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Abstract

We investigate the final size distribution of the SIR epidemic model in the critical regime.

Using the integral representation of Martin-Löf [17] for the hitting time of a Brownian motion

with parabolic drift, we derive asymptotic expressions for the final size distribution that capture

the effect of the initial number of infectives and the closeness of the reproduction number to

zero. These asymptotics shed light on the bimodularity of the limiting density of the final size

observed in [17]. We also discuss the connection to the largest component in the Erdős-Rényi

random graph, and, using this connection, find an integral expression of the Laplace transform

of the normalized Brownian excursion area in terms of Airy functions.
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1 Introduction

Amongst the most popular mathematical models for the spread of a contagious disease is the

Susceptible-Infected-Recovered (SIR) epidemic model, in which all individuals of a finite population

interact in the same manner. Individuals are either susceptible, infected or recovered, and at time

t the population state can be defined by the vector (St, It), where St and It denote the number of

susceptible and infected individuals, respectively. In the simplest SIR model, also known as the

Reed-Frost model, individuals remain infected for one unit of time, after which they recover and

acquire permanent immunity from future infection, and hence It+1 = St − St+1, t ∈ N. During
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any period (t, t + 1), the disease is transmitted from i ∈ It to s ∈ St with probability p, and all

encounters per time unit between any pairs of individuals are assumed to be independent of each

other. Therefore, given (St, It) and q = 1 − p, we have that St+1 follows a binomial distribution:

St+1
d
= Bin

(

St, q
It

)

, t ∈ N. (1.1)

That is, during any period (t, t + 1), each infected individual fails to transmit the disease to any

given susceptible individual with probability q. Each individual at time t was exposed to a possible

infectious encounter with any of the infected individuals, and each susceptible individual has a

probability of qIt of escaping the disease in that time slot. The epidemic will die out the first time

T there are no more infected individuals, so T = inf{t : It = 0}, and the final size of the epidemic

is then N − ST = I1 + . . .+ IT−1.

The final size of the epidemic will strongly depend on the initial conditions (S0, I0) and the

infection parameter p. The final size in the simple SIR model and its many extensions has been a

popular object of study, and it has long been known that the final size distribution in many cases

is bimodal (two local maxima). This bimodal feature is caused by two likely scenarios: either the

epidemic dies out quickly, infecting few individuals, or the epidemic becomes long and substantial.

The likeliness of the scenarios depends crucially on the so-called reproduction number λn = np.

When studying the epidemic in large populations, λn is close to the mean offspring of a branching

process, and hence when λn < 1 the epidemic will end quickly, even if I0 is large, while if λn > 1 there

is a positive probability (roughly one minus the extinction probability in the branching process) that

the epidemic will be large. The large-n behavior in both cases is well understood [16], and shows

great resemblance to the behavior of branching processes. The epidemic becomes more interesting

when λn ≈ 1, in which case rather surprising large-n limit results can be obtained. The most

pronounced case occurs when λn is just slightly larger than one. For a general class of SIR models,

Martin-Löf [16] derived the so-called threshold limit theorem for the asymptotic regime when the

population size is large. Indeed, under the appropriate normalization, the process of infectives

weakly converges to a scaling limit when, simultaneously, the total population n approaches infinity,

while λn approaches one.

Theorem 1.1 (The critical behavior [2, 17]). Assume that p = pn = λn/n, let a = limn→∞ n1/3(λn−
1) and assume that the number In

0 of initially infected individuals is such that limn→∞ In
0 /n

1/3 = b.

Then, as the population size n→ ∞, the final size of the epidemic Kn has the limit distribution

Kn/n
2/3 d−→ T a(b), (1.2)

where T a(b) is the first passage time to the level −b by (Wt+at−t2/2)t≥0, and (Wt)t≥0 is a standard

Wiener process.

See also [2, 20]. There are several important observations from Theorem 1.1. When the number
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of initially infected individuals I0 is sufficient small, relative to the population size, the epidemic

evolves approximately as a Galton-Watson process with Poisson(1) offspring distribution. However,

when I0 passes some critical threshold the epidemic will behave quite differently than the branching

process. This critical threshold can be seen from Theorem 1.1 to be n1/3. Next, the critical window

turns out to be

pn =
1

n

(

1 +
a

n1/3

)

, a ∈ R, (1.3)

and the final epidemic size is of order n2/3.

Martin-Löf [17] used methods from Groeneboom [8] to derive an exact solution for the density

of first passage time T a(b). Let Ai(x) and Bi(x) denote the classical Airy functions (see [1]).

Theorem 1.2 (The first passage time density [17]). The first passage time T a
σ (b) of σWt to the

parabola b+ at− t2/2 has the probability density

fb(t; a, σ) = e−
1

6σ2 ((t−a)3+a3)−ax
∫ ∞

−∞
etuB(u)A(u− x) −A(u)B(u− x)

π(A2(u) +B2(u))
du, (1.4)

where A(u) = Ai(cu), B(u) = Bi(cu), c = (2σ2)1/3 and x = bσ−2 > 0.

Note that T a(b) = T a
1 (b). The integral expression in (1.4) can be employed to compute the

density numerically (although difficulties arise for small t). That is useful, because computing the

distribution of Kn for large values of n is computationally cumbersome, which is why recursive

algorithms have been developed (see [7] and the references therein). In [7] such algorithms have

been used to calculate the pre-limit density and to compare it against the limiting density in

(1.4). It was shown that the rate of convergence is rather fast, so that the limit result yields

good approximations for the finite population, provided n is large enough. Hence, for a large fixed

populations size n, with reproduction number λn and initial number of infectives m, estimates of

a and b follow from λn ≈ 1 + an−1/3 and m ≈ bn1/3, and the final size Kn is well approximated by

T a(b)n2/3.

