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Abstract: We investigate general properties of the interferogramsfa
frequency comb laser in a non-linear dispersive medium. fdbas is on
interferograms at large delay distances and in particuldheir broadening,
the fringe formation and shape. It is observed that at lagjayddistances
the interferograms spread linearly where its shape is aéted by the
source spectral profile. It is also shown that each interitint of the
interferogram is formed by the contribution of one dominatationary
frequency. This stationary frequency is seen to vary as atifum of the
path length difference even within the interferogram. Weoadhow that
the contributing stationary frequency remains constanth&@ evolution
of a particular fringe is followed in the successive intesframs found
periodically at different path length differences. This te used to measure
very large distances in dispersive media.
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1. Introduction

Laser sources with carrier-envelope-offset stabilizedtésecond pulses offer the unique ad-
vantage of a fixed phase relationship between the pulseseenhy the laser. The long term
stability of these sources opens up a whole range of apigiicain several precision metrol-
ogy application areas such as precision optical frequertyatogy, spectroscopy, and absolute
distance measurements [1, 2, 3, 4, 5, 6, 7], to name a few.Weaent of interferograms, or
correlations, between pulses gives an insight of the coloerproperties of the light source.
A normalized correlation from a balanced Michelson intesfeeter, termed as the autocorre-
lation, exhibits a peak intensity of unity at exactly equaha and decaying oscillations as a
function of the position of the scanning arm. The autocatieh is a symmetric function and
its Fourier transform yields the power spectral density[{]P&f the laser source according to
Wiener-Khintchin theorem. If the interferometer is unimelad and the measurements are car-
ried out in vacuum, for a frequency comb source, the coicglaepeats itself periodically with
a maximum coherence when the path length difference beth@tbrarms is equal to an integer
multiple of the laser cavity length. In this case the cotietapatterns remain undistorted and
the position of the maximum fringe visibility can be easitydaaccurately determined.

In the case of distance metrology [8, 9, 10, 11, 12, 13, 14jr&jr a dispersive medium is
placed in the measurement arm. The observed interferetteens which are cross-correlation
patterns, will show distortion when compared to the autidation. Also, the position of the
coherence maximum or the brightest fringe will vary as a fiamcof the delay distance. We
have shown that [16], even if the medium is homogeneous,dhigign of the maximum coher-
ence varies non-linearly for short delay distances ancifigdor larger delay. In addition, our
simulations also show that the correlation patterns arelinearly broadened at short delay
distances and that linear broadening replaces the noarloreadening at larger distances.

In this work our main focus is on the formation of the fringeslahe shape of the cross-
correlation patterns for large delay distances. The teargeldelay and short delay depend
on the extent of distortion in the cross-correlation patterhich in turn is dependent on the
properties of the light source and the dispersive mediunmd&geribe the cross-correlation from
a mode-locked laser using a discrete model and then extestd gncontinuous model, allowing
us to derive some dispersion properties of the correlatidtems. In particular, we have shown
that the cross-correlation exhibits a non-linear broangfor short delay distances and linear
broadening for larger delays. The theoretical resultsinbthfrom the developed continuous
model are in full agreement with the standard discrete motigie cross-correlation as well
as with the measured data. The depth of non-linearity fosgaiin dispersive media has been
shown to quantitatively depend on the temporal and spegatoplerties of the emitted light and
the dispersion properties of the medium. In this work, usirgcontinuous model of the cross-
correlation and the method of the stationary phase we stuglpeéhavior of cross-correlation
patterns and the frequency content of the constitutingapfiinges at large delay distances.

This paper is organized as follows. In Section Il a generstdption of the cross-correlation
using the continuous model is presented. In Section Ill, g the method of the stationary
phase to study the cross-correlation functions and conip@raumerical simulations. Finally,
in Section IV a new proposal for distance measurement ubimgiethod of stationary phase is



described.

2. Cross-correlation in dispersive media

The starting point of our analysis is provided by a model dbsw the propagation of
plane waves from a pulsed laser along thdirection. A detailed description of our work
can be found in [16]. The frequency spectrum emitted by a ntodeed laser consists of
a comb of regularly spaced frequencies = mar + wp, m= 0,1,2,... where ay is the
common offset frequency and is the repetition frequencf; expressed in angular notation
w = 2mf, = ZT—:T , T = % Herelpp is the cavity lengthg is the velocity of light in the
medium of the cavity and; is the time distance between the pulses. The offset frequagc
is caused by the difference between the group velocity amglttase velocity inside the laser
cavity. Bothayn andwy are stabilized to an atomic clock in most laboratories.

