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Abstract: We investigate general properties of the interferograms from a
frequency comb laser in a non-linear dispersive medium. Thefocus is on
interferograms at large delay distances and in particular on their broadening,
the fringe formation and shape. It is observed that at large delay distances
the interferograms spread linearly where its shape is determined by the
source spectral profile. It is also shown that each intensitypoint of the
interferogram is formed by the contribution of one dominantstationary
frequency. This stationary frequency is seen to vary as a function of the
path length difference even within the interferogram. We also show that
the contributing stationary frequency remains constant ifthe evolution
of a particular fringe is followed in the successive interferograms found
periodically at different path length differences. This can be used to measure
very large distances in dispersive media.
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1. Introduction

Laser sources with carrier-envelope-offset stabilized femtosecond pulses offer the unique ad-
vantage of a fixed phase relationship between the pulses emitted by the laser. The long term
stability of these sources opens up a whole range of applications in several precision metrol-
ogy application areas such as precision optical frequency metrology, spectroscopy, and absolute
distance measurements [1, 2, 3, 4, 5, 6, 7], to name a few. Measurement of interferograms, or
correlations, between pulses gives an insight of the coherence properties of the light source.
A normalized correlation from a balanced Michelson interferometer, termed as the autocorre-
lation, exhibits a peak intensity of unity at exactly equal arms and decaying oscillations as a
function of the position of the scanning arm. The autocorrelation is a symmetric function and
its Fourier transform yields the power spectral density (PSD) of the laser source according to
Wiener-Khintchin theorem. If the interferometer is unbalanced and the measurements are car-
ried out in vacuum, for a frequency comb source, the correlation repeats itself periodically with
a maximum coherence when the path length difference betweenboth arms is equal to an integer
multiple of the laser cavity length. In this case the correlation patterns remain undistorted and
the position of the maximum fringe visibility can be easily and accurately determined.

In the case of distance metrology [8, 9, 10, 11, 12, 13, 14, 15]in air a dispersive medium is
placed in the measurement arm. The observed interference patterns, which are cross-correlation
patterns, will show distortion when compared to the autocorrelation. Also, the position of the
coherence maximum or the brightest fringe will vary as a function of the delay distance. We
have shown that [16], even if the medium is homogeneous, the position of the maximum coher-
ence varies non-linearly for short delay distances and linearly for larger delay. In addition, our
simulations also show that the correlation patterns are non-linearly broadened at short delay
distances and that linear broadening replaces the non-linear broadening at larger distances.

In this work our main focus is on the formation of the fringes and the shape of the cross-
correlation patterns for large delay distances. The terms large delay and short delay depend
on the extent of distortion in the cross-correlation patterns which in turn is dependent on the
properties of the light source and the dispersive medium. Wedescribe the cross-correlation from
a mode-locked laser using a discrete model and then extend this to a continuous model, allowing
us to derive some dispersion properties of the correlation patterns. In particular, we have shown
that the cross-correlation exhibits a non-linear broadening for short delay distances and linear
broadening for larger delays. The theoretical results obtained from the developed continuous
model are in full agreement with the standard discrete modelof the cross-correlation as well
as with the measured data. The depth of non-linearity for pulses in dispersive media has been
shown to quantitatively depend on the temporal and spectralproperties of the emitted light and
the dispersion properties of the medium. In this work, usingthe continuous model of the cross-
correlation and the method of the stationary phase we study the behavior of cross-correlation
patterns and the frequency content of the constituting optical fringes at large delay distances.

This paper is organized as follows. In Section II a general description of the cross-correlation
using the continuous model is presented. In Section III, we use the method of the stationary
phase to study the cross-correlation functions and compareit to numerical simulations. Finally,
in Section IV a new proposal for distance measurement using the method of stationary phase is



described.

