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Abstract We study a blood testing procedure for detecting viruses like HIV, HBV
and HCV. In this procedure, blood samples go through two screening steps. The
first test is ELISA (antibody Enzyme Linked Immuno-Sorbent Assay). The portions
of blood which are found not contaminated in this first phase are tested in groups
through PCR (Polymerase Chain Reaction). The ELISA test is less sensitive than
the PCR test and the PCR tests are considerably more expensive. We model the
two test phases of blood samples as services in two queues in series; service in the
second queue is in batches, as PCR tests are done in groups. The fact that blood can
only be used for transfusions until a certain expiration date leads, in the tandem
queue, to the feature of customer impatience. Since the first queue basically is
an infinite server queue, we mainly focus on the second queue, which in its most
general form is an S-server M/G[k,K]/S + G queue, with batches of sizes which are
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bounded by k and K. Our objective is to maximize the expected profit of the system,
which is composed of the amount earned for items which pass the test (and before
their patience runs out), minus costs. This is done by an appropriate choice of the
decision variables, namely, the batch sizes and the number of servers at the second
service station. As will be seen, even the simplest version of the batch queue, the
M/M[k,K]/1 + M queue, already gives rise to serious analytical complications for any
batch size larger than 1. These complications are discussed in detail, and handled for
K = 2. In view of the fact that we aim to solve realistic optimization problems for
blood screening procedures, these analytical complications force us to take recourse
to either a numerical approach or approximations. We present a numerical solution
for the queue length distribution in the M/M[k,K]/S + M queue and then formulate
and solve several optimization problems. The power-series algorithm, which is a
numerical-analytic method, is also discussed.

Keywords Tandem queues · Impatient customers · Blood screening procedures ·
Group testing procedures

AMS 2000 Subject Classifications 60K25 · 90B22

1 Introduction

Basic group testing models deal with the classification of the items of some popula-
tion into two categories ‘good’ and ‘defective’. It is assumed that the items are group
testable, i.e., for any subset of the population it is possible to carry out a simultaneous
test (group test) with two possible outcomes: ‘success’ (or clean, or negative),
indicating that all items in the subset are good, and ‘failure’ (or contaminated, or
positive), indicating that at least one of the items in the subset is defective, without
knowing which or how many are defective. A contaminated group can be subject to
further screening or be scrapped. Employing suitably designed procedures of this
kind leads to a significant reduction of the number of required tests and thus of
screening cost, under controlled probabilities of misclassifications.

A group testing procedure is therefore a cost-efficient technique. It has been
applied in various areas, first of all for blood testing to detect various viruses and
for DNA screening, but also in quality control for industrial production systems (e.g.
Li 1962; Bar-Lev et al. 1990), drug discovery (Xie et al. 2001; Zhu et al. 2001) and
communication networks (Wolf 1985). A key reference is the monograph by Du and
Hwang (2000). Applications to HIV screening are given, among others, by Gastwirth
and Johnson (1994), Litvak et al. (1994), Tu et al. (1995) and Wein and Zenios (1996).
Uhl et al. (2001) study the use of pooling in an application to genetics. In Bar-Lev
et al. (2003, 2004, 2005, 2006, 2007), a more detailed discussion of the literature and
a classification of group testing models according to various dichotomies are given.

In this paper we focus on blood testing. We wish to analyze and optimize the
performance of blood screening procedures. We analyze the delays experienced in
the blood screening process, and the process of outdating, and subsequently we use
the results of this analysis to minimize the costs associated with the test procedures
and with the loss of blood samples due to their exceeding the expiration date.
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We divide the remainder of this introductory section into three parts. In
Section 1.1 we describe blood screening procedures and related relevant features;
Section 1.2 presents a first global description of a tandem queueing model which
can be used for the performance analysis of such blood screening procedures; and
Section 1.3 presents aim and overview of the paper.

1.1 Blood Screening Procedures and Related Features

Blood banks worldwide aim toward the supply of uncontaminated blood. Each blood
donation goes through multiple testing for the presence of various pathogens which
are able to cause transfusion-transmitted diseases. In most countries screening all
blood donations for hepatitis B (HBV), hepatitis C (HCV) and human immun-
odeficiency virus (HIV) is mandatory. The cost of this screening is rising in developed
countries and is a major economic burden in developing countries. Currently, blood
banks in the USA and several Western European countries have adopted pooling
methods for the performance of Polymerase Chain Reaction (PCR) while screening
blood donations for HIV, HBV and HCV. This is done in addition to the individual
antibody Enzyme Linked Immuno-Sorbent Assay (ELISA) testing, in order to
increase earlier detection of these agents and decrease morbidity (see Schottstedt
et al. 1998; Stramer et al. 2004; Hourfar et al. 2008).

