Eqs. (4) and (7),
and a simple source on a sphere using Eq. (10) (dashed curve), moving with
constant velocity V , all at r = 1 m and sphere radius R = 8.2 cm. The solid
circles are from a real driver (same as Fig. 2-a, a = 3.2 cm) mounted in a
square side of a rectangular cabinet. The logarithmic horizontal axis runs from
kR=0.02–30, corresponding to a frequency range from 13 Hz–19.8 kHz.
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Subsequently, this model is used to compute the acoustic center with Eq. (31).
Assume that kR� 1 and R/r � 1, and also that Wn is real with Wn of at most
the same order of magnitude as W0. Then two terms of the series in Eq. (4) are
sufficient, and using Pn(1) = 1 and Pn(−1) = (−1)n, q can be written as

q ≈
(
W0

h
(2)
0 (kr)

h
(2)′
0 (kR)

+W1
h
(2)
1 (kr)

h
(2)′
1 (kR)

)/
(
W0

h
(2)
0 (kr)

h
(2)′
0 (kR)

−W1
h
(2)
1 (kr)

h
(2)′
1 (kR)

)
.

(33)

Because kR � 1, the small argument approximation of the spherical Hankel
functions

h
(2)′

0 (z) ≈ −i
z2
, h

(2)′

1 (z) ≈ −2i
z3

, (34)

can be used, and together with the identity

h
(2)
1 (kr)

h
(2)
0 (kr)

=
1
kr

(1 + ikr) , (35)

we get

q ≈
(

1 +
W1

2W0
(1 + ikr)

R

r

)/(
1− W1

2W0
(1 + ikr)

R

r

)
. (36)

By our assumptions we have | W1
2W0

(1 + ikr)Rr | � 1 and so

q ≈ 1 +
W1

W0

R

r
(1 + ikr) . (37)

Finally, assuming that (kr)2 � 2|W0
W1
| rR , there holds

|q| ≈ 1 +
W1

W0

R

r
, (38)

and if W1R
W0r

� 1 there holds

ϕq = arg q ≈ arctan
W1

W0

ωR

c
, (39)

where it has been used that W1/W0 is real and k = ω/c. Substitution of Eq. (38)
into Eq. (31) results in

∆ ≈ R W1

2 W0
. (40)

Note that this result is real, independent of k and r, and only mild assumptions
were used. The delay between the front and at the back of the source is equal
to τ = dϕq/dω. Using Eqs. (39) and (40), and assuming kR� W0

W1
we get

τ ≈ 2∆
c
. (41)
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For the case W is constant the Wn follow from Eq. (6) resulting in

∆ ≈ 3
4
R(1 + cos θ0) . (42)

If θ0 = π andW is constant, the radiator is a pulsating sphere, and has according
to Eq. (42) its acoustical center at the origin. For the case V is constant the
Wn follow from Eq. (7) resulting in

∆ ≈ R
(

cos θ0 +
1

1 + cos θ0

)
. (43)

If θ0 = π and V is constant, the notion of acoustical center does not make
sense, because of the notches in the polar plot at low frequencies, see Fig. 4.
The absolute error in the approximation of ∆/R by Eq. (43) (for f=1 Hz,
R=8.2 cm, r=100 m, and 0 ≤ θ0 ≤ π/2) is < 5 10−7. Figure 9 shows that for
a cap moving with constant velocity V that case the low-frequency asymptote
is flat to about kR = 0.4 corresponding to 264 Hz. Hence the approximation of
∆/R by Eq. (43) is rather accurate up to this frequency. The relative acoustic
center difference ∆/R vs. θ0 is plotted in Fig. 10 for W is constant (solid curve)
and V is constant (dotted curve), using Eqs. (42) and (43), respectively. Note
that ∆/R=3/2 for θ0 = 0 in both cases that V and W are constant. This agrees
with what would be given by the simple source on a sphere, see Eq. (10). We
have W0=1 and W1=3, and by Eq. (40) we obtain ∆/R=3/2. This is for low
frequencies also shown in Ref. [26, Fig. 3, Eqs. 18–19]. Further, it appears that
for modest apertures, say θ0 ≤ 0.5 the difference between the right-hand sides of
Eqs. (42) and (43) is very small and is of order θ40. From this we may conclude
that—at low frequencies (kR ≤ 0.4)—the acoustic center for a loudspeaker lies
about 0–0.5 R in front of the loudspeaker, where R is the radius in the case of a
spherical cabinet, or some other dimensional measure of the cabinet. At higher
frequencies the acoustic center shifts further away from the loudspeaker. For
example between kR=1 (660 Hz) and kR=2 (1.32 kHz), q is about 5 dB (see
Fig. 9) corresponding (using Eq. (31)) to ∆ = 3.4R = 28 cm.

The polar response |p(r, θ)/p(r, 0)| at low frequencies can be computed in a
similar way as q in Eq. (36). The minus sign in the denominator at the right-
hand side of Eq. (36) is due to P1(cosπ) = −1. Using now P1(cos θ) = cos θ and
interchanging the numerator and denominator of Eq. (36) yields

p(r, θ)
p(r, 0)

≈(
1 +

W1

2W0
(1 + ikr)

R

r
cos θ

)/(
1 +

W1

2W0
(1 + ikr)

R

r

)
.

(44)

Assuming that (kr)2 � 2|W0
W1
| rR , Eq. (44) can be approximated by∣∣∣p(r, θ)

p(r, 0)

∣∣∣ ≈ 1 + (cos θ − 1)
W1

2W0

R

r
. (45)

17



0.0 0.5 1.0 1.5
Θ0

0.8

1.0

1.2

1.4

D

R

Figure 10: The relative acoustic center difference ∆/R vs. θ0 using Eq. (42) for
W is constant (solid curve) and using Eq. (43) for V = v0 = 1 m/s is constant
(dotted curve).

Equation (45) clearly shows that the deviation from omni-directional radiation
is proportional to the ratios W1/2W0 and R/r, while it is independent of the
frequency for low frequencies. For fixed W1/2W0 and R/r the polar pattern
is not truly omni-directional at low frequencies. This is because the acoustic
center does not coincide with the origin in general .

5 Conclusions and outlook

The polar plot of a rigid spherical cap on a rigid sphere has been shown to
be quite similar to that of a real loudspeaker (see Fig. 2), and is useful in the
full 4π-field. It thus outperforms the more conventional model in which the
loudspeaker is modeled as a rigid piston in an infinite baffle. The cap model can
be used to predict, besides polar plots, various other acoustical quantities of a
loudspeaker. These quantities include the sound pressure, baffle-step response,
sound power, directivity, and the acoustic center. The baffle-step response of
the model is rather similar to that of a loudspeaker (see Fig. 5). The sound
power predicted by the model is very similar to that of a loudspeaker measured
in a reverberation room (see Fig. 7). The directivity D given by the model is
approximated as the ratio of |W (θ = 0)|2 and the average value of |W (θ)|2 over
the sphere (see Eq. (29)). The ratio of the sound pressure in front and at the
back of the loudspeaker, which is associated with the acoustic center, is for the
loudspeaker very similar as given by the model (see Fig. 9). At low frequencies
the acoustic center for a loudspeaker lies about 0–0.5 times the sphere radius in
front of the loudspeaker (see Fig. 10). At higher frequencies the acoustic center
shifts further away from the loudspeaker. All results are obtained using only
one loudspeaker, however. The value of this model for other drivers in other
cabinets should be tested in order to derive bounds of the applicability of the
model. This is work to be done in the future.
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