The correlation function can be readily measured experiatigrby placing a slow detector
at the output of the Michelson interferometer, which can&laced or unbalanced. A detailed
analysis of this function in case of an unbalanced interfexter in presence of a homogenous
dispersive medium leads to the following equation [16]

r(X)= i)S(mwr + p) cos| (M + wo)n(mey + ab)% (1)

whererl (X) is the cross-correlation as a function of the delay distapge S(mawr + wy) =
Power Spectral Density (PSD) ang) is the refractive index of the dispersive medium. Equa-
tion (1), which is a discrete representation of the cori@tefunction, shows good agreement
with the experimental results but is unable to provide a jgaygxplanation of some properties
of the cross-correlation function such as the the shift efgibsition of the maximum coher-
ence, broadening effects and shape of the cross-correfatiction. A continuous model was
therefore developed for a better understanding of the probl

We can rewrite the cross-correlation as [16]

r<x>:g£§ hx (némr), @)

using the Poisson summation formula. Here the subsgripthy is a parameter denoting the
delay distance. This analysis is in the regime where inggditae broadening the extent of the
cross-correlation function is still smaller than the lasavity length or the interpulse distance.
This series expression, Eq. (2), ofX) reduces to at most a single term whigqt) has a
support length< T;. The limitation posed by this for the case of propagatiorifinsadiscussed
in a subsequent section. From a physical point of view, theger/ denotes the multiple of
the laser cavity length at a given delay distaXcand/T, is the propagation time of a pulse in
"vacuum”. In the case wherg > 0 the integer must be negative. Defining the time variable
(t) as

t= rT% (modTy), 3
allows us to write the cross-correlation function as angraegiven by
1 /e X X
hy (t) = 7_1/0 S(w+ o) cos{(aﬂr wp) [N(w+ wp) — N o Hwn s+ out} dw. (4)

From Eq. (4) we see that for any arbitrary delay distak¢céndependent of the laser cavity
length 2c/ wy, a cross-correlation pattehx (t) can be obtained by varying the time delay



where—T,/2 <t <T,;/2. In practice, this timét) is obtained by setting up a scanning shortarm
of one laser cavity length. For numerical comparisons, bgth) andr" (X), are normalised to
unity.

Using the Wiener-Khintchin theorem and a quadratic dispersediunk(w+ wy) = a w?+
Bw-+ yfor large delay distances, we can write [16]

hx(t) = %, / Zaixcos[yxf f2(t) + 6] /j:odtohxzo(to)] cos{\f}(%to} :

(5)

Here, fx (t) is defined adx (t) = — (BX — n% +t) /(2v/aX), Rand@ are radial and angular pa-
rameters which are functions &£ (t) [16]. These results have allowed us to define a particular
function{(X) by

TC TC
{(X)= = (6)
4aX) 2 [Hdn(w) d?n(w)
VI \/E [2 o 957 |, X

Using this function defined the Non-linear Dispersion Depth of a given pulse in a particular
dispersive medium. The parametgiis given as

_ 3
‘@72 o (7)

Equation (7) shows the effective distance of non-lineguelision effects on cross-correlations
obtained from a light source having a coherence tigend a carrier frequenay. propagating

in a refractive medium with a group delay dispersimrat «.. Short delay and large delay
distances can be defined usifag

2.1. Typical characteristics of cross-correlations at large delay distances

In this section, we numerically analyze cross-correlgpiatterns for delay distances larger than
2. For standard air we have previously shown [16] tiiat- 30 m. Our simulations were per-
formed for standard air using the measured laser sourcérspefl3]. The typical parameters
for our Ti:Sapphire based frequency comb are as follows.cEméral frequency of the comb is
W, = 2.3254x 10 rad/s, corresponding to a wavelength of 810 nm in vacuunbamnewidth

is typically Aw ~ 5 x 10 rad/s, which correspond to a pulse width’sf~ 12 umand a pulse
duration of 40 fs. The frequency offset is typicallyy ~ 113x 10’ rad/s and the repetition
frequency iswy = 6.28 x 10° rad/s, corresponding to a cavity lendfp = 30 cm and period
T, ~ 1ns. The frequenciesy and wy are synchronized to a cesium clock. The spectral con-
tent of the initial pulse is the main input for the numericalael. Using the corrected updated
Edlén’s equation [17] for the refractive index of airk80* spectral lines fitted to the profile of
the spectrum of the laser, are propagated and then recodoifierm correlation patterns.