Our goal in this paper is to reveal the structural properties of the density in (1.4) in order

to obtain detailed information on how the critical epidemic evolves as a function of the initial

number of infectives and the closeness of the reproduction number to zero. We shall employ the

the integral in (1.4) to derive much simpler asymptotic expressions for the density around zero, the

tail probabilities, and also for small and large a and b.

When a and b are large enough, the second maximum is the global maximum and occurs at

roughly t = a+
√
a2 + b, which is the point where the parabola crosses the t-axis. Regarding the

bimodality, the following observations were made in [17] based on numerical investigations: there

is a critical b∗ such that if b > b∗ there is only one maximum for all values of a. When b < b∗

there is a critical a∗ (that depends on b) such that the density is unimodal if a < a∗ and bimodal if

a > a∗. Hence, for the density to have two local maxima, b should be small enough, while a should
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Figure 1: Density fb(t; a, σ) (thick line) and the approximations in (2.7) and (2.11) (dotted lines)
for a = b = σ = 1
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Figure 2: Wiener process and the parabola 1 + t− t2/2
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be large enough. See Figure 1 for an example.

To further illustrate the influence of a and b, we show in Figure 2 a sample path of the Brownian

motion and the parabola b + at − t2/2 with a = b = 1. In this example T a(b) ≈ 2.44. It is clear

that on average the hitting time T a(b) increases with a and b. The hitting time can be interpreted

as a competition between the parabola and the Brownian motion, where b represents the headstart

given to the parabola, and a gives that parabola even more edge in the initial stages. This fits to

our intuition that a larger initial number of infectives and a larger reproduction number result in

a larger epidemic. For the epidemic to die out quickly, despite the headstart b and the initial drift

a, requires a highly unlikely trajectory of the Brownian motion. This is quantified in Theorem 2.3.

We present our main results in Section 2 concerning new asymptotic expressions for the final

size distribution. SIR models have much in common with random graphs (see [14]). In particular,

the Erdős-Rényi random graph pertains to the same critical regime as in Theorem 1.1. In Section 3

we further describe this intimate connection between the final size in the SIR model and the largest

connected component in random graphs. In Section 4 we discuss how our results for the final size

distribution carry over to much larger classes of SIR models and random graphs. The proofs of our

main results are presented in Sections 5 and 6.

2 Main results

We see from (1.4) that the first passage time density can be written as

fb(t; a, σ) = e−
1

6σ2 ((t−a)3+a3)−ax · 1
c I( t

c ;xc) (2.1)

with

I(t, x) =

∫ ∞

−∞
etu Bi(u)Ai(u− x) − Ai(u)Bi(u− x)

π(Ai2(u) + Bi2(u))
du. (2.2)

In this section we present several asymptotic results for the first passage time density. The proofs,

that are presented in Sections 5 and 6, rely on various approximations for the Airy functions and

techniques for the asymptotic evaluation of integrals. In fact, the main task consists of analyzing

in full detail the integral I(t, x) for t > 0 and x > 0.

We have the following results:

Theorem 2.1. Uniformly in x ∈ [0,D] where D > 0 is fixed,

I(t, x) =
x

2πt

(π

t

)1/2
e−x2/4t

(

1 + 1
2xt

)

+O(1), t > 0. (2.3)

Theorem 2.2. Uniformly in x ∈ [ε,D] for any ε,D with 0 < ε < D,

I(t, x) =

(

t

π

)1/2

e
1

12
t3 sinh

(

1
2xt

) (

1 +O(t−1)
)

, t ≥ 1. (2.4)
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Theorems 2.1 and 2.2 can be combined with (1.4) to obtain asymptotic expressions for the first

passage time density. We obtain the following result for the density around zero:

Theorem 2.3. For bounded b/σ2 > 0,

fb(t; a, σ) =

[

b

σt
√

2πt

(

1 +
bt

2σ2

)

e−b2/2σ2t +O(1)

]

e−
1

6σ2
F1(t), t > 0. (2.5)

with

F1(t) = (t− a)3 + a3 + 6ab. (2.6)

The leading behavior of fb(t; a, σ) when t is small is given by

b

σ
√

2πt3
exp

(

−ab
σ2

− b2

2σ2t
− a2t

2σ2

)

. (2.7)

We recognize (2.7) as the exact expression for the density of the time at which a Brownian motion

hits a barrier b+ at (see [6]). Indeed, for small t, the parabola b+ at− t2/2 is well approximated

by b+ at. The quantity in (2.7) (ignoring the term −a2t/2σ2) is maximal at t1 = b2/3σ2 and has

maximum value
(σ

b

)2( 27

2π

)1/2
e−ab/σ2−3/2. (2.8)

In Figure 1 we see the approximation (2.7) for the first peak, with its maximum of approximately

0.17015 at t1 = 1/3. Remember that the first peak corresponds to the scenario in which the

epidemic dies out quickly. The approximations in (2.7) and (2.5) can thus be used to predict the

likeliness of this scenario, and to predict the location of the first peak. For the extremely unlikely

scenarios in which t1 > t→ 0, the approximation in (2.7) is sharp as well.

We next turn to approximations for the second peak.

Theorem 2.4. For bounded b/σ2 > 0,

fb(t; a, σ) =
t1/2

σ
√

2π
sinh

( bt

2σ2

)

e−
1

6σ2
F2(t)(1 +O(t−1)), t ≥ 1, (2.9)

with

F2(t) = (t− a)3 − 1
4t

3 + a3 + 6ab. (2.10)

Noting that sinhx = 1
2ex(1 +O(e−2x)), x ≥ 0, the leading behavior of fb(t; a, σ) as t gets large

is given by
t1/2

2σ
√

2π
e−

1

6σ2
F3(t) (2.11)

with F3(t) = F2(t) − 3bt. The cubic F3(t) is minimal at

t2 = 4
3a+ 2

3

√

a2 + 3b = 2a+ b/a+O(b2/a2) (2.12)
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Figure 3: Density fb(t; a, σ) (thick line) and approximation (2.15) (dotted line) for a = 5 and
b = σ = 1

and F3(t2) = −3b2/2a+O(b3/a3). In Figure 1, we see the approximation (2.11) for the second peak.

