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Abstract

We have investigated correlation patterns generated by a frequency comb laser in a dispersive

unbalanced Michelson interferometer and apply the developed formalism to the case of distance

metrology. Due to group velocity dispersion, the position of the brightest fringe of the correlation

pattern, which is used for distance determination, cannot be derived by simply using the definition

of group refractive index of the dispersive medium. It is shown that the discrete spectrum of the

optical frequency comb gives rise to correlation functions which can be represented by a series,

namely a discrete correlation series. We have developed a general formalism, valid for any pulse

train, extending the discrete model to a continuous model of cross-correlation functions using the

Poisson summation. Our model is relevant for any offset and repetition frequency of the frequency

comb. From the continuous cross-correlation model we show that, even for a homogeneous dis-

persive medium the position of the brightest fringe varies non-linearly for small delay distances

and stabilizes for longer ones. We have compared the theoretical results to measurements of pulse

propagation in air for path-lengths up to 200 m.
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I. INTRODUCTION

Recent advances in the field of femtosecond pulses has led to the development of reli-

able sources of carrier-envelope-phase stabilized femtosecond pulses [1–3]. The pulse train

generated by such a source has a frequency spectrum that consists of discrete, regularly

spaced lines known as an optical frequency comb. In this case both the frequency repetition

and the carrier-envelope-offset (CEO) frequency, are referenced to a frequency standard,

like an atomic clock. As a result the accuracy of the frequency standard is transferred to

the optical domain, with the frequency comb as transfer oscillator. These unique properties

allow the frequency comb to be applied as a versatile tool, not only for time and frequency

metrology [4–7], but also in fundamental physics [8, 9], high-precision spectroscopy [10–12]

and laser noise characterization [13–15]. Moreover, the pulse-to-pulse phase relationship of

the light emitted by the frequency comb has opened up a new avenue for long range highly

accurate distance measurement [16–23]. Here the spatial and temporal coherence between

the pulses is utilized. For non-dispersive media an arbitrary plane wave pulse would prop-

agate unaltered in shape at the phase velocity of the wave field in the medium. In that

case, the analysis of the resulting interfering field or correlation patterns is straightforward.

However, the analysis acquires complexity for pulse propagation in a dispersive medium like

air [21, 22].

Propagation of individual pulses in dispersive media has been extensively studied over

the last decades. Most analysis of ultrashort pulses for propagation [24–26] or interference

[27] is based on Gaussian pulse models. Under this assumption, the theory of dispersive

pulse propagation has been developed, considering phase velocity, group velocity and the

group delay dispersion. The electric fields of the Gaussian pulses will generate symmetric

interference patterns even if second-order dispersion is taken into account. However, practi-

cal applications like distance measurement use laser pulses with asymmetric non-Gaussian

spectra and therefore require a generalized approach.

In this paper, we present a study of the formation of correlation patterns in a dispersive

unbalanced Michelson interferometer using a frequency comb laser as a source. This study

is specifically intended for distance measurement in dispersive media. For accurate distance

determination, precise knowledge of the position of the brightest fringe, the fringe having

maximum contrast, of the correlation pattern is required. We show the influence of the
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propagation of pulses in air on the position of the brightest fringe of the correlation pattern

for non-symmetric spectra. The position of maximum coherence is linked to the asymmetry

of the spectrum and the environmental parameters. Theoretical and numerical analysis show

the difference between the correlation patterns generated by symmetric spectra (such as a

Gaussian spectrum) and arbitrary spectra emitted from a laser.

We approach the problem by representing the correlation function from the optical fre-

quency comb by a discrete correlation series. Using the Poisson summation formula we ex-

tend the above formalism to a continuous model of cross-correlation functions. Our model

is relevant for any offset and repetition frequency of the frequency comb. The model allows

us to show that even for a homogenous dispersive medium the position of the brightest

fringe varies non-linearly for small delay distances and stabilizes for longer ones. The dis-

tance where non-linear effects are important is shown to be dependent on the properties

of the dispersive media and the initial spectrum of the transmitted pulse. In case of very

large delay distances the particular values of the frequencies present in the spectrum play

an important role since only specific frequencies contribute to specific fringes in the cross-

correlation. Therefore, the precise values of the offset and repetition frequencies become

important and the model can be used to determine the properties of the cross-correlations

in the asymptotic limit of large delay distances, as compared to a model where the offset

frequency is ignored. This makes the present continuous model valid for a large range of

delay distances. The properties of the cross-correlation functions at large delays are studied

using asymptotic analysis in another paper [28].

The pulse-to-pulse phase stability of the frequency comb source offers the opportunity, for

the first time, to give a comparison between a theoretical and experimental analysis of the

formation of temporal interference fringes in dispersive media. The theory and numerical

simulation developed in this paper will be compared to measurements of path lengths up to

200 m.

This paper is organised as follows. In Section II, a theoretical model of the cross-

correlation functions obtained from the discrete spectrum of the frequency comb has been

developed followed by a comparison with some experimental measurements. In Section III,

we extend the discrete formulation of the cross-correlation to a continuous model using the

Poisson summation formula. This is followed in Section IV by a study of the position of the

brightest fringe in the cross-correlation based on the continuous model and the quadratic
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phase approximation. In Section V we estimate the distance where non-linear effects are

dominant in a dispersive medium. Finally, the main conclusions of this work are summarised

in Section VI.

II. ANALYSIS OF PULSE CROSS-CORRELATION FUNCTIONS

First, we give a short description of a generalized distance metrology setup using a Michel-

son interferometer. In 2004, a scheme for measuring long distances in space with a stabilized

FIG. 1. Schematic of the experimental setup.

femtosecond frequency comb was proposed [16]. The scheme is based on a Michelson type

interferometry with optical interference between individual pulses. The basic elements of

this scheme are shown in Fig. 1. The pulse train from the laser is split into two beams

which are recombined after having passed through various optical delays. The short arm is

scanned over a fixed range using, among others, a piezoelectric-transducer, while the long

arm is displaced over a distance that is to be determined. The intensity of the recombined

beam is recorded as a function of the variable delay, i.e. piezo-element positions. In vacuum,

a maximum coherence is obtained when the path length difference q× lpp between both arms

is equal to an integer q multiple of the effective laser cavity length in vacuum lpp = c/fr or

the pulse-to-pulse distance, where fr is the pulse repetition of the laser and c is the velocity

of light in vacuum. In dispersive media, one may expect that lpp = c/(ng × fr) where ng

denotes the group refractive index of the medium. The group refractive index ng and/or

the corresponding group velocity of a pulse propagating in dispersive media has been the
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subject of extensive analysis [24–26, 29]. Group velocity has been traditionally described as

the rate at which the envelope of a group of waves travels through the dispersive medium.