2. Cross-correlation in dispersive media

The starting point of our analysis is provided by a model describing the propagation of
plane waves from a pulsed laser along thex-direction. A detailed description of our work
can be found in [16]. The frequency spectrum emitted by a mode-locked laser consists of
a comb of regularly spaced frequenciesωm = mωr + ω0, m = 0,1,2, ... where ω0 is the
common offset frequency andωr is the repetition frequencyfr expressed in angular notation
ωr = 2π fr =

2π
Tr

, Tr =
c

lpp
. Here lpp is the cavity length,c is the velocity of light in the

medium of the cavity andTr is the time distance between the pulses. The offset frequency ω0

is caused by the difference between the group velocity and the phase velocity inside the laser
cavity. Bothω0 andωr are stabilized to an atomic clock in most laboratories.

The correlation function can be readily measured experimentally by placing a slow detector
at the output of the Michelson interferometer, which can be balanced or unbalanced. A detailed
analysis of this function in case of an unbalanced interferometer in presence of a homogenous
dispersive medium leads to the following equation [16]

Γ(X) =
∞

∑
m=0

S(mωr +ω0) cos

[

(mωr +ω0)n(mωr +ω0)
X
c

]

(1)

whereΓ(X) is the cross-correlation as a function of the delay distance(X), S(mωr +ω0) ≡
Power Spectral Density (PSD) andn() is the refractive index of the dispersive medium. Equa-
tion (1), which is a discrete representation of the correlation function, shows good agreement
with the experimental results but is unable to provide a physical explanation of some properties
of the cross-correlation function such as the the shift of the position of the maximum coher-
ence, broadening effects and shape of the cross-correlation function. A continuous model was
therefore developed for a better understanding of the problem.

We can rewrite the cross-correlation as [16]

Γ(X) =
Tr

2

∞

∑
ℓ=−∞

hX

(

n̄
X
c
+ ℓTr

)

, (2)

using the Poisson summation formula. Here the subscriptX in hX is a parameter denoting the
delay distance. This analysis is in the regime where inspiteof the broadening the extent of the
cross-correlation function is still smaller than the lasercavity length or the interpulse distance.
This series expression, Eq. (2), forΓ(X) reduces to at most a single term whenhX(t) has a
support length≤ Tr. The limitation posed by this for the case of propagation in air is discussed
in a subsequent section. From a physical point of view, the integerℓ denotes the multiple of
the laser cavity length at a given delay distanceX andℓTr is the propagation time of a pulse in
”vacuum”. In the case whereX > 0 the integerℓ must be negative. Defining the time variable
(t) as

t ≡ n̄
X
c

(modTr), (3)

allows us to write the cross-correlation function as an integral given by

hX(t) =
1
π

∫ ∞

0
S(ω +ω0)cos

{

(ω +ω0) [n(ω +ω0)− n̄]
X
c
+ω0n̄

X
c
+ωt

}

dω . (4)

From Eq. (4) we see that for any arbitrary delay distanceX , independent of the laser cavity
length 2πc/ωr, a cross-correlation patternhX(t) can be obtained by varying the time delay(t)



where−Tr/2≤ t ≤ Tr/2. In practice, this time(t) is obtained by setting up a scanning short arm
of one laser cavity length. For numerical comparisons, bothhX(t) andΓ(X), are normalised to
unity.

Using the Wiener-Khintchin theorem and a quadratic dispersive mediumk(ω+ω0) =αω2+
β ω + γ for large delay distances, we can write [16]

hX(t) =
R
2π

√

π
2αX

cos
[

γX − f 2
X(t)+θ

]

∫ ∞

−∞
dt0hX=0(t0)]cos

[

fX (t)√
αX

t0

]

.

(5)

Here, fX (t) is defined asfX (t) =−
(

β X − n̄X
c + t

)

/(2
√

αX), R andθ are radial and angular pa-
rameters which are functions offX (t) [16]. These results have allowed us to define a particular
functionζ (X) by

ζ (X) =
τc

√

(4αX)
=

τc
√

2
c

[

2dn(ω)
dω +ω d2n(ω)

dω2

]

ω=ω0
X

(6)

Using this function defined the Non-linear Dispersion Depth(D) of a given pulse in a particular
dispersive medium. The parameterD is given as

D =
3
2

3

√

τ2
c

α
(7)

Equation (7) shows the effective distance of non-linear dispersion effects on cross-correlations
obtained from a light source having a coherence timeτc and a carrier frequencyωc propagating
in a refractive medium with a group delay dispersionα at ωc. Short delay and large delay
distances can be defined usingD .