The approximation can be used to predict the location of and the density around the second peak,

but also to predict the chance of facing an extremely large epidemic. In fact, we can reformulate

the result (2.11) in terms of tail probabilities. A standard integration-by-parts argument yields the

following result:

Corollary 2.5 (Tail final size epidemic for large t). For bounded b/σ2 > 0

lim
n→∞

P(Kn ≥ tn2/3) =

∫ ∞

t
fb(t

′; a, σ)dt′

=
3σ

√
t√

2π

exp(− 1
6σ2F3(t))

F ′
3(t)

(1 +O(t−1)), t→ ∞. (2.13)

We next consider the situation when a is large. We show in Section 6 that for bounded b and

a→ ∞
t2 = 2a+O(a−1), F3(t2) = O(a−1), F ′′

3 (t2) = 3a+O(a−1). (2.14)

Hence the leading behavior of fb(t; a, σ) admits the Gaussian approximation

1√
π

( a

4σ2

)1/2
e−

a
4σ2

(t−t2)2 (2.15)

around t = t2. The approximation (2.15) is illustrated in Figure 3 for a = 5 and b = σ = 1.

3 Connection with random graphs

It is well known that the SIR model has an equivalent description in terms of the Erdős-Rényi

random graph [13]. The latter is a random graph on the vertex set [n] := {1, . . . , n}, constructed

by including each of the
(

n
2

)

possible edges with probability p, independently of all other edges. It
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is well known that the components in random graphs can be determined through an exploration

process (see e.g. [21, 2]). Take one vertex uniformly at random and label it v(1). The children of

v(1) are all the vertices that are attached to it. Suppose v(1) has c(1) children. Label these as

v(2), v(3), . . . , v(c(1)+1). Now move on to v(2) and explore all of its children (say c(2) of them) and

label them as before. Note that when we explore the children of v(2), its potential children cannot

include the vertices that we have already identified. Once we finish exploring one component, we

move onto the next component by choosing the starting vertex uniformly at random amongst the

remaining vertices and start exploring its component. It is obvious that this constructs all the

components of our graph. Write the breadth-first walk associated to this exploration process as

Zn(0) = 0, Zn(i) = Zn(i− 1) + c(i) − 1, (3.1)

for i = 1, . . . , n. For j ≥ 0, write η(j) as the stopping time η(j) = min{i : Zn(i) = −j}. The size

of the j-th component explored in this manner is then given by η(j) − η(j − 1).

The following two results are due to Aldous [2]:

Theorem 3.1 ([2]). Consider the breadth-first walk Zn(·) exploring the components of the random

graph G(n, p). For p = (1 + an−1/3)/n, a ∈ R fixed, and n→ ∞,

n−1/3Zn(⌊n2/3t⌋) d−→ W a
t , (3.2)

in the sense of convergence in the J1 Skorohod topology on the space of right-continuous left-limited

functions on R
+, where (W a

t )t≥0 is the process (Wt + at− t2/2)t≥0.

Let Ci
n(a) denote the component in G(n, p) of the i-th largest order (where ties are broken

arbitrarily).

Theorem 3.2 ([2]). For p = (1 + an−1/3)/n, a ∈ R fixed, and n→ ∞,

(

|C1
n(a)|n−2/3, |C2

n(a)|n−2/3, . . .
)

d−→ (C1(a), C2(a), . . .) , (3.3)

where C1(a) > C2(a) > . . . are the ordered excursions of the reflected version of the process (W a
t )t≥0.

Theorem 3.2 says that the ordered connected components in the the critical Erdős-Rényi random

graph are described by the ordered excursions of the reflected version of (W a
t )t≥0, the same limit

process that occurs in the SIR model. Note that this process starts in zero, and hence does not

depend on b. For a > 0 the process might have several small excursions before it takes off for a

long excursion and the giant component in G(n, p) starts to form. The component keeps growing

until the time at which the process intersects the t-axis, and after that, the strong negative drift of

the parabola makes it unlikely for more large components to occur.
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This critical behavior of Erdős-Rényi random graphs has received tremendous attention over

the past decades. We refer to [2, 4, 11] and the references therein. In [19] an exact formula was

derived for the distribution function of the limiting variable C1(a) (of the largest component). In

[2] it was shown that the limit in (3.3) is in fact a certain multiplicative coalescent, and in [12] the

limit process was treated as a point process. In [9] a local limit theorem was derived for the joint

tail behavior of several of the largest connected components.

Let us now further discuss how results for the largest component C1(a) can be obtained from

results for fb(t; a, σ). Let ha(t) denote the density of C1(a) and let

Ha(t) =

∫ t

0
ha(s)ds = P(C1(a) ≤ t), t ≥ 0, (3.4)

denote the distribution function. It is clear that Ha(t) decreases in a ∈ R.

In the SIR model the critical threshold for the initial number of vertices to be explored turned

out to be n1/3, and in fact, the final size of the epidemic follows from exploring the connections of

each of the bn1/3 vertices. Let us first present the connection between exploring bn1/3 vertices and

exploring an arbitrary vertex (the first component) in the random graph.

Let C(v) be the component that contains the vertex v. Throughout the proof of Lemmas 3.3

and 3.4, we shall make use of the fact that there is a constant ca such that for all n ≥ k ≥ 1,

P(|C(1)| ≥ k) ≤ ca

k1/2
, E[|C(1)|] ≤ can

1/3, E[|C(1)|1{|C(1)|≤k}] ≤ cak
1/2. (3.5)

These bounds can be retrieved from various sources, see e.g., [4, 11], it also follows from [18,

Theorem 1] (see also the references in [18] for a detailed account of the history of such results).