Until a few years ago, the routine testing was based only on ELISA tests that
detect virus-specific antibodies in the blood. Such an ELISA test has high sensitivity
and specificity but has a lower analytic detection limit which affects the identification
of positive samples very soon after HIV seroconversion, as it takes time to develop
a high concentration of antibodies. The latter drawback of ELISA is related to
the effect of the window period which causes serious problems when testing for
viral diseases. The window period of a given virus is defined as the period elapsing
between the time a person is infected by the virus and the time antibodies are
developed and can be detected. The window period varies for different types of
viruses, and will influence the effectiveness of group testing. The importance of
this issue depends greatly on the extent of the epidemic in a given population and
the incidence rate of new infections. Examples of average window periods (based
on ELISA) for some viruses are: 22 days for HIV, 70 days for HCV and 60 for
HBV, but in individual cases window periods can be substantially longer. Note that
antibodies are not developed in a non-live organism, implying that once a blood
sample is donated, no antibodies are further produced. Consequently, the ELISA
test cannot detect a viral contaminated blood sample if the individual who donated
the sample was infected prior to making the donation, but yet had not “completed”
the respective viral window period, and thereby not producing a sufficiently high
concentration of antibodies to be detected by the ELISA test.

The relatively new PCR test can detect viral genetic material in the blood and has a
much higher sensitivity and specificity than the ELISA test. PCR testing is especially
advantageous in the window period soon after seroconversion when the virus starts
multiplying but antibodies are not yet at high levels. For these blood samples, the
ELISA test will be negative while the PCR test is likely to be positive. However,
the PCR test is considerably more expensive than the ELISA test. Therefore, blood
banks in the USA and some countries in Europe have established a new protocol
with a two-stage procedure comprising of individual and pooled testing. By such
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a procedure blood samples are first screened individually for HIV (or any other
viruses) with ELISA.

Those samples that are found contaminated, are discarded. In practice, contami-
nated groups are not used for filling out inventory. The items in such contaminated
groups are checked individually by ELISA tests only for identifing infected donors
and informing them about their situation. The testing process of contaminated
groups takes relatively much time (as their testing is delayed since new groups which
are tested for filling out inventory and aimed at blood transfusions, get a priority),
and therefore, due to the expiration dates as well as other related costs, blood
samples in contaminated groups that are identified as negative in such a process
are thrown away without making any use to fill inventory. All the negative samples
are then pooled in groups and tested for the same viruses with PCR techniques. All
donations in the negative pools are accepted while the positive pools are discarded
and a resolution testing is performed to identify the individual positive donation.
Pool sizes are typically 6–24.

Accordingly, we face here a service facility with two testing stages (service sta-
tions): Blood samples arrive at the first station for an ELISA test and are individually
tested, and if they are found HIV positive they leave the system. Otherwise, they
are forwarded to the second station which involves PCR testing, where the tests are
processed in groups (batches) of size K, say. The groups then leave the system either
as a contaminated group (HIV positive) or a clean group (HIV negative). It should
be noted that a similar routine is also applied to detect HBV or HCV in blood testing.

However, at least one more substantial feature related to the above testing process
should be taken into account, namely, aging (or expiration date). This relates to the
fact that each blood donation is basically “divided” into at least three components
that are used separately, depending on the needs of the patients: (a) red blood cells—
which can be used for up to 42 days (red cells of 35–42 days old are less viscous);
(b) plasma and cryoprecipitate concentrations—which can be kept frozen for about
one year; and (c) platelets (‘thrombocytes’)—which are usable for at most 5 days.
The time constraints due to these expiration dates must be taken into account when
considering the processing times of the two-stage testing procedure. Consequently,
at each service station, one faces impatient customers.

1.2 Various Queueing Systems for Modeling the Two-Stage
Blood Screening Procedure

Based on the previous subsection it can be seen that we are dealing with a queueing
system consisting of two service stations in tandem with impatient customers, where
items (customers) are served individually at the first service station and in batches at
the second. Accordingly, our basic assumptions are made as follows. Having realized
that the ELISA test is relatively cheap and that the blood samples can be tested
individually in parallel, in a computerized way, we may assume that the first service
station is an infinite-server queue. In Section 2 we shall see that this assumption
allows us to assume that the arrival process of jobs at station 2 is a Poisson process
if the arrival process of jobs at station 1 is a Poisson process. In reality, the number
of servers at station 1 is finite, but large enough so that the Poisson assumption at
station 2 is a realistic one.
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As opposed to the ELISA test, the PCR test performed at the second station
is excessively expensive, much more costly than the ELISA test. Accordingly, we
shall assume that the second service station is a finite-server queue, with service
in batches. The customers have some overall patience; we shall see later that we
can decompose the tandem queue, studying each station in isolation as a queue
with customer impatience. The queueing analysis of station 1 is easy. However, the
combination of bulk service, multiple servers and customer impatience leaves us with
little hope of obtaining an exact analytic solution of station 2; even the single server
case already seems very difficult, cf. Section 3.