2.1. Typical characteristics of cross-correlations at large delay distances

In this section, we numerically analyze cross-correlationpatterns for delay distances larger than
D . For standard air we have previously shown [16] thatD = 30 m. Our simulations were per-
formed for standard air using the measured laser source spectrum [13]. The typical parameters
for our Ti:Sapphire based frequency comb are as follows. Thecentral frequency of the comb is
ωc = 2.3254×1015 rad/s, corresponding to a wavelength of 810 nm in vacuum, thebandwidth
is typically∆ω ≈ 5×1014 rad/s, which correspond to a pulse width of∆x ≈ 12 µm and a pulse
duration of 40 fs. The frequency offset is typicallyω0 ≈ 113× 107 rad/s and the repetition
frequency isωr = 6.28×109 rad/s, corresponding to a cavity lengthlpp = 30 cm and period
Tr ≈ 1ns. The frequenciesω0 andωr are synchronized to a cesium clock. The spectral con-
tent of the initial pulse is the main input for the numerical model. Using the corrected updated
Edlén’s equation [17] for the refractive index of air, 8×104 spectral lines fitted to the profile of
the spectrum of the laser, are propagated and then recombined to form correlation patterns.

In this numerical example the delay distanceX has been taken to be long enough, 120 meters,
so that the correlation patterns are only observed to be linearly broadened. Three fringes are
picked up from this correlation pattern and further analysed. The cross-correlation is shown in
Fig. 1.a where the vertical lines indicate the positions of the fringes we investigate. The fringe
pattern is obtained by varying the time delayt around a delay distanceX = 120 m. At each
small delay the frequency content of the interfering fields will be constantly in phase or out
of phase depending ont. We have chosen to analyze the cosine of the phase factor fromEq.
(4). For each small delay scan one fringe the cosine of the phase function has been plotted. A
3-D plot can be obtained for each analyzed fringe showing thevalue of the cosine of the phase



Fig. 1. Behaviour of the phase function for various fringes within one correlation. (a) Cross
correlation for a propagation distanceX = 120 m. The three lines select three different
fringes from the cross-correlation pattern. (b,c,d) The corresponding 3-D plots of the cosine
of the phase function of the three selected fringes are shownas a function of the wavelength
and the scanning timet. (e,f,g) The cosine of the phase function of the three selected fringes
as a function of frequency for five intensity values in each fringe.

as a function of the time delay (t) and the frequencies (or the wavelength) of the optical field.
These plots are shown in Fig. 1.(b,c,d). The plots show that within one fringe the cosine of the
phase function has either fast or slow oscillations as a function of the frequency. Using this
oscillating function in Eq. (4), whereS(ω +ω0) is a slowly varying term, the integral transform
is small. The integral will approach zero as the number of oscillations increases, Riemann-
Lebesgue lemma. Thus this relatively high oscillatory partwill have a minor contribution to
the formation of the interference fringe. Only when the cosine of the phase function is slowly
varying the contribution to the integral will be important.The plots analyzing the fringes show
that the slowly varying part is always at a specific frequencyfor a particular fringe. In Fig.
1.(e,f,g) we plot the cosine of the phase function for each fringe as a function of the frequency.
Five such samples at different intensity points of the fringe are plotted on top of each other. It
is clearly seen that, for a given fringe, the position of the stationary frequency remains constant
on the frequency-axis and changes only in value whent changes. Between different fringes, the
stationary frequency varies, depending on the fringe position in the correlation pattern.

We study the evolution of the cosine of the phase function from Eq. (4) as a function of
the distance in Fig. 2. We pay particular attention to the behaviour of this function at the
brightest fringe of the cross-correlations. For short distances the cosine of the phase function
is slowly oscillating. In this case we have a large contribution from the whole frequency band
of the source. As the distance increases, the cosine of the phase function becomes highly
oscillating and the formation of the fringe depends on a small frequency bandwidth which is
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Fig. 2. (a) Analysis of the cosine of the phase function at thebrightest fringe of the correla-
tion pattern for various delay distances ranging up to 100 m in air. (b) Wavelength (green,
continuous) and width (blue, dotted) of brightest fringe asa function of delay distance. (c)
Cross-sections from the cosine of the phase function shown in (a) illustrating the phase
function at 3 m (red, dotted) and 60 m (blue, continuous).

the slowly oscillating part. The width of the slowly oscillating part converges as the distance in-
creases. The central frequency of the slowly oscillating part is constant and becomes a dominant
frequency after reaching a delay distance larger thanD which is more than 30 m in standard air.