In the following, we let bn = bn1/3.

Lemma 3.3 (Clusters are with high probability disjoint).

P

(
∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

= P

(

bn
∑

i=1

|C(i)| > tn2/3
)

+O(b2), (3.6)

uniformly in n.

Proof. The upper bound in (3.6) is immediate, since
∑bn

i=1 |C(i)| ≥
∣

∣

∣

⋃bn
i=1 C(i)

∣

∣

∣
. For the lower

bound, we note that conditionally on the event that the sets of vertices C(i) are all disjoint, we

have that
{

∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

}

=
{

bn
∑

i=1

|C(i)| > tn2/3
}

. (3.7)
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As a result,

P

(

bn
∑

i=1

|C(i)| > tn2/3
)

− P

(∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

(3.8)

≤ P(∃i 6= j ∈ [bn] : i −→ j) ≤ b2nP(i −→ j) = b2n
E[|C(i)|]

n
.

By the second bound in (3.5),

P

(

bn
∑

i=1

|C(i)| > tn2/3
)

− P

(
∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

≤ cab
2 = O(b2). (3.9)

Lemma 3.4 (Clusters have heavy-tailed distribution). Uniformly in n and b > 0, for any ε > 0,

bnP(|C(1)| > tn2/3) +O(b2) ≤ P

(

bn
∑

i=1

|C(i)| > tn2/3
)

≤ bnP(|C(1)| > (t− ε)n2/3) +O(b2/ε) +O(b
√
ε). (3.10)

Proof. We start with the lower bound. For this, we note that, by inclusion-exclusion,

bn
∑

i=1

P

(

|C(i)| > tn2/3
)

−
∑

1≤i<j≤bn

P

(

|C(i)| > tn2/3, |C(j)| > tn2/3
)

(3.11)

≤ P

(

bn
⋃

i=1

{|C(i)| > tn2/3}
)

≤ P

(

bn
∑

i=1

|C(i)| > tn2/3
)

.

The first probability equals bnP(|C(1)| > tn2/3). The second probability can be split depending on

whether j ∈ C(i) or not. When j ∈ C(i), we obtain an upper bound, by the second bound in (3.5),

b2n
n

E[|C(1)|] = O(b2). (3.12)

When j 6∈ C(i), instead, we obtain that

P

(

|C(i)| > tn2/3, |C(j)| > tn2/3, j 6∈ C(i)
)

≤ P
(

|C(i)| > tn2/3
)

P
(

|C(j)| > tn2/3
)

, (3.13)

so that this contribution can be bounded by, for each t > 0 fixed, now using the first bound in

(3.5),

b2nP
(

|C(i)| > tn2/3
)2

= O(b2). (3.14)

This proves the lower bound. For the upper bound, instead, we must be more careful. We split,
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depending on how many i ∈ [bn] there are for which {|C(i)| > εn2/3}. Denote this number by I.

The contribution that I = 0 we bound using the Markov inequality and the third bound in (3.5),

as

P

(

bn
∑

i=1

|C(i)| > tn2/3, I = 0
)

≤ P

(

bn
∑

i=1

|C(i)|1{|C(i)|≤εn2/3} > tn2/3
)

(3.15)

≤ bn

tn2/3
E[|C(i)|1{|C(i)|≤εn2/3}]

≤ Cbn

tn2/3

√
εn1/3 = O(

√
εb).

The contribution where I ≥ 2 can be bounded from above by the first bound in (3.5),

b2nP

(

|C(1)| > εn2/3, |C(2)| > εn2/3) ≤ O(
b2n

εn2/3
) = O(b2/ε). (3.16)

Therefore, the main contribution comes from I = 1, which equals

bnP

(

bn
∑

i=1

|C(i)| > tn2/3, |C(1)| > εn2/3, |C(i)| ≤ εn2/3∀i ∈ {2, . . . , bn}
)

. (3.17)

We finally split depending on whether |C(1)| ≥ (t− ε)n2/3 or not. The contribution due to |C(1)| ≥
(t− ε)n2/3 is bounded by bnP(|C(1)| > (t− ε)n2/3). When |C(1)| < (t− ε)n2/3, then we must have

that
∑bn

i=2 |C(i)| > εn2/3, so that, again by the Markov inequality, this contribution is bounded by

bn

εn2/3
E

[

bn
∑

i=2

|C(i)|1{|C(i)|≤εn2/3,|C(1)|>εn2/3}

]

=
b2

ε
E[|C(2)|1{|C(2)|≤εn2/3,|C(1)|>εn2/3}]

≤ b2

ε
E[|C(2)|1{|C(2)|≤εn2/3}]P(|C(1)| > εn2/3) = O(b2/ε),

now using the first and third bound in (3.5). Summing all contributions proves the upper bound.

Theorem 3.5 (The cluster tail). With bn = ⌈bn1/3⌉,

lim
n→∞

n1/3
P(|C(1)| > tn2/3) = lim

b↓0
1

b
lim

n→∞
P

(
∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

= lim
b↓0

1

b

∫ ∞

t
fb(s; a, σ)ds. (3.18)

11



Proof. Combining Lemmas 3.3 and 3.4, we obtain that, for any ε > 0,

bnP(|C(1)| > tn2/3) +O(b2) ≤ P

(∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

≤ bnP(|C(1)| > (t− ε)n2/3) +O(b2/ε) +O(b
√
ε). (3.19)

By Theorem 1.1 and the relation between the final size of an SIR epidemic and the Erdős-Rényi

random graph discussed above,

lim
n→∞

P

(
∣

∣

∣

bn
⋃

i=1

C(i)
∣

∣

∣
> tn2/3

)

=

∫ ∞

t
fb(s; a, σ)ds. (3.20)