Batch (or bulk) service has also been extensively studied in the queueing liter-
ature. We refer to the book of Chaudhry and Templeton (1983) for an extensive
overview of this field. Relevant literature on queueing systems in batches can be
found in Neuts (1967), Nair and Neuts (1972), Abolnikov and Dukhovny (1992,
1999), Bar-Lev et al. (2007), and Chaudhry and Gai (2010).

Impatience is also a very natural and important concept in queueing models.
There is a wide range of situations in which customers may become impatient when
they do not receive service fast enough. Next to blood screening, one may think
of call centers and health care centers. A pioneering paper on queueing models
with impatience is Barrer (1957); it studies the M/M/s + D model for the case
that impatience refers to the waiting time, and the M/M/1 + D model for the
case that the impatience refers to the sojourn time. Here the symbol D denotes
deterministic (im-)patience. Baccelli and Hébuterne (1981) and Baccelli et al. (1984)
provide necessary and sufficient conditions for the existence of the virtual waiting
time distribution in the G/G/1 + G queue. The latter distribution is subsequently
obtained for M/G/1 + M and M/G/1 + Ek. Finch (1960) derives the waiting time
distribution in the G/M/1 + D queue. Stanford (1979) relates the waiting time
distribution of the (successful) customers and the workload seen by an arbitrary
arrival in G/G/1 + G. He also considers the distribution of the number of customers,
obtaining explicit results for various special cases. Stanford (1990) contains a brief
literature review, and Iravani and Balciog̃lu (2008) provides a useful approximation
for the waiting time distribution in M/G/N + G and several additional references
on multiserver queues with impatience.

1.3 Aim and Overview of the Paper

Our aim is to study the two-stage group testing queueing system from a purely
economic (cost-decreasing) point of view. The objective is to maximize the expected
profit of running the system, which is composed of the amount earned for items which
pass the tests minus costs; these costs include penalty costs for long delays, fixed daily
costs per server and costs for testing bulks. By an appropriate choice of the decision
variables, namely, the batch sizes and the number of servers at the second service
station, one wants to optimize the various trade-offs involved.

The paper is organized as follows. In Section 2 we present the suggested tandem
queue in detail. In Section 3 we try to get a feeling for the complexity of the last of
the two queues in series, viz., the M/G/S + G queue with batch services. It will turn
out that the arguably simplest version of this bulk service queue with impatience,
the M/M/1 + M queue with batch services, already gives rise to serious analytical
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complications for any batch size larger than one. We discuss these complications in
Section 3, and handle them for batch size 2.

In view of the fact that we aim to solve realistic optimization problems for
blood screening procedures, these analytical complications force us to take recourse
to either a numerical approach or to approximations. We have chosen the first
option. Section 4 presents a numerical solution for the queue length distribution
in the M/M/S + M queue with batch service. In Section 5 we then formulate
and solve several optimization problems. In an Appendix we discuss the power-
series algorithm, which is an alternative numerical-analytic method of analyzing the
M/M/S + M queue with batch services.

2 The Tandem Queue

In this section we present a detailed description of the tandem queueing model for
the blood screening procedure.

Station 1

It is quite natural to assume that the arrival process to the first service station is
Poisson, with some rate �. The service times at the first station are assumed to be
generally distributed. The resulting M/G/∞ model has been extensively studied. Its
queue length distribution is known to be Poisson with intensity �ET, where ET
denotes the mean service time (Takács 1962). It is also well-known (Kleinrock 1975)
that the output process of the resulting M/G/∞ queue is a Poisson process. Part of
this output will leave the system because it has failed the ELISA test. As each item
fails the test with a fixed probability p, independently of other items, the departure
process of items which have passed the test is also Poisson. Part of that output has
surpassed the expiration date. As this occurs for each item independently of all other
items with a fixed probability (viz., the probability that the service time is larger than
the patience time), the resulting input to station 2 still is Poisson. It should be noted
that the assumption of an infinite number of servers at the first service station is
reasonable, since in the ELISA test (stage 1) a considerable number of blood samples
can be tested in parallel, in a computerized way. In reality, one has a finite but large
number of servers at stage 1, and the output process of station 1 is going to be very
complicated (non-renewal), but in practice close to Poisson (actually, it would be
exactly Poisson, even with a finite number of servers, if the service time distribution
at station 1 were exponential).