In this numerical example the delay distaxchas been taken to be long enough, 120 meters,
so that the correlation patterns are only observed to bardinéroadened. Three fringes are
picked up from this correlation pattern and further anady3eéhe cross-correlation is shown in
Fig. 1.a where the vertical lines indicate the positionseffringes we investigate. The fringe
pattern is obtained by varying the time delkaground a delay distance = 120 m. At each
small delay the frequency content of the interfering fieldt e constantly in phase or out
of phase depending dn We have chosen to analyze the cosine of the phase factorBEgpm
(4). For each small delay scan one fringe the cosine of theghaction has been plotted. A
3-D plot can be obtained for each analyzed fringe showingahge of the cosine of the phase
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Fig. 1. Behaviour of the phase function for various fringéthim one correlation. (a) Cross
correlation for a propagation distane= 120 m. The three lines select three different
fringes from the cross-correlation pattern. (b,c,d) Theesponding 3-D plots of the cosine
of the phase function of the three selected fringes are slsvarfunction of the wavelength
and the scanning timte (e,f,g) The cosine of the phase function of the three setftinges

as a function of frequency for five intensity values in eadhge.

as a function of the time delay)(and the frequencies (or the wavelength) of the optical field
These plots are shown in Fig. 1.(b,c,d). The plots show tlitaimwone fringe the cosine of the
phase function has either fast or slow oscillations as atiomof the frequency. Using this
oscillating function in Eq. (4), wher8(w+ wyp) is a slowly varying term, the integral transform
is small. The integral will approach zero as the number ofllations increases, Riemann-
Lebesgue lemma. Thus this relatively high oscillatory patt have a minor contribution to
the formation of the interference fringe. Only when the nesif the phase function is slowly
varying the contribution to the integral will be importaihe plots analyzing the fringes show
that the slowly varying part is always at a specific frequefoeya particular fringe. In Fig.
1.(e,f,g) we plot the cosine of the phase function for eaitiyé as a function of the frequency.
Five such samples at different intensity points of the feiage plotted on top of each other. It
is clearly seen that, for a given fringe, the position of ttatisnary frequency remains constant
on the frequency-axis and changes only in value witdranges. Between different fringes, the
stationary frequency varies, depending on the fringe josih the correlation pattern.

We study the evolution of the cosine of the phase functiomfieg. (4) as a function of
the distance in Fig. 2. We pay patrticular attention to theab@ur of this function at the
brightest fringe of the cross-correlations. For shortatises the cosine of the phase function
is slowly oscillating. In this case we have a large contiioufrom the whole frequency band
of the source. As the distance increases, the cosine of thseptunction becomes highly
oscillating and the formation of the fringe depends on a kfreduency bandwidth which is
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Cross-sections from the cosine of the phase function shaw)iillustrating the phase
function at 3 m (red, dotted) and 60 m (blue, continuous).

the slowly oscillating part. The width of the slowly oscillzg part converges as the distance in-
creases. The central frequency of the slowly oscillatingipgonstant and becomes a dominant
frequency after reaching a delay distance larger thavhich is more than 30 m in standard air.

2.2. Limit of the validity of the continuous model in standard air

In this section we calculate the maximum pulse propagatigtaice for which the correlations
can be analyzed using the continuous model. The dispersacdum under investigation is
standard air. It is essential that the cross-correldfipx) in Eq. (2) contains one significant
term only. So thaf (X) is simply proportional tchx (t) wheret is defined by Eq. (3). We
rewrite Eq. (4) as

hx (t) = 7—1_[Re{/0m8(w+ ab)exp{i <rT§E(w+ ab)+wt)} dw}, (8)

where we have definefl(w+ wy) = (@ + an) {”(‘”—}‘*’0) - 1]. Therefore, foiX = 0, hy(t) re-
duces to

hxolt) = 5= | S(eo+ e)explict)do (©)



Recalling thatS(w + ay) is the power spectral density of a single pulse. Using thenéfie
Khintchin theorem, where the autocorrelation of the pubsedtime duratiom, we get