As a result, we obtain that

lim
n→∞

bnP(|C(1)| > tn2/3) +O(b2) ≤
∫ ∞

t
fb(s; a, σ)ds

≤ lim
n→∞

bnP(|C(1)| > (t− ε)n2/3) +O(b2/ε) +O(b
√
ε). (3.21)

Divide by b and let b ↓ 0 to obtain

lim
n→∞

n1/3
P(|C(1)| > tn2/3) ≤ lim

b↓0

∫ ∞

t

1

b
fb(s; a, σ)ds

≤ lim
n→∞

n1/3
P(|C(1)| > (t− ε)n2/3) +O(

√
ε). (3.22)

By dominated convergence,

lim
b↓0

∫ ∞

t

1

b
fb(s; a, σ)ds =

∫ ∞

t
ga(t;σ)ds, (3.23)

where ga(t;σ) = limb↓0
1
bfb(t; a, σ). From (1.4), together with the fact that Ai(u)Bi′(u)−Ai′(u)Bi(u)

is the Wronskian of the Airy equation, and is thus identically equal to 1/π [1, 10.4.10], we see that

ga(t;σ) = lim
b↓0

1

b
fb(t; a, σ) =

1

σ2
e−

1

6σ2 ((t−a)3+a3)
∫ ∞

−∞

etu/c

π2(Ai2(u) + Bi2(u))
du, (3.24)

which is integrable on [t,∞) for all t > 0. Therefore, (3.22) implies that

lim
n→∞

n1/3
P(|C(1)| > tn2/3) =

∫ ∞

t
ga(s;σ)ds. (3.25)

This proves the result.
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By [9, Lemma 2.2], we have that, for some function s 7→ Φ(s; a),

lim
n→∞

nP(|C(1)| = ⌈tn2/3⌉) = tΦ(t; a), (3.26)

which identifies sΦ(s; a) = ga(s;σ) = limb↓0
1
bfb(s; a, σ). The function ga(t) = ga(t; 1) plays a rather

special role in the study of the largest component. There holds (see e.g. [15, 9] and recall (3.4))

ha(t) =
1

t
ga(t)Ha−t(t), t ≥ 0, a ∈ R. (3.27)

Informally, (3.27) can be understood as follows. In order for the largest cluster to have size tn2/3,

we can multiply n/tn2/3 times the probability that the cluster of vertex 1 has size tn2/3, and the

remaining clusters in the graph of size n− tn2/3 have size at most tn2/3. Since

p =
1

n
(1 + an−1/3) =

1

n− tn2/3
(1 + (a− t)(n− tn2/3)−1/3) + o(n−4/3), (3.28)

the latter has probability approximately Ha−t(t).

A more common form in which ga(t) is given is

ga(t) = e−
1

6
((t−a)3+a3)G(t3/2)√

2π
(3.29)

with G(s) =
∑∞

k=−1 ρks
k and ρk the Wright constants that arise in graph enumeration (see [15, 19,

9]). The overview paper [10] contains many results on the Wright constants and their relation to

the Brownian excursion area and Airy functions. Denote by aj = −|aj|, j = 1, 2, . . . the zeros of

the Airy function Ai(z) such that 0 < |a1| < |a2| < . . ., and hence

Ai(aj) = Ai(−|aj |) = 0, j = 1, 2, . . . . (3.30)

We have [10, Eq. (80)]

G(s) = −
√

2π

∞
∑

j=1

exp
(

−2−1/3|aj |(−s)2/3
)

, s < 0. (3.31)

From (3.24) and (3.29) we instead obtain

G(t3/2) =

√
2π

π2

∫ ∞

−∞

exp(tu2−1/3)

Ai2(u) + Bi2(u)
du, t > 0, (3.32)

which seems to be a new expression for the function G. To make the connection to the excursion

13



area, we note that by [10, Eq. (36)] and using the notation in [10, Eq. (79)],

G(s) =
1

s
E[esBex ] ≡ 1

s
ψex(−s), (3.33)

where Bex is the normalized excursion area of Brownian motion given by

Bex =

∫ 1

0
Bex(t)dt, (3.34)

where (Bex(t))t∈[0,1] is the normalized Brownian excursion [10, Eq. (1-2)]. Then, we arrive at the

following corollary to Theorem 3.5:

Corollary 3.6 (Excursion area moment generating function). There is the representation

E[etBex ] = ψex(−t) = t

√
2π

π2

∫ ∞

−∞

exp(t2/3u2−1/3)

Ai2(u) + Bi2(u)
du, (3.35)

which is absolutely convergent when |arg(t)| < 3π
4 , when we take the principal value of t2/3.

While [10] gives a wealth of results concerning ψex(−t), we have not been able to find this

explicit formula for ψex(−t) in the literature.

The asymptotic results in Section 2 on the left and right tails of fb(t; a, σ) can also be obtained

for ga(t). More specifically, we have

1

π2

∫ ∞

−∞

etu/21/3

Ai2(u) + Bi2(u)
du =

t−3/2

√
2π

+O(1), t ↓ 0, (3.36)

and

1

π2

∫ ∞

−∞

etu/21/3

Ai2(u) + Bi2(u)
du =

t3/2e
1

24
t3

(8π)1/2

(

1 +O(t−3/2)
)

, t→ ∞. (3.37)

From (3.24) and (3.37) we get

1

t
ga(t) =

t1/2

(8π)1/2
exp

(

−1
8t(t− 2a)2

)

(

1 +O(t−3/2)
)

, t→ ∞. (3.38)

Lemma 3.7 (Tail bounds on largest connected component distribution).