Propagation in a dispersive medium, however, leads to substantial broadening and shape

deformation, referred to as chirp in the sequel, of the pulse due to group velocity dispersion

[24]. For the case of an ultrashort pulse in a dispersive medium the classical definition of

group velocity becomes questionable, in particular in the region of anomalous dispersion

[25]. However, even in the case of quadratic dispersive media in the region of normal dis-

persion with negligible absorption, the use of group velocity for metrological purposes can

be misleading, this is the focus of the present study. For the case of distance measurement,

the pulse traveling in the long arm acquires a chirp which modifies the shape and width

of correlation patterns extensively. The position of the maximum of the correlation differs

considerably from q × lpp where lpp is calculated using the group refractive index ng at the

maximum of the source spectrum. The relation between the position of the maximum of a

correlation pattern and this particular choice of ng will be discussed rigourously in the next

section.

The complete mathematical and physical basis for the group velocity approximation in the

context of a pulse propagating through quadratic dispersive media was laid by Jones [29]

using the quasimonochromatic or slowly-varying envelope approximation. An alternative

treatment using ABCD matrices was given by Dijaili et al.[26]. We extend the treatment

of pulse propagation to the interference pattern formed by the overlap of the chirped pulse

with a non-chirped one. Our treatment is mainly for pulses with a non-symmetric spectrum

propagating in a passive dispersive media like air in the regime of normal dispersion.

A. Cross-correlations in dispersive media

The field cross-correlation is readily measured experimentally by placing a slow detector

at the output of the Michelson interferometer. The detector is illuminated by the input

electric field E(x1, t) coming from one arm, and by the delayed field E(x2, t) from the other

arm. If the time response of the detector is much larger than the time duration of the

signal E(t), or if the recorded signal is integrated, the detector measures the intensity. In

this section we calculate the intensity detected by a slow detector as the interference of two

electric fields which have traveled the distances x1 and x2, respectively.
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The frequency spectrum emitted by a mode-locked laser consists of a comb of regularly

spaced frequencies

ωm = mωr + ω0, (1)

where ω0 is the common offset frequency, m is an positive integer and ωr is the repetition

frequency fr expressed in angular notation

ωr = 2πfr =
2π

Tr

, Tr =
1

fr
. (2)

Here Tr is the time distance between the pulses. The offset frequency ω0 is caused by the

difference between the group velocity and the phase velocity inside the laser cavity. Both

ω0 and ωr are stabilised to an atomic clock.

In our experiments we use a Ti:sapphire laser. The central frequency of the comb is

ωc = 2.3254× 1015 Hz, corresponding to a wavelength of 810 nm in vacuum, the bandwidth

is typically ∆ω ≈ 5 × 1014 Hz, which corresponds to a pulse width of ∆x ≈ 12 µm and a

pulse duration of 40 fs. The frequency offset is ω0 ≈ 2π×180×106 rad/s and the repetition

frequency is ωr = 6.28× 109 rad/s, corresponding to a cavity length lpp = 30 cm and period

Tr ≈ 1ns.

We now aim to obtain an expression for the cross-correlation function from the laser

source described above in presence of dispersive media. We use the Fourier transform as

(Ff)(ω) =

∫

∞

−∞

f(t) exp(−iωt)dt (3)

with the inversion formula

f(t) =
1

2π

∫

∞

−∞

(Ff)(ω) exp(iωt)dω, (4)

and Parseval’s formula
∫

∞

−∞

(Ff)(ω)(Fg)∗(ω)dω = 2π

∫

∞

−∞

f(t)g∗(t)dt (5)

The field of the pulse emitted by the laser, propagating in the direction of positive x, at

x = 0 can be written as

E(0, t) =
∞
∑

m=0

Am cos[(mωr + ω0)t + φm] (6)

where Am is a real amplitude and φm is the phase. In the calculations that follow it will be

convenient to use negative frequencies.
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We write Eq. (6) as

E(0, t) = Re
∞
∑

m=0

Am exp(iφm) exp[i(mωr + ω0)t]

= Re [exp(iω0t)Ep(0, t)] (7)

with

Ep(0, t) =

∞
∑

m=0

am exp(imωrt) (8)

where am = Am exp(iφm). We have

F [Ep(0, .)] (ω) =

∫

∞

−∞

Ep(0, t) exp(−iωt)dt

=

∞
∑

m=0

am

∫

∞

−∞

exp[i(mωr − ω)t]dt

= 2π
∞
∑

m=0

amδ(ω −mωr) (9)

where the dot in the left-hand side is used to indicate the variable (in this case, the Fourier

transform is taken with respect to time ’t’). It follows from Eq. (9) that the Fourier

transform of the pulse emitted by the laser is

F [E(0, .)] (ω) = 1

2
F [exp(iω0t)Ep(0, .)] (ω) +

1

2
F [exp(−iω0t)Ep(0, .)∗] (ω)

= π

∞
∑

m=0

amδ(ω −mωr − ω0) + π

∞
∑

m=0

a∗mδ(ω +mωr + ω0) (10)

Next we consider the propagation of the pulse in a dispersive medium with refractive

index n(ω) and assuming that the pulse propagates in the direction of positive x we can

write the initial field at position x = 0 and time t as

E(0, t) = 1

2π

∫

∞

∞

F [E(0, .)] (ω) exp(iωt)dω. (11)

From this we get the field at x

E(x, t) = 1

2π

∫

∞

−∞

F [E(0, .)] (ω) exp
[

iω(t− n(ω)
x

c
)
]

dω

=
1

2π

∫

∞

−∞

F [E(x, .)] (ω) exp(iωt)dω. (12)