Station 2

We conclude from the above that the arrival process at the second station is
again Poisson, with rate λ := �(1 − p)P(T < Gtot), where Gtot is a generic random
variable that indicates the total patience of an arbitrary customer (the time until the
expiration date is exceeded). The customers/items which arrive in station 2 still have
some time left until their expiration date: this is the difference between their overall
patience Gtot and the service (=sojourn) time in station 1. We assume for the moment
that the remaining patience times are independent and identically distributed, with
some general distribution G(·) with mean 1/γ . In most of our analysis, however,
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patience will be assumed to be exp(γ ) distributed. This patience in principle refers
to the sojourn time in station 2, in the sense that blood samples are no longer of
use after a certain amount of time. However, an outdated blood sample won’t be
removed during an ongoing service. Hence, in our analysis, we shall let patience
relate to the waiting time in the queue. The probability that a customer who has
been taken into service remains “patient” during that service equals the probability
that the service time is shorter than the remaining patience time—which in the case
of exponential patience is still exp(γ ). One may take that into consideration in an
optimization study.

The number of servers at station 2 is S. Service in station 2 is in batches. If a server
is free and there are less than k customers waiting, the free server does not yet start a
service. If there are at least K ≥ k customers waiting, then it takes a batch of size K
into service. If the number of customers waiting is m with k ≤ m < K, then the free
server takes a batch of size m into service. We denote the resulting queueing model
by M/G[k,K]/S + G. The parameters S, k and K are decision variables. There are
obvious trade-offs here: e.g., there are costs involved with having a higher number of
servers S, but this leads to a speed-up so that fewer customers will become impatient.

3 Queue Lengths in the Case of Exponential Patience

To get a feeling for the complexity of the M/G[k,K]/S + G model, we consider in
this section the possibly simplest version: the M/M[k,K]/1 + M model. The patience
refers to waiting time in the queue. It will turn out that the determination of the
queue length distribution of this model already gives rise to complicated analytical
problems. The case k = 1, K = 1 is relatively straightforward, but the case k = 1,
K = 2 will be seen to require a rather complicated analysis. Hence, in the next
section, we feel forced to resort to a numerical method to handle cases with
more general k, K and other service and patience time distributions. We assume
that service times of successive batches are independent, exponentially distributed
random variables with mean 1/μ, regardless of the size of the batch. We also assume
that patience times are independent, exponentially distributed random variables with
mean 1/γ , independent of the service times and interarrival times.

Let

p(n, 0) := P(n waiting, server idle), n = 0, 1, . . . , k − 1,

p(n, 1) := P(n waiting, server busy), n = 0, 1, . . . .

The global balance equations are (with I· denoting an indicator function):

p(0, 0)λ = p(1, 0)γ Ik≥2 + p(0, 1)μ, (3.1)

p(n, 0)(λ + nγ ) = p(n − 1, 0)λ + p(n + 1, 0)(n + 1)γ

+ p(n, 1)μ, n = 1, . . . , k − 2,

p(k − 1, 0)(λ + (k − 1)γ ) = p(k − 2, 0)λ + p(k − 1, 1)μ, k = 2, 3, . . . ,
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p(0, 1)(λ + μ) = p(1, 1)γ +
K∑

j=k

p( j, 1)μ + p(k − 1, 0)λ, (3.2)

p(n, 1)(λ + μ + nγ ) = p(n − 1, 1)λ + p(n + 1, 1)(n + 1)γ

+ p(n + K, 1)μ, n = 1, 2, . . . .

Remark 1 Next to these global balance equations, one immediately sees that the
following balance equation between the ‘0’ states and the ‘1’ states should hold:

p(k − 1, 0)λ =
k−1∑

j=0

p( j, 1)μ. (3.3)

Equation 3.3 follows from the above global balance equations by taking an appropri-
ate summation.

Now let us introduce the generating function

P(z) :=
∞∑

n=0

p(n, 1)zn, |z| ≤ 1. (3.4)

It readily follows from Eq. 3.2 that

P(z)(λ + μ) + γ z
d

dz
P(z) = λzP(z) + γ

d
dz

P(z) + μ

K∑

j=k

p( j, 1)

+ λp(k − 1, 0) + μz−K
∞∑

n=1

zn+K p(n + K, 1), (3.5)

so, using Eq. 3.3,

d
dz

P(z) =
(

λ

γ
+ μ

γ

1 − z−K

1 − z

)
P(z) + μ

γ

K−1∑

j=0

p( j, 1)
z j−K − 1

1 − z
. (3.6)

The solution of the homogeneous differential equation reads:

P(z) = De
λ
γ

zz− μ

γ e
μ

γ
[∑K−1

j=1
1

jz j ], |z| ≤ 1,

with D a constant. Variation of constants subsequently gives the complete solution
of Eq. 3.6:

P(z) = DeM1(z) +
∫ z

0
M2(u)eM1(z)−M1(u)du, (3.7)

where

M1(z) := λ

γ
z − μ

γ
ln(z) + μ

γ

K−1∑

j=1

1

jz j
, (3.8)
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and

M2(z) := μ

γ

K−1∑

j=0

p( j, 1)
z j−K − 1

1 − z
. (3.9)

Letting z → 0 in Eq. 3.7 and taking into account the behaviour of M1(z) for z → 0,
shows that we must take D = 0 in order for P(0) to be finite. We still have several
unknown constants. The three equations (3.1) allow us to express the unknown
p(n, 0), n = 0, 1, . . . , k − 1 into the k unknowns p( j, 1), j = 0, 1, . . . , k − 1.