1 −
∫ ∞

t

1

s
ga(s)ds ≤ Ha(t) ≤ exp

[

−
∫ ∞

t

1

s
ga(s)ds

]

, t > 0. (3.39)
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Proof. We have from (3.27) that

1 −Ha(t) =

∫ ∞

t

1

s
ga(s)Ha−s(s)ds ≤

∫ ∞

t

1

s
ga(s)ds, (3.40)

which is the first inequality in (3.39). Next, we have from (3.27) that

H ′
a(t)

Ha(t)
=

1

t
ga(t)

Ha−t(t)

Ha(t)
, t > 0, (3.41)

and so, by integration from t to ∞ using Ha(∞) = 1,

Ha(t) = exp

[

−
∫ ∞

t

1

s
ga(s)

Ha−s(s)

Ha(s)
ds

]

, t > 0. (3.42)

We have Ha−s(s)/Ha(s) ≥ 1, s > 0, since Ha(t) decreases in a. This gives the second inequality in

(3.39).

Theorem 3.8 (Maximal cluster tail for large t).

1 −Ha(t) = 8
t1/2 exp

(

−1
8t(t− 2a)2

)

√
8π(t− 2a)(3t− 2a)

(

1 +O(t−3/2)
)

, t→ ∞. (3.43)

Proof. From (3.39) we see that

1 −Ha(t) =

∫ ∞

t

1

s
ga(s)ds+O

((

∫ ∞

t

1

s
ga(s)ds

)2)

. (3.44)

Now, by integrating by parts noting that d
ds [s(s−2a)2] = (s−2a)(3s−2a), we get from (3.38) that

∫ ∞

t

1

s
ga(s)ds =

∫ ∞

t

s1/2 exp
(

−1
8s(s− 2a)2

)

(8π)1/2

(

1 +O(t−3/2)
)

ds

= 8
t1/2 exp

(

−1
8t(t− 2a)2

)

√
8π(t− 2a)(3t − 2a)

(

1 +O(t−3/2)
)

, t→ ∞. (3.45)

which yields (3.43).

Theorem 3.8 sharpens [19, Eq. (1.12)].

To obtain the asymptotics of Ha(t) as t ↓ 0 by relatively elementary means is harder. This is

due to the fact that replacing Ha−s(s)/Ha(s) by 1, as was done in the proof of the second inequality

in (3.39), is a rather crude operation when s is close to 0. Alternatively, we have from Pittel [19,

Eq. (4.28)]

Ha−s(s)

Ha(s)
= eµ(1 +O(s1/2)), s ↓ 0, (3.46)
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where µ = 0.854033 . . . is the root of µ−1/2eµ =
∫ µ
0 t

−1/2etdt. Thus, combining (3.36), (3.39) and

(3.46), we get

Ha(t) = exp

[

−2

3

t−3/2eµ

√
2π

+O(t−1)

]

, t ↓ 0. (3.47)

Hence, the identity (3.27) together with the asymptotic evaluation of the function ga(t) suffices

to derive large-t asymptotics for Ha(t), but does not give enough information to obtain small-t

asymptotics. Indeed, in order to estimate the left tail of Ha(t), and to derive for instance (3.46)

and (3.47), a different approach is needed. Pittel [19] obtained these results by deriving an explicit

integral formula for Ha(t) (see [19, Eq. (1.7)]).

4 Discussion

Scaling properties. The results in this paper for the hitting time of a Brownian motion with

parabolic drift obey simple scaling properties. Define the process (V a
σ,κ(t))t≥0 as

V a
σ,κ(t) = σWt + at− κt2/2. (4.1)

Fix τ > 0 and note that (Wτ2t)t≥0 has the same distribution as (τWt)t≥0. We obtain the relation

V a
σ,κ(t)

d
=
σ

τ

(

Wτ2t +
a

στ
τ2t− κ

στ3

(τ2t)2

2

)

d
=
σ

τ
V

a/(στ)
1,κ/(στ3)

(τ2t). (4.2)

Choosing τ = (κ/σ)1/3 gives

V a
σ,κ(t)

d
=
σ4/3

κ1/3
V aκ−1/3σ−2/3

1,1 (κ2/3σ−2/3t). (4.3)

Let T a
σ,κ(b) denote the first time the process (V a

σ,κ(t))t≥0 hits level −b. Then

T a
σ,κ(b) = κ−2/3σ2/3T aκ−1/3σ−2/3

1,1 (bκ1/3σ−4/3). (4.4)

The hitting time T a
σ,κ(b), for specific choices of σ, a and κ, occurs in the study of SIR models with

general sampling procedures [16], SIR models with vaccination [7] and inhomogeneous random

graphs [3, 22]. Our results for the simple SIR model and the Erdős-Rényi (homogeneous) random

graph thus extend to these more general settings via the scaling relation (4.4).
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The Brownian excursion area. Formula (3.35) gives a new expression for the moment gener-

ating function of the Brownian excursion area Bex. Since (3.35) holds on the imaginary axis (except

at zero), this also gives the Fourier transform of Bex. We leave retrieving the density of Bex by

Fourier inversion as an open problem.

Asymptotics for multiple large clusters. Another topic for future research is to determine

asymptotic expressions like in Theorem 3.8, but then for the joint tail behavior of several of the

largest connected components. The local limit theorem for the largest k connected components

as derived in [9], for each k ≥ 1, could be the starting point for this analysis. This local limit is

given in terms of the same functions appearing in the local limit theorem for the largest connected

component, as given in (3.27).

5 Proof of Theorem 2.1

We rely heavily on the approximations, see [1, 10.4.59-60 and 10.4.63-64],

Ai(u) =
u−1/4

2
√
π

e−
2

3
u3/2

(

1 − 5
48u

−3/2 +O(u−3)
)

, u > 0, (5.1)

Bi(u) =
u−1/4

√
π

e
2

3
u3/2

(

1 + 5
48u

−3/2 +O(u−3)
)

, u > 0, (5.2)

and, again for u > 0,

Ai(−u) =
u−1/4

√
π

(

sin(2
3u

3/2 + π
4 ) − 5

48u
−3/2 cos(2

3u
3/2 + π

4 ) +O(u−3)
)

, (5.3)

Bi(−u) =
u−1/4

√
π

(

cos(2
3u

3/2 + π
4 ) + 5

48u
−3/2 sin(2

3u
3/2 + π

4 ) +O(u−3)
)

. (5.4)

Let us first study the contribution of the positive integration range u ≥ 0 in (2.2). The integrand

is estimated in (6.5) for u > 2x and is easily seen to be O(etu/Bi(u)) when 0 ≤ u ≤ 2x uniformly in

x > 0. Therefore, the contribution of the range u > 0 is uniformly bounded in x ∈ [0,D], t ∈ [0, T ]

for any D > 0, T > 0.