In addition, we assume that the medium is lossless, i.e. that n(ω) is real for all frequencies

of the comb.
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The Fourier transform of the field with respect to time is

F [E(x, .)] (ω) = π

∞
∑

m=0

am exp
[

−i(mωr + ω0)n(mωr + ω0)
x

c

]

δ(ω −mωr − ω0)

+π

∞
∑

m=0

a∗m exp
[

i(mωr + ω0)n(mωr + ω0)
x

c

]

δ(ω +mωr + ω0) (13)

where we used

n(−ω) = n(ω) (14)

Consider now the interference of fields that have propagated over the distances x1 and

x2, respectively. The total field at a given time is then:

Etot(x1, x2, t) = E(x1, t) + E(x2, t). (15)

A detector is used with a broad detection window

−Td

2
< t <

Td

2
(16)

with Td ≈ 1ms ∼= 106Tr. We define

χTd
(t) =







1
Td

if − Td

2
< t < Td

2
,

0 otherwise.
(17)

The Fourier transform of Eq. (17) is given by

F [χTd
] (ω) =

sin
(

ω Td

2

)

ω Td

2

= sinc

(

1

2
ωTd

)

(18)

The signal measured by the ’slow’ detector is

P (x1, x2) =
1

Td

∫ Td/2

−Td/2

|Etot(x1, x2, t)|2 dt

=
1

Td

∫ Td/2

−Td/2

|E(x1, t)|2 dt+
∫ Td/2

−Td/2

|E(x2, t)|2 dt

+
2

Td
Re

∫ Td/2

−Td/2

E(x1, t)E(x2, t)
∗ dt

(19)

For i, j = 1, 2 we consider the integral

Γ(xi, xj) =
1

Td
Re

∫ Td/2

−Td/2

E(xi, t)E(xj, t)
∗dt

= TdRe

∫

∞

−∞

χTd
(t)E(xi, t)χTd

(t)E(xj, t)
∗dt

=
Td

2π
Re

∫

∞

−∞

F [χTd
(.)E(xi, .)] (ω)F [χTd

(.)E(xj , .)]
∗ (ω)dω (20)

8



where in the last step we used the Parseval’s theorem. Next we write

F [χTd
(.)E(xi, .)] (ω) =

1

2π
F [χTd

] (ω) ∗ F [E(xi, .)] (ω)

=
1

2

∞
∑

m=0

am exp
[

−i(mωr + ω0)n(mωr + ω0)
xi

c

]

sinc

[

(ω −mωr − ω0)
Td

2

]

+
1

2

∞
∑

m=0

a∗m exp
[

i(mωr + ω0)n(mωr + ω0)
xi

c

]

sinc

[

(ω +mωr + ω0)
Td

2

]

(21)

Since Td ≫ Tr = 2π/ωr, the product of two functions F [χTd
] (ω ±mωr ± ω0) with different

m’s is negligible. Therefore, by using Eq. (21), Eq. (20) can be written as

Γ(xi, xj) ≈
Td

2π

∞
∑

m=0

1

2
|am|2 exp

[

−i(mωr + ω0)n(mωr + ω0)
(xi − xj)

c

]

×
∫

∞

−∞

[

sinc

[

(ω −mωr − ω0)
Td

2

]]2

dω

+
Td

2π

∞
∑

m=0

1

2
|am|2 exp

[

i(mωr + ω0)n(mωr + ω0)
(xi − xj)

c

]

×
∫

∞

−∞

[

sinc

[

(ω +mωr + ω0)
Td

2

]]2

dω

=
Td

2π

∞
∑

m=0

|am|2 cos
[

(mωr + ω0)n(mωr + ω0)
(xi − xj)

c

]
∫

∞

−∞

[

sinc

(

ω
Td

2

)]2

dω

=

∞
∑

m=0

|am|2 cos
[

(mωr + ω0)n(mωr + ω0)
(xi − xj)

c

]

(22)

Here it has been used that
∫

∞

−∞

[

sinc
(

ω Td

2

)]2
dω = 2π/Td. Since the measured intensity will

not depend explicitly on x1 and x2 we can take X = x1 − x2 and write

Γ(X) ≡ Γ(xi, xj) (23)

Then

P (x1, x2) = 2Γ(0) + 2Γ(X) (24)

and the cross-correlation is, apart from the DC-background 2Γ(0) and a factor of 2, given

by

Γ(X) =

∞
∑

m=0

|am|2 cos

[

(mωr + ω0)n(mωr + ω0)
X

c

]

(25)

where |am|2 ≡ Power Spectral Density (PSD). This shows that the first-order cross-

correlation function requires the knowledge of the source spectrum and not the pulse electric
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field. Numerical analysis based on Eq. (25) with comparison to measured data will be given

in the next part of this section.

B. Measured cross-correlations compared with numerical model

In the present section we will compare numerically simulated cross-correlations using the

results from the previous section with our measured data.

A general description of the experimental arrangement was given in the introduction

of the section II. The detailed measurement setup is described in [22]. The aim of this

experiment was to demonstrate absolute distance metrology using a frequency comb laser

as a source in an unbalanced Michelson interferometer setup.

As mentioned earlier, analysis of the cross-correlation patterns to extract the distance

requires an accurate knowledge of the position of the brightest fringe of the correlation

pattern. The pulse propagating in the long arm of the interferometer acquires considerable

chirp due to the dispersion in air leading to changes in shape and width of the resulting

cross-correlation patterns. The asymmetry of the spectral profile of the pulses also plays a

role in this. The spectrum of the laser source has been obtained from two separate mea-

surements. First, a direct measurement using an Ocean Optics spectrometer was done. The

spectrum was also retrieved from the measured first order auto-correlation pattern (Fourier

transform spectroscopy). We found good agreement between both the measured spectra, as

shown in Fig. 2.