2.2. Limit of the validity of the continuous model in standard air

In this section we calculate the maximum pulse propagation distance for which the correlations
can be analyzed using the continuous model. The dispersive medium under investigation is
standard air. It is essential that the cross-correlationΓ(X) in Eq. (2) contains one significant
term only. So thatΓ(X) is simply proportional tohX(t) wheret is defined by Eq. (3). We
rewrite Eq. (4) as

hX(t) =
1
π

Re

{

∫ ∞

0
S(ω +ω0)exp

[

i

(

n̄
X
c

ξ (ω +ω0)+ωt

)]

dω
}

, (8)

where we have definedξ (ω +ω0) = (ω +ω0)
[

n(ω+ω0)
n̄ −1

]

. Therefore, forX = 0, hX(t) re-

duces to

hX=0(t) =
1

2π

∫ ∞

−∞
S(ω +ω0)exp(iωt)dω (9)



Recalling thatS(ω +ω0) is the power spectral density of a single pulse. Using the Wiener-
Khintchin theorem, where the autocorrelation of the pulse has a time durationτ, we get

hX(t) = Re

{

1
π

∫ ∞

−∞
hX=0(t)

[

∫ ∞

0
exp

(

−iωt1+ in̄
X
c

ξ (ω +ω0)+ iωt

)

dω
]

dt1

}

= Re

[

1
π

∫ ∞

−∞
hX=0(t1)gX(t − t1)dt1

]

, (10)

wheregX(s) =
∫ ∞

0 exp
[

iωs+ in̄ X
c ξ (ω +ω0)

]

dω . ThushX is obtained as the real part of the
convolution ofhX=0 and 1

π gX . The range of the time intervals for whichgX(s) is non-negligible
is to be determined. The time interval ranget for which hX(t) is non-negligible is then just a
little bit larger in size than the corresponding range forgX . To obtain the time interval range
for gX , the stationary points in the integrand ofgX need to be determined. We assumeξ (ω) =

ωn0(ω) wheren0 =
n(ω)

n̄ −1= ε0φ(τω). Hereε0 is a number of the order 10−7 andφ(η) is

a smooth function such that bothφ(η) andφ ′
(η) are of the order of unity. NowgX(s) can be

written as

gX(s) =
∫ ∞

0
exp

[

iωs+ in̄
X
c
(ω +ω0)ε0φ(τ(ω +ω0))

]

dω

= exp(−iω0s)
1
τ

∫ ∞

τω0

exp(iηs
′
)exp

(

ib
′
ηφ(η)

)

dη , (11)

wheres
′
= s

τ andb
′
= n̄ X

c
ε0
τ . In the above equation, Eq. (11), a stationary point occurs in the

integral for the set ofs
′
which obeys the condition

∂
∂η

[

ηs
′
+ b

′
ηφ(η)

]

= s
′
+ b

′ [
φ(η)+ηφ

′
(η)

]

= 0 (12)

whereη ∈ [τω0,∞]. Therefores
′ ∈

{

b
′
[

φ(η)+ηφ ′
(η)

]

| η ∈ R
}

. The set ofs
′
has the same

size at the set ofb
′
sinceφ(η)+ηφ ′

(η) is of the order of unity. The average refractive index
n̄ of air in the near infrared region is 1.00027. Thereforeb

′τ has a size of the orderb
′τ =

n̄ε0
c X = 1

310−15X . This gives us a range for the sets contained in the interval of lengthTr when
X ≤ 3.1015Tr = 3.106 m.

This analysis gives an approximate indication of the size ofthe set wheregX is non-
negligible, but for the relevant cases thatX ≤ 1000 km it seems that we can safely assume
that the series in Eq. (2), that uses samples ofhX at distancesTr apart, has only one significant
term. In any case, these distances are beyond the coherence length of present day laser systems
but maybe relevant in the future.