Now we turn to the contribution of the negative integration range u ≤ 0 in (2.2). From (5.3)

and (5.4), we have

Ai(−u− x)Bi(−u) − Ai(−u)Bi(−u− x)

=
1

πu1/4(u+ x)1/4

(

sin
(

2
3 (u+ x)3/2 − 2

3u
3/2

)

+O(u−3/2)
)

. (5.5)
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Also,

Ai2(−u) + Bi2(−u) =
1

π
√
u

(

1 +O(u−3/2)
)

. (5.6)

This leads to the approximation

Bi(−u)Ai(−u− x) − Ai(−u)Bi(−u− x)

π(Ai2(−u) + Bi2(−u))

=
1

π

( u

u+ x

)1/4 (

sin
(

2
3(u+ x)3/2 − 2

3u
3/2

)

+O(u−3/2)
)

. (5.7)

Now we use

2

3
(u+ x)3/2 − 2

3
u3/2 = x

√
u+

x2

4
√
u
− x3

24u3/2
+ . . . , (5.8)

( u

u+ x

)1/4
= 1 − x

4u
+

5

32

x2

u2
− . . . , (5.9)

to obtain

Bi(−u)Ai(−u− x) − Ai(−u)Bi(−u− x)

π(Ai2(−u) + Bi2(−u))

=
1

π

(

1 − x+ x4/8

4u

)

sin(x
√
u) +

x2

4π
√
u

cos(x
√
u) +R(u, x). (5.10)

Here the remainder R(u, x) = O(u−3/2) as u → ∞ and O(u−1/2) as u → 0, since the first member

of (5.10) is bounded at u = 0, uniformly in x ∈ (0,D]. As a consequence, the contribution of

R(u, x) to the integral is O(1) for x ∈ (0,D].

Using partial integration, we find that

1

π

∫ ∞

0
e−tu sin(x

√
u)du =

x

2πt

(π

t

)1/2
e−x2/4t (5.11)

and

x2

4π

∫ ∞

0
e−tu cos(x

√
u)√

u
du =

x2

4π

(π

t

)1/2
e−x2/4t. (5.12)

Furthermore,

∫ ∞

0

sin(x
√
u)

u
e−tudu = 2

∫ ∞

0

sin y

y
e−εy2

dy, (5.13)
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and this is bounded in ε = t/x2 > 0. So we arrive at

∫ ∞

0
e−tu Bi(−u)Ai(−u− x) − Ai(−u)Bi(−u− x)

π(Ai2(−u) + Bi2(−u))
du

=
x

2πt

(π

t

)1/2
e−x2/4t(1 + 1

2xt) +O(1). (5.14)

Here 0 < x ≤ D, and there is no particular constraint on t than just being positive. This completes

the proof of Theorem 2.1.

6 Proof of Theorem 2.2

We first study the contribution of the negative integration range u ≤ 0 in (2.2). We have that, for

any D > 0,

∫ ∞

0
e−tu Bi(−u)Ai(−u− x) − Ai(−u)Bi(−u− x)

π(Ai2(−u) + Bi2(−u))
du

=
Bi(0)Ai(−x) − Ai(0)Bi(−x)

π(Ai2(0) + Bi2(0))

1

t
+O(t−2), 0 ≤ x ≤ D, t ≥ 1. (6.1)

This follows easily from smoothness and uniform boundedness of

u ≥ 0 7→ Bi(−u)Ai(−u− x) − Ai(−u)Bi(−u− x)

π(Ai2(−u) + Bi2(−u))
(6.2)

and its derivative when x is bounded.

Let us next study the contribution of the positive integration range u ≥ 0 in (2.2). We have

from (5.1)-(5.2) that

Ai2(u) + Bi2(u) =
exp(4

3u
3/2)

π
√
u

(1 +O(u−3/2)), u > 0. (6.3)

Furthermore, for u > 2x,

Ai(u− x)Bi(u) − Ai(u)Bi(u− x)

=
1

2πu1/4(u− x)1/4

[

exp
(

2
3u

3/2 − 2
3(u− x)3/2

)

(1 +O(u−3/2))

− exp
(

−2
3u

3/2 + 2
3(u− x)3/2

)

(1 +O(u−3/2))
]

. (6.4)
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Using (5.8), with −x instead of x, we approximate for u > 2x, x ≤ D,

etu Bi(u)Ai(u− x) − Ai(u)Bi(u− x)

π(Ai2(u) + Bi2(u))
=

1

2π

( u

u− x

)1/4
etu− 4

3
u3/2

×
(

e
x
√

u− x2

4
√

u (1 +O(u−3/2)) − e
−x

√
u+ x2

4
√

u (1 +O(u−3/2))

)

. (6.5)

The factor exp(tu− 4
3u

3/2) is maximal 1
12 t

3 at u = 1
4t

2. Since ( d
du)2[tu − 4

3u
3/2] = 2/t at u = 1

4t
2,

the contribution from the set |u− 1
4 t

2| ≥ t is exponentially small in t ≥ 1. On the range |u− 1
4t

2| ≤ t

there is the approximation

etu Bi(u)Ai(u− x) − Ai(u)Bi(u− x)

π(Ai2(u) + Bi2(u))
=

1

2π
etu− 4

3
u3/2

×
(

ex
√

u−x2

2t (1 +O(t−2)) − e−x
√

u+ x2

2t (1 +O(t−2))

)

. (6.6)

We hence aim at an asymptotic analysis of the integrals

J(±x, t) =

∫ ∞

0
etu− 4

3
u3/2±x

√
udu. (6.7)

Here we follow the treatment of De Bruijn [5], Sec. 4.5 for the asymptotics of the Gamma func-

tion from its standard integral representation. In particular, the various substitutions below are

motivated by what is done there.