The spectral content of the initial pulse is the main input for the numerical model. Using

the corrected updated Edlén’s equation[30] for the refractive index of air, 8 × 104 spectral

lines fitted to the profile of the spectrum of the laser are propagated. Specific details of the

laser, the spectra and the pulse were mentioned in the previous section. Cross-correlation

patterns are calculated for different pulse propagation distances which are an integer multiple

of the distance between two successive pulses. The frequency comb laser emits broadband

pulses which, after traveling through different paths in the interferometer, superpose and

form interference fringes. For distance measurements, the brightest fringe position is used

in data analysis since a maximum fringe intensity indicates the occurrence of a maximum

temporal coherence between superposed pulses. In vacuum, a maximum coherence indicates
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FIG. 2. Left: Autocorrelation pattern. right: Laser spectra directly measured compared with

one retrieved from the autocorrelation

that the path length difference in the Michelson interferometer is exactly q × lpp where

lpp = 2πc/ωr and q is an integer. Carrying out distance measurements in air requires a

detailed knowledge of the dispersion relation. The phase delay is

vp(ω) = ω/k(ω) = c/n(ω) (26)

where k(ω) is the wavenumber and n(ω) is the refractive index given by the Edlén’s equation.

After a certain propagation length, the delay of the pulse envelope, the group delay, is equal

to vg = dω/dk(ω) = c/ng. Here ng is the group refractive index defined at the carrier

frequency of the pulse (ωc), conventionally accepted as the frequency with the maximum

intensity in the spectrum, and given by

ng = n(ωc) + ωc

[

d(n(ω))

dω

]

ωc

(27)

For interferometric distance metrology, the maximum fringe visibility is reached at a given

delay L. In vacuum L = q × lpp and in a dispersive medium Ln = q × lpp/ng. We would
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like to emphasize here that the position of Ln does not coincide with the position of the

maximum of the cross-correlation pattern. The formation of a cross-correlation after pulse

propagates in dispersive media does not depend only on the individual pulse path in one

arm, but rather on the interference between pulses which have encountered different delays.

The two positions coincide only when the medium is linearly dispersive.

Simulated (Eq. 25) and corresponding measured cross-correlation patterns are shown in

Fig. 3. The simulated and measured cross-correlation patterns correspond to path length

differences of 20, 40, 60, 80, and 100 m in air. In general, the shapes show good agreement.
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FIG. 3. Measured patterns compared with simulation of various cross-correlation in air under the

same environmental conditions.

Simulated and measured patterns both show similar chirp and broadening. It can be seen

that the numerical model can account for the effect of non-linear dispersion on the pulses

which have an asymmetric frequency spectrum. Full width at 1/e of the maximum (FW1/e)

of measured and simulated correlation patterns are given in Fig. 4. The comparison is

done for 0 up to 200 m propagation in air . For short distances (less than 80 m), FW1/e of
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both simulated and measured pattern agree very well. After 80 m of path length difference,

a disagreement is observed. This difference is mostly due to the unpredictable effects of

vibrations in the interferometer and air turbulence in the measurement room. A comparison
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FIG. 4. Comparison of the broadening of cross-correlation patterns between simulated and mea-

sured data

between the numerical and experimental correlations for two large delay distances (160

and 200 m) is presented in Fig. 5 . Fig. 5.c and Fig. 5.f clearly show that measured

patterns suffer from an extra broadening compared to the simulated ones. Furthermore we

observe that the chirp has stabilized and the correlations show only a linear broadening. To

demonstrate this effect, let us consider RHW and LHW be the right and the left half width

at 1/e of the maximum respectively (see Fig.5.a). We define the chirp ratio as follows

chirp ratio =
RHW

LHW

(28)

Results for Eq. 28 from the measured and simulated patterns are shown in Fig. 6 for

propagation from 0 to 200 m in air. From our simulations we note that the chirp reaches its
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FIG. 5. Comparison between measured and simulated cross-correlation patterns for 160 m and 200

m in air to evaluate shape distortion arising from asymmetric spectra.

maximum at a distance of ∼ 30 m. After 30 m, this ratio decays and tends asymptotically to

a constant value for large delays (> 150 m). These numerical and experimental observations

will be rigorously investigated in the next section.

C. Numerical study of the correlation patterns as a function of power spectral

density

From Eq. (25) we note that the formation of the cross-correlation function depends

on the spectral distribution of the laser source. In this section we discuss numerically

the behaviour of cross-correlation patterns using various types of Power Spectral Densities

(PSD’s). The numerical study will be based on spectral distributions that are symmetric

(even) e.g. Gaussian compared to distributions which are not even and closer to measured
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spectrum.

Figure 7 illustrates the cross-correlation patterns generated by various types PSD’s in

two different media. Figure 7.a shows an experimental asymmetric power spectral density,

a Sech2 and a Gaussian PSD. Using these PSD’s we have simulated the cross-correlation

function in air and BK7 glass by taking two distances, one relatively short and the other

relatively long. In the case where the PSD is symmetric, the cross-correlations remain

symmetric without showing any shift with respect to the zero position of the scanning.

Only when the PSD is asymmetric as in a general experiment, the position and the shape

of the cross-correlations are affected. In both cases of symmetric and asymmetric spectra

considerable broadening is observed for longer distances.

To illustrate the effects of asymmetric PSD’s in non-linear dispersive media, we will take
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FIG. 7. Comparison between cross-correlations in different dispersive media generated using sym-

metric and asymmetric power spectral densities.

the following example of an asymmetric Gaussian pulse

a(ω) =



















exp
[

− (ω−ωc)2

2σ2(1−ar)2

]

ω ≤ ωc,

exp
[

− (ω−ωc)2

2σ2(1−al)2

]

ω > ωc,

(29)

where ar and al are the decay parameters for the regions to the right and to the left of

ωc, respectively, and ωc is the frequency of the PSD where intensity is maximum. Two

cases have been considered. First, for al = 0 and ar = 0.5 the corresponding PSD with

the simulated cross-correlation patterns for two different distances are shown in Fig. 8.a

while for ar = 0 and al = 0.5, the corresponding patterns are shown in Fig. 8.b. It is clearly

seen that the behaviour of the first-order cross-correlation pattern is strongly affected by the

shape of the PSD of the source. More importantly, the position of the absolute maximum

of the cross-correlation is shifted.