Re{%/z hxoft) [/Oooexp(—iwtl—i— irT%E(w—y )+ iwt) dw} dtl}

Re| 1 [ hecoltyge(t - td . (10)

hx ('[)

wheregx (s) = [ expliws+ iﬁ%f(er wp)| dw. Thushy is obtained as the real part of the
convolution ofhx_o and%[gx. The range of the time intervafor whichgx(s) is non-negligible
is to be determined. The time interval rartg®r which hx(t) is non-negligible is then just a
little bit larger in size than the corresponding rangedgr To obtain the time interval range
for gx, the stationary points in the integrandgy need to be determined. We assuéiiev) =
wnp(w) whereng = Lr%’) — 1= g@(Tw). Heregy is a number of the order 16 andg(n) is

a smooth function such that bogi{n) and¢ (n) are of the order of unity. Nowx (s) can be
written as

gx(s) = /Omexp[iwsnLirT%(wnLab)eo(p(r(er&b))] dw
= exp(iabs)%/T;exp(ir;sf)exp(ib/r)qo(n))dr), (12)

wheres = 2 andb = ﬁ%g—r" In the above equation, Eq. (11), a stationary point ocauthé
integral for the set o which obeys the condition

% [ns +B'ng(n)| =<+ [g(n) +ng (m)] =0 (12)

wheren & [Tay,]. Therefores € {b' [(p(n) + nqo'(n)} Ine R}. The set o§ has the same

size at the set dff since@(n) + nqo/(n) is of the order of unity. The average refractive index
n of air in the near infrared region is 1.00027. Therefbre has a size of the orddr' T =
”—(‘EOX = %10*15X. This gives us a range for the satontained in the interval of lengfh when

X < 3.10%T, =3.10° m.

This analysis gives an approximate indication of the sizehef set wheregx is non-
negligible, but for the relevant cases thé&t< 1000 km it seems that we can safely assume
that the series in Eq. (2), that uses samplédsxoht distanced; apart, has only one significant
term. In any case, these distances are beyond the coheeswtle bf present day laser systems
but maybe relevant in the future.

In the next section we will show that for large delay distangarticularly larger thay, an
asymptotic method can be used to derive the equation of tes-aorrelation function. Results
from this asymptotic method and Eq. (5), which uses the nootis model, will be compared
to each other. Using this, a simple method for absolute migtanetrology is proposed.

3. Stationary phase approximation of the cross-correlation function

To study the correlation functions and their propertieddoge delay distances, we define large
delay as the distance for which the correlation pattern®ahglinearly broadened. We have
shown by numerical simulations and experimental measurenikat the shape of the cross-
correlation converges to a particular profile for large galestances. In air, we were able to



study this for correlations patterns up to 200 m, where thaarical results agreed reasonably
well with the experiments [16].

To simulate the correlation formation in air under expertaéconditions we used the stan-
dard discrete model. In spite of the reasonable agreemanh#s been obtained between nu-
merical and experimental results, we were not able to exples physical origin of the shape
convergence and disappearance of the effect of chirp a tetay distances. To understand the
formation of the cross-correlation patterns at large dista we extended the discrete model
to a continuous model. This enabled us to write the croseeladion as an integral, Eq. (4)
instead of a series. Using this integral we now try to stuadygbasi-asymptotic formation of
cross-correlation patterns.

The cross-correlation in Eq. (4) is expressed as an iniegraf a slowly varying function,
S(w+ wp), multiplied by an oscillatory phase factor. The stationainase method is an appro-
priate mathematical tool to study the asymptotic behaviddinis model [18]. We rewrite Eq.
(4) as

N0 = o [ Sl o) {exig(e)] +exi-ip(w)]} o (139

where@(w) = k(w+ awp)X — wn* + wt andk(w + wy) = (W + wo)n(w+ wp)/c. The phase
@(w) is stationary whend: [k(w-+ wp)X — wn% + wt] = 0 or, equivalently, wherfk = 1

%. Solutions to this differential equation yield dominargquenciesuiom(X,t) for a givenx
andt, wheret ¢ {ﬁ% kY ()X |we R}. Herek® denotes the first derivative of theéw)
vector. If we expan@(w) in a Taylor series aboubyom and neglect terms of order higher than
(w— (om)?, We obtaing(w) ~ K(gom + o)X — wdomﬁ% + (ot + %%(w_ om)?. This
phase expansion yields the first order stationary phasexzippation of Eq. (13). This general
class of oscillatory integrals, with polynomially growimpdpase functions, also has a solution
where higher-order stationary phase approximation caralellated. The asymptotic solution
of Eq. (13) using only the first and the second order statipphase approximation is given by