We now consider a few special cases. The main purpose is to reveal the mathe-
matical difficulties which occur in determining the K + 1 unknown constants.

Case 1 k = K = 1, i.e., no batches.

Now Eq. 3.7 simplifies to:

P(z) = μ

γ
p(0, 1)

∫ z

0

1

u

(
u
z

)μ/γ

e
λ
γ
(z−u)du

= μ

γ
p(0, 1)

∫ 1

0
v

μ

γ
−1e

λ
γ

z(1−v)dv

= μ

γ
p(0, 1)

∞∑

n=0

zn

(
λ
γ

)n

n!
∫ 1

0
v

μ

γ
−1

(1 − v)ndv

= p(0, 1)

∞∑

n=0

zn
(

λ

γ

)n �
(

μ

γ
+ 1

)

�
(

μ

γ
+ 1 + n

) . (3.10)

Here we have used that
∫ 1

0 vx−1(1 − v)y−1dv =: B(x, y) = �(x)�(y)

�(x+y)
.

This shows that

p(n, 1) = p(0, 1)

(
λ

γ

)n �
(

μ

γ
+ 1

)

�
(

μ

γ
+ 1 + n

) .

Indeed, for K = 1 we have the detailed balance equations λp(n − 1, 1) = (μ +
nγ )p(n, 1), also leading to the above relation between p(n, 1) and p(0, 1).

The unknown constants p(0, 1) and p(0, 0) are obtained by using Eq. 3.3—which
reduces to p(0, 0)λ = p(0, 1)μ – and the normalization condition p(0, 0) + P(1) = 1.

Case 2 k = 1, K = 2.

The structure of the expression for P(z) in Eq. 3.7, with negative powers of z
appearing in the integrand and in particular also in the exponent, gives rise to delicate
analytic issues in determining the unknown constants. We are able to resolve these
issues for k = 1, K = 2, and this approach might suggest a way to handle other values
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of (k, K). Introducing ζ := λ/γ , φ := μ/γ , A0 := p(0, 1) and A1 := p(0, 1) + p(1, 1),
we rewrite Eq. 3.7 into:

P(z) = φ

∫ z

u=0

(
A1

u
+ A0

u2

)
eζ(z−u)+φ( 1

z − 1
u )

(
u
z

)φ

du. (3.11)

The transformation w := 1
u − 1

z yields:

P(z) = A1φz
∫ ∞

w=0

(
1

1 + wz

)φ+1

eζ z2w
1+wz e−φwdw

+ A0φ

∫ ∞

w=0

(
1

1 + wz

)φ

eζ z2w
1+wz e−φwdw

=: A1φzHA1(z) + A0φHA0(z). (3.12)

We need to obtain a relation between the unknown constants A0 and A1; together
with p(0, 0)λ = p(0, 1)μ and the normalization condition p(0, 0) + P(1) = 1, that
suffices to determine the three unknown constants p(0, 0), p(0, 1) and p(1, 1). In fact,
we shall express all p(n, 1) explicitly in A0 and A1, and derive a simple linear relation
between those A0 and A1. Consider the first integral, viz., HA1(z). It has derivatives
of all orders when z ≥ 0 (although it is not analytic in z ≥ 0), and these derivatives
can be obtained by differentiation under the integral sign. With the abbreviation
Czn [h(z)] for “the coefficient of zn in h(z)”, we thus have:

Czn [HA1(z)] =
∫ ∞

0
Czn

[(
1

1 + wz

)φ+1

eζ z2w
1+wz

]
e−φwdw.

It now is useful to observe that the generating function of the Laguerre polynomials
is given by (cf. Szegö 1975, (5.1.9) on p. 101):

∞∑

k=0

Lα
k(x)rk =

(
1

1 − r

)α+1

e− xr
1−r , |r| < 1, x ∈ R, (3.13)

where α > −1. Therefore, using (5.16) on p. 101 of Szegö (1975),

Czn

[(
1

1 + wz

)φ+1

eζ z2w
1+wz

]
= Czn

[ ∞∑

k=0

L(φ)

k (ζ z)(−wz)k

]

=
n∑

k=0

(−w)kCzn−k

[
L(φ)

k (ζ z)
]

=
n∑

k=0

(−w)kCzn−k

⎡

⎣
k∑

j=0

(−1) j
(

k + φ

k − j

)
(ζ z) j

j!

⎤

⎦

= (−1)n
∑

1
2 n≤k≤n

wkζ n−k
(

k + φ

2k − n

)
1

(n − k)! . (3.14)
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It follows that

Czn [HA1(z)] = (−1)n
∑

1
2 n≤k≤n

ζ n−k
(

k + φ

2k − n

)
1

(n − k)!
∫ ∞

0
wke−φwdw

= (−1)n ζ n

φ

∑

1
2 n≤k≤n

(
1

ζφ

)k (
k + φ

2k − n

)
k!