Finally, we would like to mention the effect of the environmental parameters i.e. temper-
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FIG. 8. (a) Right asymmetric Gaussian PSD from Eq. 29 used to compute cross-correlations for

distances of 10 m and 100 m. (b) Left asymmetric Gaussian PSD from Eq. 29 used to compute

cross-correlations for distances of 10 m and 100 m.

ature, pressure, and humidity of the air. Environmental fluctuation has the biggest influence

on the accuracy of the measured distance. In Fig. 9, we consider the example of simulated

correlation patterns at 60m pulse propagation for subtle changes in the three relevant pa-

rameters. The position of the fringe at the maximum of the correlation pattern obtained

for 20◦C, 1013.25 hPa and 45 % humidity is taken as a reference distance and centered at

’0’. Fig. 9.a shows that for a 0.2◦C temperature variation the maximum of the correlation

pattern shifts by 5.36 µm from the reference. In Fig. 9.b the pressure has been increased

1hPa resulting in a 10.34 µm shift. A 1% variation in humidity shows a shift of 0.527 µm

as seen in Fig. 9.c. It is known that the variation of the environmental parameters affects

the correlation patterns due to the variation of the refractive index. The simulations show

that the correlations patterns only shift without any extra linear broadening or chirp.
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FIG. 9. The effect of variation in the environmental parameters (a) temperature, (b) pressure and

(c) humidity on the cross-correlation pattern.

III. CONTINUOUS MODEL FOR CROSS-CORRELATION FUNCTIONS

In this section we study fringe positioning and asymptotic convergence of correlation

patterns for large delay distances. The cross-correlation is a sum of all harmonics of a

slowly varying function, PSD, multiplied by an oscillating phase factor. We would now like

to extend the discrete model to a continuous one by using an integral in the formulation of

the cross-correlation function Γ(X), instead of a series in Eq. (25). Clearly the PSD, |am|2,
in Eq. (25) varies slowly with m; however the cosine function does not, and therefore it

is not valid to directly replace the sum by an integral. Instead, the corresponding integral

must be found via other methods. In this section we use the Poisson summation formula to

write a series of all possible cross-correlation functions for the chosen PSD and dispersive

media. From this series we obtain the integral formulation of the cross-correlation function

for a specific delay distance.
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We would like to note here that the transition from a discrete to a continuous model can

be expressed using simpler methods. This is only true if the mode-locked laser is operating at

a repetition frequency lower than few tens of megahertz where the contribution of the offset

frequency is insignificant. Recent developments in femtosecond laser technology allow for

faster repetition frequencies with fewer modes [31]. There are also examples of experiments

where the frequency comb has been filtered with a Fabry-Perot cavity [20]. In addition, in

the limit of large delay distances the precise values of the offset and repetition frequencies

become important since particular frequencies contribute to the formation of specific fringes

in the cross-correlation [28]. In these cases it would be invalid to neglect the offset frequency.

Therefore, we have developed a general rigorous formula of the cross-correlation function

applied to any type of train of pulses emitted from a frequency comb laser. This was made

possible by using the Poisson summation formula.

Let us extend the definition of the discrete coefficients am from Eq. (8) to continuous

variables, where

Ep(0, t) =
∞
∑

m=0

am exp(imωrt) (30)

To be able to map a continuous spectrum to the discrete one we need to define the electric

field from Eq. (30) having a finite support [−Tr/2, Tr/2] as

Ep
Tr
(0, t) = Ep(0, t)χ[−Tr

2
,Tr

2
](t) (31)

where the χ function is defined similarly to Eq. (17) with a time distance equal to Tr, the

inter-pulse time interval. The Fourier transform of Ep
Tr
(0, .) is given by

F
[

Ep
Tr
(0, .)

]

(ω) =
1

2π
F [χTr

(.)] (ω) ∗ F [Ep(0, .)] (ω)

=

∞
∑

m=0

am sinc

[

(ω −mωr)
Tr

2

]

(32)

In particular,

F
[

Ep
Tr
(0, .)

]

(mωr) = am for m = 0, 1, 2... (33)

We define for real ω, −∞ < ω < ∞, the power spectral density as

S(ω + ω0) = |F
[

Ep
Tr
(0, .)

]

(ω)|2. (34)

Then

S(mωr + ω0) = |am|2 , m = 0, 1, ..., (35)
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By substituting Eq. (35) into Eq. (25) we have

Γ(X) =

∞
∑

m=0

S(mωr + ω0) cos

[

(mωr + ω0)n(mωr + ω0)
X

c

]

(36)

Let n̄ be the mean refractive index, write cos(x) = 1
2
exp(ix) + 1

2
exp(−ix) in Eq. 36, and

substract and add n̄ from n(mωr + ω0) in the exponentials to obtain

Γ(X) =
1

2

∞
∑

m=0

S(mωr + ω0) exp

{

i(mωr + ω0) [n(mωr + ω0)− n̄]
X

c

}

exp

[

iω0
X

c
n̄

]

× exp

[

imωr
X

c
n̄

]

+
1

2

∞
∑

m=0

S(mωr + ω0) exp

{

−i(mωr + ω0) [n(mωr + ω0)− n̄]
X

c

}

exp

[

−iω0
X

c
n̄

]

× exp

[

−imωr
X

c
n̄

]

(37)

We define:

HX(ω) =







S(ω + ω0) exp
{

i(ω + ω0) [n(ω + ω0)− n̄] X
c

}

exp
[

iω0n̄
X
c

]

, ω ≥ 0

S(−ω + ω0) exp
{

i(ω − ω0) [n(−ω + ω0)− n̄] X
c

}

exp
[

−iω0n̄
X
c

]

, ω ≤ 0
(38)

and

HX(0) = S(ω0) cos

[

ω0n(ω0)
X

c

]

(39)

Then

Γ(X) = HX(0) +
1

2

∞
∑

m=1

HX(mωr) exp

[

imωr
X

c
n̄

]

+
1

2

∞
∑

m=1

HX(−mωr) exp

[

−imωr
X

c
n̄

]

(40)

Now |S(ω0)| is negligibly small, and so we may replace HX(0) in Eq. (40) by 1
2
HX(0). Thus,

with a negligibly small error,

Γ(X) =
1

2

∞
∑

m=−∞

HX (mωr) exp

[

imωr
X

c
n̄

]

(41)

This form is convenient for the application of the Poisson summation formula. Thus with

hX(t) =
1

2π

∫

∞

−∞

HX(ω) exp(iωt)dω (42)
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the inverse Fourier transform of HX , it holds that

Γ(X) =
1

2

∞
∑

m=−∞

F [hX(.)] (mωr) exp

[

imωr
X

c
n̄

]

=
1

2

∞
∑

m=−∞

F
[

hX(.+
X

c
n̄)

]

(mωr)

=
1

2
Tr

∞
∑

ℓ=−∞

hX

(

ℓTr +
X

c
n̄

)

(43)

Here the Poisson summation formula

∞
∑

m=−∞

[FhX ] (mωr) =
2π

ωr

∞
∑

ℓ=−∞

hX

(

2π

ωr

ℓ

)

(44)

with ωr =
2π
Tr

has been used. This series expression for Γ(X) in Eq. (43) reduces to at most

a single term when hX has support length ≤ Tr.