T

1 3
hy (t) ~ = {Clxl/zcos[(p(wdom) + aﬂ +CpX%/2 cos[(p(wdom) + UZ} } (14)

where the coefficient€, are given below. Witho = sign ¢ (wyom)] where @™ is thenth
derivative ofg(w) evaluated at the frequenaoyom, the first two coefficients of the asymptotic
series are given by [18]

C= ms(&hoer o) (15)

2 l «o_ 998V s 5((,,(3))23]

and

27 p@r P2 492 + 12(p2)2 (16)

HereS™ are then" derivative ofS(w+ wy). Then, the first order asymptotic approximation,
whereC, = 0, of the cross-correlation function is given as by

21

a2
dw?

S(om + o)

Sl

X
hx (t) ~ Cos [k(wdomJF )X — (’-homnE + wt+ Ulzqz)

X

W=Wqom

The second order approximation is given by

hy (t) ~ 7—1_[{C1X’l/zcos{(p(wd0m) + aﬂ — 0CX%/?sin [qo(oqjom) + aﬂ } . (18)



Whena andb are real, we can writacosx — bsinx = %Z cogx+ ). In this caseZ andd are

2 2
gi\{en by%z = % + % and tand = faxc—él. Finally, the second order approximation can be
written as

1 X T
hx(t) =~ 7_.[% cos[k(wdoer )X — wdomnE + wt+ UZ +3 (19)

From the above expression we see that the first order stayigiese approximation is the
leading contributor. In optical media, as well as in air, th&persion relation can generally be
limited to its quadratic approximation [19]. In this caserns arising due to higher order sta-
tionary phase approximations have minor contribution &ftirmation of the cross-correlation
function. In the subsequent analysis we use the first andetbensl order terms and neglect
the rest. From Eg. (17) we can see that the dominant termtseauthe envelope of the cross-
correlation being determined by the spectral prd#le + «y). This is in agreement with the
previous experimental and numerical simulation [16], veh&e observe shape convergence of
cross-correlation functions at large delay distances efjuation also shows that the terminside
the cosine depends linearly amom. Thus, with increasing delay distance the cross-cormiati
functions will spread linearly.

We compare various simulated correlations using Eq. (1)thail corresponding asymp-
totic functions using the stationary phase approximatfoor® Eq. (14) in Fig. 3. We refer to
the cross-correlation from Eq. (1) and the one from Eq. (BMha exact and the asymptotic
cross-correlations respectively. We start our comparissing the first order stationary phase
method. Numerical results for 100 m delay distance in airshi@vn in Fig. 3.a. At the cen-
ter of the interferogram a good overlap between the exacttemdsymptotic correlation has
been obtained. An analysis of the wings of the interferogshow a fringe mismatch. A better
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Fig. 3. Comparison between exact and asymptotic crosglations for 100 and 200 min
air using the first and the second order stationary phaseothefd) Exact simulation (blue,
dotted) compared to first order asymptotic calculation ,(ceehtinuous) for 100 m prop-

agation in air. (b) Exact simulation (blue, dotted) complate second order asymptotic
calculation (green, continuous) for 100 m propagation in(a) Exact simulation (blue,

dotted) compared to first order asymptotic calculation,(ceehtinuous) for 200 m prop-

agation in air. (d) Exact simulation (blue, dotted) complate second order asymptotic
calculation (green, continuous) for 200 m propagationin ai

overlap has been obtained for a delay distance of 200 m amdnsimoFig. 3.c. This problem



of shape matching between the exact and the asymptoticlatiores can be alleviated using
higher-order stationary phase approximation. Here we shiyv the improvements using the
second-order stationary phase. It is clearly seen thatifiiven order stationary phase approxi-
mation the shape of the asymptotic pattern shows a betteeammnt with the exact correlation.
More importantly, for distance measurement purposes, diséipn of the central fringe of the
asymptotic correlations has not shown any shift in comparie the exact simulations.