(n − k)! . (3.15)

Similarly,

Czn [HA0(z)] = (−1)n ζ n

φ

∑

1
2 n≤k≤n

(
1

ζφ

)k (
k + φ − 1

2k − n

)
k!

(n − k)! . (3.16)

Hence, for n = 1, 2, . . . ,

p(n, 1) = Czn [P(z)] = Czn [A1φzHA1(z) + A0φHA0(z)]
= A1φCzn−1 [HA1(z)] + A0φCzn [HA0(z)]

= (−1)n−1

⎡

⎣A1ζ
n−1

∑

1
2 (n−1)≤k≤n−1

k!
(n − 1 − k)!

(
k + φ

2k − n + 1

)(
1

ζφ

)k

− A0ζ
n

∑

1
2 n≤k≤n

k!
(n − k)!

(
k + φ − 1

2k − n

)(
1

ζφ

)k
⎤

⎦ . (3.17)

Having obtained an explicit expression of p(n, 1) into the unknown constants A0

and A1, we now present an argument to obtain the missing relation between those
constants. The two series in the last member of Eq. 3.17 very rapidly tend to ∞
as n → ∞. The fact that, nevertheless, all p(n, 1) ∈ [0, 1] provides sharp bounds on
A0/A1 and, indeed, a method to compute that ratio numerically. But a study of the
asymptotic behaviour of the two series for n → ∞ will even give a relation between
A0 and A1. Introducing the kth terms of the two series as Fk and Ek, we have:

Ek = 1

(ζφ)k

k!
(n − k)!

�(k + φ)

(2k − n)!�(n − k + φ)
,

Fk = 1

(ζφ)k

k!
(n − 1 − k)!

�(k + φ + 1)

(2k − n + 1)!�(n − k + φ)
. (3.18)

From

En− j

En− j+1
= ζφ

j( j + φ − 1)

(n − 2 j + 2)(n − 2 j + 1)

(n − j + 1)(n − j + φ)
≤ ζφ

j( j + φ − 1)
, 1 ≤ j ≤ 1

2
n,

we can infer that the dominant terms of
∑

1
2 n≤k≤n Ek are to be found for k sufficiently

close to n. A closer inspection reveals that it is sufficient to consider the range n −
o(n

1
2 ) ≤ k ≤ n. For these k we apply Stirling’s formula �(x + 1) = xx+ 1

2 e−x
√

2π(1 +
O( 1

x )), x → ∞, to approximate

k!�(k + φ)

(2k − n)! = e−n−φ
√

2π
kk+ 1

2 (k + φ)k+φ− 1
2

(2k − n)2k−n+ 1
2

(
1 + O

(
1

n

))
. (3.19)
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We write k = n − j with 0 ≤ j = o(n
1
2 ), and note that

kk+ 1
2 (k + φ)k+φ− 1

2

(2k − n)2k−n+ 1
2

= nn− j+1/2+n− j+φ−1/2−(n−2 j+1/2)
(1 − j

n )n− j+1/2
(

1 − j−φ

n

)n− j+φ−1/2

(
1 − 2 j

n

)n−2 j+1/2

= nn+φ−1/2exp
[
−n − j + 1/2

n
j + O

(
j2

n

)
− n − j + φ − 1/2

n
( j − φ)

+ O
(

j2

n

)
+ n − 2 j + 1/2

n
2 j + O

(
j2

n

)]

= nn+φ−1/2eφ(1 + o(1)), n → ∞, 0 ≤ j = o(n
1
2 ). (3.20)

Therefore, with 0 ≤ j = o(n
1
2 ) and n → ∞:

En− j = nn+φ−1/2e−n
√

2π
1

(ζφ)n− j

1

j!�( j + φ)
(1 + o(1)), (3.21)

and similarly, after some calculation,

Fn−1− j = (n − 1)n+φ−1/2e−n+1
√

2π
1

(ζφ)n−1− j

1

j!�( j + φ + 1)
(1 + o(1)). (3.22)

Note that, for fixed j ≥ 0, both En− j and Fn−1− j rapidly tend to ∞, and that, for fixed
large n, both En− j and Fn−1− j rapidly decay in j ≥ 0. For boundedness of p(n, 1) in
Eq. 3.17 it is then required that

A0

A1
= 1

ζ
limn→∞

[∑
1
2 (n−1)≤k≤n−1 Fk
∑

1
2 n≤k≤n Ek

]

= limn→∞

⎡

⎣
(n − 1)n+φ−1/2e−n+1

√
2πφ1−n ∑∞

j=0
(ζφ) j

j!�( j+φ+1)

nn+φ−1/2e−n
√

2πφ−n
∑∞

j=0
(ζφ) j

j!�( j+φ)