With the substitution u = 1
4t

2(1 + y)2, with y ≥ −1, we get

J(±x, t) = 1
2t

2e
1

12
t3± 1

2
xt

∫ ∞

−1
(1 + y)e±

1

2
xtye−

1

4
t3(y2+ 2

3
y3)dy. (6.8)

Consider the mapping

y ∈ [−1,∞) 7→ ϕ(y) = y2 + 2
3y

3. (6.9)

This ϕ decreases strictly on [−1, 0], increases strictly on [0,∞) and we have ϕ′(−1) = ϕ′(0) = 0,

ϕ(−1) = 1/3 and ϕ(0) = 0. We make the substitution

y2 + 2
3y

3 = z2 (6.10)

where z ∈ (−1/
√

3,∞) and where we require z and y = y(z) to have the same sign. Thus we have

y(z)(1 + 2
3y(z))1/2 = z; (1 + y(z))y′(z) =

z

y(z)
= (1 + 2

3y(z))1/2, (6.11)
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and it follows that

J(±x, t) = 1
2t

2e
1

12
t3± 1

2
xt

∫ ∞

−1/
√

3
(1 + 2

3y(z))1/2e±
1

2
xty(z)e−

1

4
t3z2

dz. (6.12)

We then use the final substitution w = tz to obtain

∫ ∞

−1/
√

3
(1 + 2

3y(z))1/2e±
1

2
xty(z)e−

1

4
t3z2

dz

=
1

t

∫ ∞

−t/
√

3
(1 + 2

3y(w/t))1/2e±
1

2
xty(w/t)e−

1

4
tw2

dw. (6.13)

The integration range of the latter integral can be limited to w ∈ [−1, 1] at the expense of an

exponentially small error in t ≥ 1. On this range, we have

y(w/t) =
w

t
− w2

3t2
+

5w3

18t3
− 8w4

27t4
+

385w5

1080t5
− . . . , (6.14)

where we have used the Bürmann-Lagrange inversion theorem,

y(z) =
∞
∑

k=1

1

k!

( d

dy

)k−1 [

(1 + 2
3y)−k/2

]

(0) zk

= z
∞

∑

k=0

Γ(3
2k + 1

2 )

Γ(1
2k + 1

2 )

(−2
3z)

k

(k + 1)!
, |z| ≤ 1/

√
3, (6.15)

to solve y(z) = y from (6.10). Thus with an exponentially small error in t ≥ 1, we have

∫ ∞

−t/
√

3
(1 + 2

3y(w/t))1/2e±
1

2
xty(w/t)e−

1

4
tw2

dw

=

∫ 1

−1
even part of

[

(1 + 2
3y(w/t))1/2e±

1

2
xty(w/t)

]

e−
1

4
tw2

dw. (6.16)

It is an easy, though somewhat laborious task, to show that

even part of
[

(1 + 2
3y(w/t))1/2e±

1

2
xty(w/t)

]

= 1 + 1
8x

2w2 +O(w4 + w2/t+ t−2), |w| ≤ 1, 0 ≤ x ≤ D. (6.17)

From

∫ ∞

−∞
w2je−

1

4
tw2

dw =
2
√
π√
t

(2j − 1)!!
(2

t

)j
, (6.18)
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it is then found that, with an exponentially small error in t ≥ 1,

J(±x, t) =
√
πte

1

12
t3± 1

2
xt

(

1 +
x2

4t
+O(t−2)

)

. (6.19)

We thus find from (6.6) and (6.19) that, when x is bounded and t ≥ 1,

∫ ∞

0
etu Bi(u)Ai(u− x) − Ai(u)Bi(u− x)

π(Ai2(u) + Bi2(u))
du

=
1

2π

(

e−
1

2t
x2

J(x, t)(1 +O(t−2)) − e
1

2t
x2

J(−x, t)(1 +O(t−2))
)

=
t1/2

√
π

e
1

12
t3

(

sinh
(

1
2xt− x2

4t

)

+ cosh
(

1
2xt− x2

4t

)

O(t−2)
)

=
t1/2

√
π

e
1

12
t3 sinh

(

1
2xt

)

(1 +O(t−1)), t ≥ 1, (6.20)

uniformly in x ∈ [ε,D] for any ε > 0. The contribution of the integration range u ≤ 0 is O(t−1) and

thus exponentially small compared to the contribution of the integration range u ≥ 0, see (6.20).

From this the result follows.

We finally show the statements (2.12) and (2.14) concerning F3(t). The stationary points of

F3(t) are the two roots
4
3a± 2

3(a2 + 3b)1/2 (6.21)

of the equation

(t− a)2 =
1

4
t2 + b, (6.22)

with a relative minimum for F3(t) when the +-sign is taken in (6.21). Using

t2 = 4
3a+ 2

3(a2 + 3b)1/2 = 2a+ b
a − 3

4
b2

a3 +O( b3

a5 ) (6.23)

together with (6.22) for t = t2, we compute F3(t2) as

F3(t2) = −1
4at

2
2 − 2bt2 + 5ab+ a3

= −1
4a

(

2a+ b
a − 3

4
b2

a3 +O( b3

a5 )
)2

− 2b
(

2a+ b
a +O( b2

a3 )
)

+ 5ab+ a3

= −3
2

b2

a +O( b3

a3 ). (6.24)

Also,

F ′′
3 (t2) = 9

2t2 − 6a = 3a+O( b
a). (6.25)
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