The pulse propagating in the long arm undergoes substantial broadening in the dispersive

media. This in turn broadens the cross-correlation function. In the above analysis we are in

the regime where the extent of the cross-correlation function is still smaller than the laser

cavity length, in other words the intensity observed by the detector at the upper and lower

bounds of the finite support, [−Tr/2, Tr/2], is negligible. We can demonstrate that the series

in Eq. (43) contains at most one dominant term (ℓ). This is explicitly derived in Reference

[28]. From a physical point of view, the integer ℓ denotes the multiple of the laser cavity

length at a given delay distance X and ℓTr is the propagation time of a pulse in ”vacuum”.

In the case where X > 0 the integer ℓ must be negative. We would like to define the time

variable (t) as

t ≡ n̄
X

c
(mod Tr). (45)

Using this, for a given ℓ, Eq.(43) can be written as

Γ(X) =
Tr

2
hX(t) (46)

Expressing hX(t) in terms of the PSD, we get

hX(t) =
1

2π

∫ 0

−∞

S(ω + ω0) exp

{

i(ω − ω0) [n(−ω + ω0)− n̄]
X

c

}

exp

[

−iω0n̄
X

c

]

exp(iωt)dω

+
1

2π

∫

∞

0

S(ω + ω0) exp

{

i(ω + ω0) [n(ω + ω0)− n̄]
X

c

}

exp

[

iω0n̄
X

c

]

exp(iωt)dω

(47)
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Changing −ω into ω ∈ [0,∞] in the first integral and adding the two integrals yields

hX(t) =
1

π

∫

∞

0

S(ω + ω0) cos

{

(ω + ω0) [n(ω + ω0)− n̄]
X

c
+ ω0n̄

X

c
+ ωt

}

dω (48)

Equation (48) states that for any arbitrary delay distance X a cross-correlation pattern

hX(t) can be obtained by varying the time delay (t) where −Tr/2 ≤ t ≤ Tr/2. In practice,

this time (t) can be obtained by setting up a scanning short arm which has a total length

of the laser cavity.

IV. POSITION OF THE BRIGHTEST FRINGE AFTER PROPAGATION IN

NONLINEAR DISPERSIVE MEDIA

The shift of the brightest fringe due to the dispersion will be discussed where the medium

is limited to its quadratic approximation. This quadratic approximation has the mathemat-

ical advantage that the Fresnel transform can be used. Also it has been shown that optimal

results can be obtained with the quadratic or the cubic dispersion approximation and in-

cluding higher order terms does not improve the accuracy [25]. The following analysis will

be based on the method introduced by Jones [29] for an electromagnetic pulse in dispersive

media.

We aim to derive an expression for the cross-correlation using the properties of the auto-

correlation. Our analysis starts from Eq. (48) where we set X = 0. This is the case of an

interferometer at equal arms, i.e an autocorrelator. In this case, we obtain

hX=0(t) =
1

π

∫

∞

0

S(ω + ω0) cos(ωt)dω (49)

For convenience we will separate the time variable of the autocorrelation and the cross-

correlation. Let τc be the full duration of the initial autocorrelation where τc < Tr. We

assume that the function hX=0(t0) is real and even (Eq. (49)), and vanishes outside an

interval [−1
2
τc,

1
2
τc] where τc < Tr. The Wiener-Khintchin theorem states that the autocor-

relation and the power spectral density are a Fourier transform pair, hence for ω > 0

S(ω + ω0) =

∫

∞

−∞

hX=0(t0) exp (−iωt0) dt0

=

∫

∞

−∞

hX=0(t0) cos(ωt0)dt0 (50)
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By using Eq. (50) in Eq. (48) and interchanging integrals, we obtain

hX(t) =
1

π

∫

∞

−∞

hX=0(t0)dt0

∫

∞

0

cos

[

k(ω + ω0)X − ωn̄
X

c
+ ωt

]

cos(ωt0)dω (51)

where k(ω + ω0) = n(ω + ω0)(ω + ω0)/c. We use the fact the the medium has a quadratic

dispersion relation described in terms of Taylor expansion that is twice differentiable in

the neighborhood of the maximum frequency of the spectrum ωc also known as the carrier

frequency. This allows us to write k(ω + ω0) = αω2 + βω + γ. We now consider the case of

large delay distance X . To be precise, we assume that X is so large that for all t0 in the

support [−τc/2,−τc/2] of hX=0(t0), we have

t0

2
√
αX

<< 1 (52)

Using this we can derive an expression for hX(t) in a simple integral form as

hX(t) =
R

2π

√

π

2αX
cos

[

γX −
(

βX − n̄X
c
+ t
)2

4αX
+ θ

]

∫

∞

−∞

dt0hX=0(t0)] cos

[

βX − n̄X
c
+ t

2αX
t0

]

(53)

The details of this calculation are given in Appendix A. In the above equation R and θ are

parameters dependent on the dispersion properties of the medium and are also explained

in Appendix A. Details regarding the cross-correlation from Eq. (53) at large delays are

discussed in [28]. For the moment, we just say that the time scale
√
4αX plays a role in the

distortion of the cross-correlation. Therefore, we can define a dimensionless function ”ζ(X)”

as

ζ(X) =
τc

√

(4αX)
=

τc
√

2
c

[

2dn(ω)
dω

+ ω d2n(ω)
dω2

]

ω=ω0

X

(54)

The constant τc can be simply obtained either from the Fourier transform of the PSD or

from experimental measurements using an autocorrelator. The function ζ(X) is plotted for

various delay distances in Fig. 10.