⎤

⎦

=
√

φ

ζ

Iφ(2
√

ζφ)

Iφ−1(2
√

ζφ)
, (3.23)

where Iν(z) denotes the modified Bessel function of order ν, cf. Abramowitz and
Stegun (1970, 9.6.10 on p. 375):

Iν(z) =
(z

2

)ν
∞∑

j=0

(
z2

4

) j

j!�( j + ν + 1)
.
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Substituting Eq. 3.23 and p(0, 0) = μ

λ
p(0, 1) = φ

ζ
A0 into the normalizing condition

p(0, 0) + P(1) = 1, using Eq. 3.17 or alternatively Eq. 3.11, one gets an expression
for A0:

A0 =
[

φ

ζ
+ 1 −

∞∑

n=1

(−1)n−1ζ n−1

×
⎧
⎨

⎩ζ
∑

1
2 n≤k≤n

k!
(n − k)!

(
k + φ − 1

2k − n

)(
1

ζφ

)k

−
√

ζ

φ

× Iφ−1(2
√

ζφ)

Iφ(2
√

ζφ)

∑

1
2 (n−1)≤k≤n−1

k!
(n − 1 − k)!

(
k + φ

2k − n + 1

) (
1

ζφ

)k
⎫
⎬

⎭

⎤

⎦
−1

,

(3.24)

or alternatively:

A0 =
[

φ

ζ
+ φ�2(ζ, φ) + √

ζφ
Iφ−1(2

√
ζφ)

Iφ(2
√

ζφ)
�1(ζ, φ)

]−1

, (3.25)

with

�k(ζ, φ)
.=

∫ 1

0
uφ−keζ(1−u)+φ(1− 1

u )du, k = 1, 2. (3.26)

The mean number of waiting customers, E{Q}, is easily expressed in the constants
which we have just determined: by taking z = 1 in Eq. 3.6 it readily follows using
l’Hopital’s rule that

E{Q} =
k−1∑

j=1

jp( j, 0) +
(

λ

γ
− K

μ

γ

)
P(1) + μ

γ

K−1∑

j=0

(K − j)p( j, 1). (3.27)

For k = 1, K = 2, this only requires p(1, 0), P(1), p(0, 1) and p(1, 1), or A0 and A1.

Case 3 k = 2, K = 2.

The analysis of this case follows easily from the analysis of Case 2 (k = 1, K = 2).
Indeed, the equation for P(z) in Eq. 3.7 does not explicitly depend on k; the only
influence of k is through the constants A0 and A1. The only difference with Case
2 occurs in the determination of the constants p(0, 0), p(1, 0), p(0, 1) and A0, A1.
The ratio of A0 and A1 is given by Eq. 3.23, as in Case 2. P(1) is again given by
A0�2(ζ, φ) + A1�1(ζ, φ), cf. Eqs. 3.11 and 3.26. The normalizing condition this time
is: p(0, 0) + p(1, 0) + P(1) = 1. Formula 3.3 becomes: p(1, 0) = (φ/ζ )A1. Finally,
the first equation of Eq. 3.1 becomes:

p(0, 0) = 1

ζ
p(1, 0) + φ

ζ
p(0, 1) = φ

ζ 2
A1 + φ

ζ
A0.

These five relations determine the unknown constants, and in particular A0 and A1.
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Table 1 Some numerical results for verification

λ μ S k K γ A0 A1 E{Q} p(0, 0)

0.95 0.50 1 1 2 0.5 0.3388 0.5909 0.8475 0.1783
0.95 0.50 1 2 2 0.5 0.2297 0.4007 0.7856 0.2319
0.95 0.25 2 1 2 0.5 0.3236 0.5644 0.8095 0.0448
0.95 0.25 2 2 2 0.5 0.1726 0.3010 0.6886 0.1087

Remark 2 We have also verified the above formulas numerically; see also Table 1.
The numerical evaluation turns out to be straightforward, using standard algorithms
for the modified Bessel function (Amos 1986) and for numerical integration (Gander
and Gautschi 2000) of the two integrals in Eq. 3.26. As a check, we have, a.o.,
considered some cases which are also numerically evaluated in Table 5 in Section 4.
All cases listed in Table 1 are based on the same integrals �1(1.9, 1) = 0.7078 and
�2(1.9, 1) = 1.1910. See Remark 5 for the cases with S = 2 servers.