We found that for larger distances, fringe patterns can Berdeed by particular frequencies.
In Fig. 4 we show the frequency content of a correlation patsémulated for a delay of 200
m in air. The top figure shows the spectral distribution oflds=r source. The bottom figure
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Fig. 4. (top) Spectral distribution of the stationary frequies after 200 m propagation in
air. (bottom) Frequency distribution inside a cross-datien after 200 m propagation in
air.

shows the cross-correlation function simulated using tis-dirder stationary phase method.
The color indicates the frequency content ranging from 830 nm. It is clearly seen that
the stationary frequencies change within a given crosgtaiion depending on the fringe order.
In addition, the shape of the envelope of the cross-coroelébllows the shape of the spectral
distribution as it was demonstrated in this section. Udigidpproximation greatly reduces the
computational time when simulating the cross-correlatiorctions as can be seen when Eq.
(17) and Eq. (1) are compared. As an example, the spectrume diiSaphirre frequency comb
contains 18 frequencies. By using a scanning short arm with di@ps, one has to compute a
grid of 1P x 10* elements in order to obtain the final results. This can be Ilgimgaiuced to

a vector of 16 components by using the cross-correlation equations fhenstationary phase
method since we can associate one dominant frequency teseaching step.



4. Stationary Phase Absolute Distance M etrology

In the previous section we observed that the analysis ofsectoselation patterns becomes
simpler for large delay distances, when the stationary @laggproximation can be applied.
Each fringe in the cross-correlation is formed by its uniqoainant frequency and the cross-
correlation broadens only linearly. In this section we sfbw that by accurate knowledge of
the spacing between two fringes of different frequenciesavedetermine the absolute distance
of the measurement arm in dispersive media at large delays.

We would like to compare Eq. (5) and Eq. (17). Both equatioaaly valid for large delay
distances and are calculated for a quadratic dispersivéumedn the result obtained from
the first order stationary phase approximation as shown inEf] the cross-correlation has
the envelope of the power spectral density of the laser 808rayom + ap), at the dominant
frequencieguom. The envelope of the cross-correlation from Eq. (5) is givgthe following

integral

/700 hx—o(to) exp |:I <II+B;(07XFI_X/C) t0:| dto. (20)
The exponential can be written as €y (X, t)to], wherew,(X,t) = (t+ X —nX/c) / (2aX)
is a particular angular frequency depending on the delatamie and the scanning tinte
Therefore we can replace the above integral \8ittw, (X, t)] where we have used the Wiener-
Khintchin theorem. Her&[wy(X,t)] is the power spectral density at the particular angular
frequenciesup(X,t). Thus we can see that the envelope of the cross-correlatitiarps in
guadratic dispersive media is determined by the shape oP8i2 of the laser source. We
observe a linear dependence between the stationary freiggem,(X,t), and the scanning
timet. In the regime where the extent of the cross-correlationtion is smaller than the laser
cavity length, the value dfis given by Eq. (3).

Consider the case where the output of the unbalanced Mahlterferometer was analyzed
with a spectrometer, we would then measure modulated spiestead of cross-correlation pat-
terns. If we perform two independent measurements at the séstanceX but at two different
scanning positions of the short scanning atpandt, respectively. From the expression for
wp(X,t) we obtain

{glﬂ; B+ 20 wp(X t>
% =1-B+20wp(X,t)
tz)_(tl 20 [wp(X,t2) — (X, 12)] 21)

The time lag {t = t, —t1) can be measured by simply noting the piezo displacenf®egt (
wherelAt = %X. The spectrometer would record the particular or dominaagfencies at two
different positions of the scanning piezo. Hence, the unkndistance X is determined by

- AX
| 2ca [owp(X,t1) — wp(X, 12)]

(22)

This method is quite simple. It requires the measuremenvofstationary frequencies at two
different positions. The accuracy of this method dependbiemesolution of the spectrometer
and the sensitivity of the scanning element (piezo) in thetsdrm. This can be a subject for
future experiments at large delay distances as a fast méhatsolute distance measurements

5. Conclusion

The continuous model of cross-correlations allows us tewstdnd many aspects of the forma-
tion of correlation patterns after propagation in dispersnedia. The cross-correlation patterns



are subject to non-linear broadening at short path lengtbrdices and linear broadening at
larger path length differences. For path length differsnoeyond the non-linear dispersion
depth, the method of stationary phase was used to study thelaton patterns. It shows that
the shape of the cross-correlation patterns at large déttgndes is determined by the source
spectral profile, though the cross-correlation will con@rspreading linearly. It was also ob-
served that each intensity point of the correlation patieformed by the contribution of one
dominant stationary frequency. This stationary frequeBeen to vary as a function of the
path length difference within the correlation pattern. Vi&®ahow that the contributing sta-
tionary frequency remains constant if the evolution of atipalar fringe is followed in the
successive cross-correlation patterns found periogiaatiifferent delay distances for the long
arm. Using this property a method of measuring very largedies has been proposed.
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