In the next section we will show that for large delay distances, particularly larger thanD , an
asymptotic method can be used to derive the equation of the cross-correlation function. Results
from this asymptotic method and Eq. (5), which uses the continuous model, will be compared
to each other. Using this, a simple method for absolute distance metrology is proposed.

3. Stationary phase approximation of the cross-correlation function

To study the correlation functions and their properties forlarge delay distances, we define large
delay as the distance for which the correlation patterns areonly linearly broadened. We have
shown by numerical simulations and experimental measurements that the shape of the cross-
correlation converges to a particular profile for large delay distances. In air, we were able to



study this for correlations patterns up to 200 m, where the numerical results agreed reasonably
well with the experiments [16].

To simulate the correlation formation in air under experimental conditions we used the stan-
dard discrete model. In spite of the reasonable agreement that has been obtained between nu-
merical and experimental results, we were not able to explain the physical origin of the shape
convergence and disappearance of the effect of chirp at large delay distances. To understand the
formation of the cross-correlation patterns at large distances we extended the discrete model
to a continuous model. This enabled us to write the cross-correlation as an integral, Eq. (4)
instead of a series. Using this integral we now try to study the quasi-asymptotic formation of
cross-correlation patterns.

The cross-correlation in Eq. (4) is expressed as an integration of a slowly varying function,
S(ω +ω0), multiplied by an oscillatory phase factor. The stationaryphase method is an appro-
priate mathematical tool to study the asymptotic behaviourof this model [18]. We rewrite Eq.
(4) as

hX(t) =
1

2π

∫ ∞

0
S(ω +ω0){exp[iφ(ω)]+exp[−iφ(ω)]}dω (13)

whereφ(ω) = k(ω +ω0)X −ω n̄ X
c +ωt andk(ω +ω0) = (ω +ω0)n(ω +ω0)/c. The phase

φ(ω) is stationary whend
dω

[

k(ω +ω0)X −ω n̄X
c +ωt

]

= 0 or, equivalently, whendk
dω = n̄

c −
t
X . Solutions to this differential equation yield dominant frequenciesωdom(X , t) for a givenX

andt, wheret ∈
{

n̄ X
c − k(1)(ω)X | ω ∈ R

}

. Herek(1) denotes the first derivative of thek(ω)

vector. If we expandφ(ω) in a Taylor series aboutωdom and neglect terms of order higher than

(ω −ωdom)
2, we obtainφ(ω) ∼ k(ωdom +ω0)X −ωdomn̄ X

c +ωdomt + X
2

d2k
dω2 (ω −ωdom)

2. This
phase expansion yields the first order stationary phase approximation of Eq. (13). This general
class of oscillatory integrals, with polynomially growingphase functions, also has a solution
where higher-order stationary phase approximation can be calculated. The asymptotic solution
of Eq. (13) using only the first and the second order stationary phase approximation is given by

hX(t)≃
1
π

{

C1X−1/2cos
[

φ(ωdom)+σ
π
4

]

+C2X−3/2cos

[

φ(ωdom)+σ
3π
4

]}

(14)

where the coefficientsCn are given below. Withσ = sign[φ (2)(ωdom)] whereφ (n) is thenth

derivative ofφ(ω) evaluated at the frequencyωdom, the first two coefficients of the asymptotic
series are given by [18]

C1 =

√

2π
|φ (2)(ω0)|

S(ωdom +ω0) (15)

and

C2 =

√

π/2

|φ (2)|3/2

[

S(2)− φ (3)S(1)

φ (2)
− φ (4)S

4φ (2)
+

5(φ (3))2S

12(φ (2))2

]

. (16)

HereS(n) are thenth derivative ofS(ω +ω0). Then, the first order asymptotic approximation,
whereC2 = 0, of the cross-correlation function is given as by

hX(t)≃
1
π

S(ωdom +ω0)

√

√

√

√

2π

X
∣

∣

∣

d2k
dω2

∣

∣

∣

ω=ωdom

cos

[

k(ωdom +ω0)X −ωdomn̄
X
c
+ωt +σ

π
4

]

.(17)