In order to study the variation of the position of the brightest fringe in dispersive media

we have simulated a series of cross-correlation patterns from 0 to 100 m delay in air with

steps of one cavity length (∼ 30 cm). For each pattern, the position where the maximum

fringe visibility is obtained has been registered. We refer to this position as dmc. At the

same time consider the distance dng
defined by

dng
=

qlpp
ng

. (55)
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In the experiment accurate knowledge of the pulse-to-pulse distance lpp is available since the

repetition frequency fr of the laser is locked. q is an integer number and ng is the group

refractive index at the peak of the frequency spectrum of the carrier frequency. We would

like to emphasize again that the position where the maximum coherence in the fringe pattern

occurs differ from the position dng
(at the carrier frequency). The discrepancy between dmc

and dng
is due to the chirp acquired by the pulse, which has an asymmetric spectrum, in the

long arm of the interferometer. The difference (dchirp = dng
− dmc)is plotted as a function

of the propagation distance in air in Fig. 10. dchirp is small compared to the delay distance

(meters), but it has a substantial impact for the evaluation of the delay distance. Simulations
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FIG. 10. Shift of the position of the fringe having maximum visibility as a function of the path

length difference. The zeta function is also plotted, showing the non-linear dispersion depth.

have been performed under one fixed environmental condition (20 C, 1013hPa, 45%H). For

the numerical integration, a standard resolution of 6000 integration points (corresponding

to a 12 nm step size) and a high resolution of 18000 integration points (corresponding to
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a 4 nm step size) have been used. This was done to show that the numerical integration

shows statistical errors when a high precision is required. These statistical variations can

be averaged-out. Curves using a standard resolution(red), a high resolution(blue), and the

average curve are shown in Fig. 10. It can be clearly seen that dng
and dmc are different at

different length scales. The shift of the position of the fringe at maximum coherence of the

correlation pattern varies non-linearly when the delay distance is approximately less than

30 m. After 30 m, this shift stabilizes but always differs from dng
.

We recall again the ζ(X) function from Eq. (54). The variable X in the ζ(X) function

denotes the delay distance in the interferometer. We assumed that the reference arm placed

in air is short (30 cm), and dispersion in this arm can be neglected. In the long arm,

the pulse propagates for several tens of meters. The parameter ζ is plotted in Fig. 10 as

a function of the propagation distance from 0 up to 100m. The dispersive term in ζ is

calculated from the equation for refractive index, the Edlén’s equation, used previously to

derive the distances under the same environmental conditions. It is clearly seen in Fig.10

when the propapagation distance increases, ζ tends asymptotically to zero. The asymptotic

linear behaviour of ζ starts to dominate the initial non-linear behaviour after approximately

30 m in air. This property of the function ζ and the resulting correction dchirp is dependent

on the shape of the PSD of the laser source. If air is the dispersive medium, a variation in

the environmental parameters will give rise to a different ζ function and hence the curve for

the correction dchirp will be different.

V. NON-LINEAR DISPERSION DEPTH IN DISPERSIVE MEDIA

With the numerical analysis in the previous section we were able to identify the delay

distance in air where non-linear dispersion effects cease acting on the cross-correlation shape

and position. Using this method it is possible to indicate the depth of non-linearity in any

optical medium. We did this by choosing a particular point on the ζ(X) function curve,

namely P (Xp, Yp) where P is the nearest point to the origin O(0, 0). The distance between

the origin and a point (X, Y = ζ(X)) is defined by

r =
√

X2 + ζ(X)2 (56)
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The point P is located where the smallest value of r occurs. Hence, with r = r(X), the Xp

coordinate is the solution of the equation

d

dX
r(X) = 0 (57)

Once Xp is obtained, we calculate Yp as Yp = ζ(Xp). The tangent line y(X) at the point

P (Xp, Yp) is given by

y(X) = ζ
′

(Xp)X + y0 (58)

where ζ
′

(Xp) is the derivative of ζ(X) at X = Xp. Knowing ζ
′

(Xp) and P (Xp, Yp), the

intersection point y0 of the tangent line at (Xp, Yp) and the y-axis can be easily determined.
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FIG. 11. Zeta function showing the non-linear dispersion depths in various transparent media.

In Fig. 11 we plot the ζ function in various media. The tangent lines at the particular

points P have also been drawn. We define the distance where non-linear dispersion is no

longer significant as the Non-linear Dispersion Depth (NDD). This is the distance after

which non-linear effects do not play a dominant role in the cross-correlation function and
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linear broadening takes over. This distance NDD is obtained as the intersection point of the

tangent line in Eq. (58) with the X-axis. By setting y = 0, we obtain

NDD = − y0
ζ ′(Xp)

=
3

2
3

√

τ 2c
α

(59)

Equation (59) shows the effective distance of non-linear dispersion effects on cross-correlations

obtained from a light source having a coherence time τc and a carrier frequency ωc propagat-

ing in a refractive medium with a group delay dispersion α at ωc. For standard air NDD=30

m. Similar calculations and simulations (Fig. 11) are carried-out for the BK7 and fused

silica glasses. The refractive index equations of these materials have been taken from the

Sellmeier equation. We obtained NDDBK7=2.4 m and NDDsilica= 3 m. The accuracy of the

calculated distance or thickness depends on the precision of the refractive index equation.

At best, 5 significant digits are available for Sellmeier ’s equation, whereas, in the case of

the Edlén’s equation for air, up to 9 significant digits are accurately known. This can be

useful for systems using fiber based delay lines.

