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The theory of orthogonal (Zernike) expansions of functions on a disk, as used in the diffraction
theory of optical aberrations, is applied to obtain (semi-) analytical results for the radiation of
sound due to a non-uniformly moving, baffled, circular piston. For this particular case, a scheme for
retrieval of the radially symmetric part of the velocity profile from on-axis, near-field measurements
on the level of expansion coefficients of the profile has been developed and demonstrated previously
with simulation results and with results obtained from measured pressure data of a loudspeaker. In
this contribution, (semi-) analytic expressions for transient responses, valid on the whole half-space
in front of the baffle, including the axis, are presented. It thus appears that the radially symmetric
part of the velocity profile on the disk is reproduced in warped form at any on-axis point as an
impulse response. This offers an alternative method in present holography to estimate the velocity
profile from on-axis pressure data.
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I. INTRODUCTION

In this paper two analytic methods for estimating the
radially symmetric part of a velocity profile (baffled-
piston radiation) from on-axis pressure data are dis-
cussed. Both methods are based on the analytic results
as developed by Zernike1 and worked out by Nijboer in
his 1942 thesis2; also see3. In the Nijboer-Zernike ap-
proach the exit pupil function is developed into orthog-
onal functions (the circle polynomials of Zernike) where
the contribution to the optical point-spread function of
the separate Zernike terms is available analytically (at
best focus) or semi-analytically (in the focal region, see4).

The present paper discusses a method which is based
on the result that any radially symmetric velocity profile
v is reproduced as a time-warped impulse response cor-
responding to an instantaneous volume displacement of
the piston at t = 0 at any on-axis point. This result can
be found implicitly in5 (Sec. VI.B.). Thus Eq. (58) in5

on transient responses shows validity of it for the special
case of parabolic radiators v(n)(σ) = (1− (σ/a)2)nH(a−
σ) , n = 0, 1, · · · , with a the piston radius and H the
Heaviside function, that is H(x) = 0, 1

2 , or 1, according
as x is negative, zero, or positive. However, the validity
of this result for general, radially symmetric velocity pro-
files v(σ) does not seem to have been noticed. Also see6

and7 for a review of the analytical theory of acoustical
transient responses.
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lands; Electronic address: Ronald.M.Aarts@philips.com
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In the sequel, the attention will be limited to radi-
ally symmetric velocity profiles. The radiated pressure is
given by the Rayleigh integral, see Sec. II below. When v
is a general (non-radially symmetric) profile, the contri-
bution to the Rayleigh integral of the non-radially sym-
metric part of v vanishes at any on-axis point. Hence,
for a general profile v, the radially symmetric part of v,
rather than v itself, is recovered by the method.

II. SET-UP, NOTATIONS AND BASIC FORMULAS

In this section, the basic formulas as well as the set-
up and notations are presented. The radiated pressure is
given by the Rayleigh integral as

p(r, t) =
iρ0ck

2π
eiωt

∫
S

v(rs)
e−ikr

′

r′
dS , (1)

where ρ0 is the density of the medium, c is the speed of
sound in the medium, k = ω/c is the wave number and
ω is the radian frequency of the harmonically vibrating
surface S, in this case a disk of radius a. Furthermore,
t is time, r is a field point, rs is a point on the surface
S, r′ = |r − rs| is the distance between r and rs, and
v(rs) is the normal component of a radially symmetric
velocity profile on the surface S. The time variable t in
p(r, t) and the harmonic factor exp(iωt) in front of the
integral in Eq. (1) will be omitted in the sequel. The
average velocity Vs is given by

V =
∫
S

v(rs)dS = Vsπa
2 . (2)

See Fig. 1 for geometry and notations.
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FIG. 1. Set-up and notations. The piston is surrounded by
an infinite rigid baffle.

rs = (xs, ys, 0) = (σ cosϕ, σ sinϕ, 0)
r = (x, y, z) = (r sin θ cosψ, r sin θ sinψ, r cos θ)

w = r sin θ = (x2 + y2)1/2, z = r cos θ

r = |r| = (x2 + y2 + z2)1/2 = (w2 + z2)1/2

r′ = |r − rs| = (r2 + σ2 − 2σw cos(ψ − ϕ))1/2.

The velocity profiles v(rs) considered are radially sym-
metric and are denoted as v(σ), σ ≥ 0, and vanish for
σ > a. When such a v is square integrable over the disk,
there is the representation

v(σ) = Vs

∞∑
n=0

unR
0
2n(σ/a), 0 ≤ σ ≤ a , (3)

in which the un are scalar coefficients, with u0 = 1, and

R0
2n(ρ) = Pn(2ρ2 − 1), 0 ≤ ρ ≤ 1 , (4)

are radially symmetric Zernike functions with Pn the Leg-
endre polynomial8 (Ch.22) of degree n. For more details,
results and motivation concerning the Zernike terms R0

2n

as expansion functions in the acoustical context, see9–11.
There holds9 for an on-axis point r = (0, 0, z) with

z ≥ 0 the formula

p(r) =
1
2
ρ0cVs(ka)2

∞∑
n=0

γn(k, z)un , (5)

in which

γn(k, z) = (−1)njn(kz−)h((2)n (kz+) , (6)

with z± = 1
2 ((z2 + a2)1/2 ± z) and jn and hn = jn − iyn

the spherical Bessel and Hankel function, respectively, of
order n = 0, 1, · · · , see8 (§10.1).