The second order approximation is given by

hX(t)≃
1
π

{

C1X−1/2cos
[

φ(ωdom)+σ
π
4

]

−σC2X−3/2sin
[

φ(ωdom)+σ
π
4

]}

. (18)



Whena andb are real, we can writeacosx− bsinx = R cos(x+ϑ). In this caseR andϑ are

given byR =

√

C2
1

X +
C2

2
X3 and tanϑ = −σ C2

XC1
. Finally, the second order approximation can be

written as

hX(t) ≃ 1
π

R cos

[

k(ωdom +ω0)X −ωdomn̄
X
c
+ωt +σ

π
4
+ϑ

]

(19)

From the above expression we see that the first order stationary phase approximation is the
leading contributor. In optical media, as well as in air, thedispersion relation can generally be
limited to its quadratic approximation [19]. In this case, terms arising due to higher order sta-
tionary phase approximations have minor contribution to the formation of the cross-correlation
function. In the subsequent analysis we use the first and the second order terms and neglect
the rest. From Eq. (17) we can see that the dominant term results in the envelope of the cross-
correlation being determined by the spectral profileS(ω +ω0). This is in agreement with the
previous experimental and numerical simulation [16], where we observe shape convergence of
cross-correlation functions at large delay distances. Theequation also shows that the term inside
the cosine depends linearly onωdom. Thus, with increasing delay distance the cross-correlation
functions will spread linearly.

We compare various simulated correlations using Eq. (1) andtheir corresponding asymp-
totic functions using the stationary phase approximationsfrom Eq. (14) in Fig. 3. We refer to
the cross-correlation from Eq. (1) and the one from Eq. (14) as the exact and the asymptotic
cross-correlations respectively. We start our comparisonusing the first order stationary phase
method. Numerical results for 100 m delay distance in air areshown in Fig. 3.a. At the cen-
ter of the interferogram a good overlap between the exact andthe asymptotic correlation has
been obtained. An analysis of the wings of the interferogramshow a fringe mismatch. A better
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Fig. 3. Comparison between exact and asymptotic cross-correlations for 100 and 200 m in
air using the first and the second order stationary phase method. (a) Exact simulation (blue,
dotted) compared to first order asymptotic calculation (red, continuous) for 100 m prop-
agation in air. (b) Exact simulation (blue, dotted) compared to second order asymptotic
calculation (green, continuous) for 100 m propagation in air. (c) Exact simulation (blue,
dotted) compared to first order asymptotic calculation (red, continuous) for 200 m prop-
agation in air. (d) Exact simulation (blue, dotted) compared to second order asymptotic
calculation (green, continuous) for 200 m propagation in air.

overlap has been obtained for a delay distance of 200 m and shown in Fig. 3.c. This problem



of shape matching between the exact and the asymptotic correlations can be alleviated using
higher-order stationary phase approximation. Here we onlyshow the improvements using the
second-order stationary phase. It is clearly seen that for higher order stationary phase approxi-
mation the shape of the asymptotic pattern shows a better agreement with the exact correlation.
More importantly, for distance measurement purposes, the position of the central fringe of the
asymptotic correlations has not shown any shift in comparison to the exact simulations.

We found that for larger distances, fringe patterns can be described by particular frequencies.
In Fig. 4 we show the frequency content of a correlation pattern simulated for a delay of 200
m in air. The top figure shows the spectral distribution of thelaser source. The bottom figure

Fig. 4. (top) Spectral distribution of the stationary frequencies after 200 m propagation in
air. (bottom) Frequency distribution inside a cross-correlation after 200 m propagation in
air.

shows the cross-correlation function simulated using the first-order stationary phase method.
The color indicates the frequency content ranging from 780 to 850 nm. It is clearly seen that
the stationary frequencies change within a given cross correlation depending on the fringe order.
In addition, the shape of the envelope of the cross-correlation follows the shape of the spectral
distribution as it was demonstrated in this section. Using this approximation greatly reduces the
computational time when simulating the cross-correlationfunctions as can be seen when Eq.
(17) and Eq. (1) are compared. As an example, the spectrum of the Ti:Saphirre frequency comb
contains 105 frequencies. By using a scanning short arm with 104 steps, one has to compute a
grid of 105× 104 elements in order to obtain the final results. This can be simply reduced to
a vector of 104 components by using the cross-correlation equations from the stationary phase
method since we can associate one dominant frequency to eachscanning step.