VI. CONCLUSION

We have analysed cross-correlation functions formed after pulse propagation in disper-

sive media in an unbalanced Michelson interferometer. Discrete models of cross-correlation

patterns generated from the discrete spectrum of the optical frequency comb have been

compared to experimental measurements of pulse propagation in 200m of air. We observe

that the shape of the power spectral density plays a large role in determining the final shape

of the correlation pattern. Correlation patterns formed by pulses with symmetric spectra,

after propagation in a dispersive media tend to be linearly stretched, leading to an easy

retrieval of the position of the brightest fringe, by use of the group refractive index of the

medium. In contrast, correlation patterns formed by pulses having non symmetric spectra

show a shift of the position of the brightest fringe when compared to the position derived

from the group refractive index. This shift varies non-linearly with the delay distance and

stabilizes after reaching a certain delay. This shift can be predicted using the continuous

model for cross-correlation patterns. Using the integral-based continuous cross-correlation

function we have shown that the shift of the central brightest fringe varies non-linearly with

the delay distance and stabilizes after reaching a certain delay. The delay distance where
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non-linearity plays an important role can be scaled for every dispersive media.
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APPENDIX A

We begin with the integral representation of the cross-correlation function

hX(t) =
1

π

∫

∞

−∞

hX=0(t0)dt0

∫

∞

0

cos

[

k(ω + ω0)X − ωn̄
X

c
+ ωt

]

cos(ωt0)dω

(A.60)

where,

k(ω + ω0) = n(ω + ω0)(ω + ω0)/c

= k(ωc + ω0) + k
′

(ωc + ω0)(ω − ωc) +
1

2
k

′′

(ωc + ω0)(ω − ωc)
2

= αω2 + βω + γ (A.61)

By using Eq. (A.61) in Eq. (A.60) we obtain

hX(t) =
1

π

∫

∞

−∞

hX=0(t0)dt0

∫

∞

0

cos

[

(αω2 + βω + γ)X − ωn̄
X

c
+ ωt

]

cos(ωt0)dω

(A.62)
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By converting the product of cosines into a sum of cosines and by completing the square in

the cosines of Eq. (A.62), we get

hX(t) =
1

2π

∫

∞

−∞

hX=0(t0)dt0

∫

∞

0







cos





(

√
αXω −

(

βX − n̄X
c
+ t+ t0

)

2
√
αX

)2

+ γX −
(

βX − n̄X
c
+ t + t0

)2

4α

]

+cos





(

√
αXω −

(

βX − n̄X
c
+ t− t0

)

2
√
αX

)2

+ γX −
(

βX − n̄X
c
+ t− t0

)2

4αX











dω

(A.63)

Next the following change of variables

Ω± =
√
αXω −

(

βX − n̄X
c
+ t± t0

)

2
√
αX

dΩ± =
√
αXdω

ρ± = γX −
(

βX − n̄X
c
+ t± t0

)2

4αX

fX(t± t0) = −
(

βX − n̄X
c
+ t± t0

)

2
√
αX

(A.64)

is applied. Then Eq. (A.62)

hX(t) =
1

2π

∫

∞

−∞

hX=0(t0)dt0

∫

∞

fX(t±t0)

[

cos
(

Ω2
+ + ρ+

)

dΩ+ cos
(

Ω2
−
+ ρ−

)

dΩ
]

=
1

4π

√

π

2αX

∫

∞

−∞

dt0hX=0(t0)

{

cos(ρ+)− 2 cos(ρ+)C
(

√

2

π
fX(t + t0)

)

−
[

sin(ρ+)− 2 sin(ρ+)S
(

√

2

π
fX(t + t0)

)]

+ cos(ρ−)− 2 cos(ρ−)C
(

√

2

π
fX(t− t0)

)

−
[

sin(ρ−)− 2 sin(ρ−)S
(

√

2

π
fX(t− t0)

)]}

(A.65)

where the functions C and S are the Fresnel integrals and defined as

C (z) =

∫ z

0

cos
(π

2
ξ2
)

dξ

S (z) =

∫ z

0

sin
(π

2
ξ2
)

dξ (A.66)

We now consider the case of large delay distance X . To be precise, we assume that X is

so large that for all t0 in the support [−τc/2,−τc/2] of hX=0(t0), we have

|t0|
2
√
αX

<< 1 (A.67)
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In this approximation, we rewrite ρ± and fX(t± t0) as

ρ± = γX −
(

βX − n̄X
c
+ t
)2

4αX
∓
(

βX − n̄X
c
+ t
)

2αX
t0

fX(t) = fX(t± t0) = −
(

βX − n̄X
c
+ t
)

2
√
αX

(A.68)

Using the ρ± from Eq. (A.68) above and expanding the cosines and sines in Eq. (A.65) as

a trigonometric sum we observe that the integral

∫

∞

−∞

dt0hX=0(t0) sin

(

(

βX − n̄X
c
+ t
)

2αX
t0

)

= 0 (A.69)

because hX=0(t0) is an even function. Therefore, the only contributing terms arise from

ρ = γX −
(

βX − n̄X
c
+ t
)2

4αX
+

(

βX − n̄X
c
+ t
)

2αX
t0 (A.70)

Equation. (A.65) can be written as

hX(t) =
1

2π

√

π

2αX

∫

∞

−∞

dt0hX=0(t0)

{[

1− 2C
(

√

2

π
fX(t)

)]

cos(ρ)

−
[

1− 2S
(

√

2

π
fX(t)

)]

sin(ρ)

}

(A.71)

When a, b are real, we can write a cosx − b sin x = R cos(x + θ). In our case R and θ are

given by

R =
√
a2 + b2 =

√

√

√

√

[

1− 2C
(

√

2

π
fX(t)

)]2

+

[

1− 2S
(

√

2

π
fX(t)

)]2

tan θ =
b

a
=

1− 2S
(√

2
π
fX(t)

)

1− 2C
(
√

2
π
fX(t)

) (A.72)

Using (A.72) in Eq. (A.71), we obtain

hX(t) =
R

2π

√

π

2αX

∫

∞

−∞

dt0hX=0(t0) cos

[

γX −
(

βX − n̄X
c
+ t
)2

4αX
+

(

βX − n̄X
c
+ t
)

2αX
t0 + θ

]

(A.73)

We again expand the cosine as a trigonometric sum and using Eq. (A.69) we can write hX(t)

in a simple integral form as

hX(t) =
R

2π

√

π

2αX
cos

[

γX −
(

βX − n̄X
c
+ t
)2

4αX
+ θ

]

∫

∞

−∞

dt0hX=0(t0)] cos

[

βX − n̄X
c
+ t

2αX
t0

]

(A.74)
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