The radiated pressure p(r) (recall Fig. 1 for the nota-
tions) is also given by King’s integral12 as

p(r, ω) = iρ0ck

∞∫
0

e−z(u
2−k2)1/2

(u2 − k2)1/2
J0(wu)V (u)udu , (7)

where

(u2 − k2)1/2 =

{
i
√
k2 − u2 , 0 ≤ u ≤ k ,√
u2 − k2 , k ≤ u <∞ ,

(8)

with √ non-negative, and

V (u) =

a∫
0

J0(uσ)v(σ)σdσ , u ≥ 0 , (9)

the Hankel transform of v and J0 the Bessel function J`
of order ` = 0, see8 (Ch. 9). The Hankel transform of
v(σ) in Eq. (3) is given by, see10 (Eq. (10))

V (u) = Vs

∞∑
n=0

un(−1)n
a

u
J2n+1(ua). (10)

In Sec. III the impulse response Φδ is considered. It is
defined in accordance with5 (Sec. VI) and7 as the poten-
tial corresponding to an instantaneous volume displace-
ment ∆ at t = 0 of the piston with velocity profile v. It
is given for t ≥ 0 and any field point r, see5 (Sec. VI), by

Φδ(t; r) =
∆

πa2Vs
L −1

[p(r, ω)
iρ0ω

|ω=−is
]
(t) , (11)

with L −1 the the inverse Laplace transform, and where
the wave number k = ω/c is replaced by s/ic with s the
Laplace variable. Greenspan in5 (Sec. VI) uses the King
integral representation of p in Eq. (7), together with an
identity for the inverse Laplace transform of m−1e−zm,
m = (u2 − k2)1/2, to obtain

Φδ(t; r) =
c∆H(ct− z)

πa2Vs

∞∫
0

J0(uσ(t; z))J0(uw)V (u)udu ,

(12)
where H is the Heaviside function as earlier, V (u) is the
Hankel transform of v as in Eq. (9), and

σ(t; z) =
√
c2t2 − z2 , ct ≥ z . (13)

In the case that r is an on-axis point, so that w = 0,
Greenspan5 shows by using a number of special results
for integrals containing products of Bessel functions that

Φδ(t; (0, 0, z)) =
c∆

πa2Vs
v(σ(t; z))H(ct− z) , (14)

for the special profiles v

v(σ) = v(n)(σ) = (n+1)Vs(1−σ2/a2)nH(a−σ) n = 0, 1, · · · .
(15)

Here we may note that the right-hand side of Eq. (14)
vanishes when σ(t; z) > a. Since any radially symmetric
profile v (vanishing for σ > a) can be approximated by
linear combinations of the special profiles in Eq. (15), it
follows that Eq. (14) holds for general velocity profiles
vanishing for σ > a. Thus, in general, the velocity pro-
file is reproduced as a warped time-function on the time
interval [z/c, (z2 + a2)1/2/c] in which the two limits of
the interval correspond to σ(t; z) = 0 and a, respectively.
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From the relation

ct = (z2 + σ2(t; z))1/2 , (16)

it is seen that the values v(σ) of v are observed at the
on-axis point (0, 0, z) in accordance with the path length
between the on-axis point and the points on the piston
with distance σ from the origin. Furthermore,

d

dt
σ(t; z) =

ct

σ(t; z)
. (17)

Hence, the relative time that v(σ(t; z)) spends at a par-
ticular value v(σ) with 0 < σ < a, is given by

1
ct
σ ≈ σ/z , (18)

where the latter approximation holds for z large com-
pared to a (say, z ≥ 2a). This shows that the values
v(σ) of v are observed properly in Eq. (14) in accordance
with their relative importance, that is, with a relative
observation time proportional to σ.

III. HOLOGRAPHY USING TRANSIENT RESPONSES

In9 a holography method was discussed using on-axis
near-field pressure data. This method is based on Eq. (5)
and a matching approach in which the expansion coeffi-
cients un are chosen such that a best match occurs be-
tween the measured on-axis pressure and the right-hand
side of Eq. (5). In this section a novel method for the
retrieval of baffled-piston velocity profiles from on-axis
data is proposed. This method is based on Eq. (14)
showing that the impulse responses Φδ(t; (0, 0, z)), due
to an instantaneous volume displacement ∆ at t = 0 and
observed at the on-axis point (0, 0, z), reproduces the ve-
locity profile completely in the scaled- and- warped form

c∆
πa2Vs

v(σ(t; z)) , σ(t; z) = (c2t2−z2)1/2 ,
z

c
≤ t ≤ 1

c
(z2+a2)1/2 .

(19)
Hence, the profile is reproduced directly, i.e., without
intervention of the expansion coefficients un of Eq. (3).
Also, any on-axis point (0, 0, z) can be used, and this
offers the opportunity to suppress noise by employing
several on-axis points.

IV. CONCLUSIONS

Zernike polynomials yield an efficient and robust
method to describe velocity profiles of flexible sound ra-
diators and a coefficient-based method to retrieve these
profiles. Alternatively, the radially symmetric part of
the velocity profile on the disk is reproduced in warped
form at any on-axis point as an impulse response. This
enables one to solve the inverse problem of calculating
the actual velocity profile of the radiator using the (mea-
sured) impulse response. This offers a new method in
present holography to estimate the velocity profile.
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