4. Stationary Phase Absolute Distance Metrology

In the previous section we observed that the analysis of cross-correlation patterns becomes
simpler for large delay distances, when the stationary phase approximation can be applied.
Each fringe in the cross-correlation is formed by its uniquedominant frequency and the cross-
correlation broadens only linearly. In this section we willshow that by accurate knowledge of
the spacing between two fringes of different frequencies wecan determine the absolute distance
of the measurement arm in dispersive media at large delays.

We would like to compare Eq. (5) and Eq. (17). Both equations are only valid for large delay
distances and are calculated for a quadratic dispersive medium. In the result obtained from
the first order stationary phase approximation as shown in Eq. (17, the cross-correlation has
the envelope of the power spectral density of the laser source, S(ωdom +ω0), at the dominant
frequenciesωdom. The envelope of the cross-correlation from Eq. (5) is givenby the following
integral

∫ ∞

−∞
hX=0(t0)exp

[

i

(

t +β X − n̄X/c
2αX

)

t0

]

dt0. (20)

The exponential can be written as exp[iωp(X , t)t0], whereωp(X , t) = (t +β X − n̄X/c)/(2αX)
is a particular angular frequency depending on the delay distance and the scanning timet.
Therefore we can replace the above integral withS [ωp(X , t)] where we have used the Wiener-
Khintchin theorem. HereS [ωp(X , t)] is the power spectral density at the particular angular
frequenciesωp(X , t). Thus we can see that the envelope of the cross-correlation patterns in
quadratic dispersive media is determined by the shape of thePSD of the laser source. We
observe a linear dependence between the stationary frequencies,ωp(X , t), and the scanning
time t. In the regime where the extent of the cross-correlation function is smaller than the laser
cavity length, the value oft is given by Eq. (3).

Consider the case where the output of the unbalanced Michelson interferometer was analyzed
with a spectrometer, we would then measure modulated spectra instead of cross-correlation pat-
terns. If we perform two independent measurements at the same distanceX but at two different
scanning positions of the short scanning arm,t1 andt2 respectively. From the expression for
ωp(X , t) we obtain

{ t1
X = n̄

c −β +2αωp(X , t1)
t2
X = n̄

c −β +2αωp(X , t2)

⇒ t2− t1
X

= 2α [ωp(X , t2)−ωp(X , t2)] (21)

The time lag (∆t = t2 − t1) can be measured by simply noting the piezo displacement (∆x),
where∆t = ∆x

c . The spectrometer would record the particular or dominant frequencies at two
different positions of the scanning piezo. Hence, the unknown distance X is determined by

X =

∣

∣

∣

∣

∆x
2cα [ωp(X , t1)−ωp(X , t2)]

∣

∣

∣

∣

(22)

This method is quite simple. It requires the measurement of two stationary frequencies at two
different positions. The accuracy of this method depends onthe resolution of the spectrometer
and the sensitivity of the scanning element (piezo) in the short arm. This can be a subject for
future experiments at large delay distances as a fast methodfor absolute distance measurements

5. Conclusion

The continuous model of cross-correlations allows us to understand many aspects of the forma-
tion of correlation patterns after propagation in dispersive media. The cross-correlation patterns



are subject to non-linear broadening at short path length differences and linear broadening at
larger path length differences. For path length differences beyond the non-linear dispersion
depth, the method of stationary phase was used to study the correlation patterns. It shows that
the shape of the cross-correlation patterns at large delay distances is determined by the source
spectral profile, though the cross-correlation will continue spreading linearly. It was also ob-
served that each intensity point of the correlation patternis formed by the contribution of one
dominant stationary frequency. This stationary frequencyis seen to vary as a function of the
path length difference within the correlation pattern. We also show that the contributing sta-
tionary frequency remains constant if the evolution of a particular fringe is followed in the
successive cross-correlation patterns found periodically at different delay distances for the long
arm. Using this property a method of measuring very large distances has been proposed.
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