3.1 An Explicit Expression for p(n, 1) in Terms of Bessel Functions

Formula 3.17 provides an explicit, but rather complicated, expression for the p(n, 1)

for k = 1, K = 2. In this subsection we present a more concise expression for p(n, 1),
in terms of Bessel functions. First rewrite Eq. 3.11, via the substitution v = u/z,
into:

P(z) = φ

∫ 1

v=0

(
A1v

φ−1 + 1

z
A0v

φ−2

)
eζ z(1−v)+ φ

z (1− 1
v )dv. (3.28)

Triggered by the occurrence of Bessel functions in the relation between the constants
A0 and A1, we recall the generating function of the Bessel functions Jn(·) (cf.
Abramowitz and Stegun 1970, 9.1.41 on p. 361):

e
1
2 w(t− 1

t ) =
∞∑

n=−∞
tn Jn(w). (3.29)

What follows now is a heuristic argument to establish the concise form (3.37) for the
p(n, 1); having thus obtained Eq. 3.37, we proceed by giving two rigorous proofs of
it. Writing

ζ z(1 − v) + φ

z

(
1 − 1

v

)
= (1 − v)

(
ζφ

v

) 1
2

⎡

⎢⎣
(

ζv

φ

) 1
2

z − 1
(

ζv

φ

) 1
2

z

⎤

⎥⎦ ,

and introducing α = (
ζ

φ
)

1
2 and β = 2(ζφ)

1
2 , Eq. 3.28 transforms formally into:

P(z) = φ

∞∑

n=−∞
(αz)n

∫ 1

v=0

(
A1v

φ−1 + 1

z
A0v

φ−2

)
v

n
2 Jn(β(v− 1

2 − v
1
2 ))dv

= φ

∞∑

n=−∞
(αz)n

∫ 1

v=0

(
A1v

φ−1+ n
2 Jn

(
β

(
v− 1

2 − v
1
2

))

+ A0αvφ−2+ n+1
2 Jn+1

(
β

(
v− 1

2 − v
1
2

)))
dv. (3.30)
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Since P(z) = ∑∞
n=0 p(n, 1)zn, we know that the negative powers of z in Eq. 3.30

should disappear. We do not consider the (arduous) task of showing that the powers
zn disappear for n = −2,−3, . . . , but we do show that the term with z−1 disappears
precisely if Eq. 3.23 holds. Using J−1(y) = −J1(y), the condition for the z−1 term to
disappear is:

A1

∫ 1

v=0
vφ− 3

2 J1

(
β

(
v− 1

2 − v
1
2

))
dv = A0α

∫ 1

v=0
vφ−2 J0

(
β

(
v− 1

2 − v
1
2

))
dv. (3.31)

Now use item (33) on p. 194 of Erdélyi et al. (1954), for ν > −1, a > − 5
4 (which

requires φ > 3/4, but that does not matter at this stage):

∫ 1

v=0
va Jν

(
β

(
v− 1

2 − v
1
2

))
dv = 2

∫ ∞

t=0
e−(2a+2)t Jν(2βsinht)dt = I 1

2 ν+a+1(β)K 1
2 ν−a−1(β).

(3.32)

Here we have taken v = e−2t; K·(·) denotes another modified Bessel function, see
Abramowitz and Stegun (1970, Section 9.6). Now Eq. 3.31 becomes:

2A1 Iφ(β)K1−φ(β) = 2A0αIφ−1(β)K1−φ(β), (3.33)

indeed yielding Eq. 3.23. Applying Eq. 3.32 to Eq. 3.30, and deleting not just the term
with n = −1 but also all terms with n = −2,−3, . . . gives:

P(z) = 2φ[A1 K−φ(β) + A0αK−φ+1(β)]
∞∑

n=0

(αz)n Iφ+n(β). (3.34)

Using (i) K−ν(β) = Kν(β), cf. 9.6.6 on p. 375 of Abramowitz and Stegun (1970), (ii)
the Wronskian relation between Kν(·) and Iν(·), cf. 9.6.15 on p. 375 of Abramowitz
and Stegun (1970), (iii) Formula 3.23 and finally φα = 1

2β, we have:

2φ[A1 K−φ(β) + A0αK−φ+1(β)] = A0β

Iφ(β)
[Iφ−1(β)Kφ(β) + Iφ(β)Kφ−1(β)]

= A0β

Iφ(β)

1

β
= A0

Iφ(β)
. (3.35)

This leads to the following key result: with α = (
ζ

φ
)

1
2 , β = 2(ζφ)

1
2 ,

P(z) = A0

Iφ(β)

∞∑

n=0

(αz)n Iφ+n(β), (3.36)

and hence

p(n, 1) = A0

Iφ(β)
αn Iφ+n(β), n = 0, 1, . . . . (3.37)
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Remark 3 Having heuristically derived Eq. 3.37, we can now verify its validity in
various ways, to be outlined below.

Method 1 Substituting Eq. 3.37 into Eq. 3.17, and expressing A1 into A0 via
Eq. 3.23, yields a relation between Iφ+n(β) and Iφ(β), Iφ−1(β). This relation can be
checked by induction, using the well-known relation

2ν

β
Iν(β) = Iν−1(β) − Iν+1(β). (3.38)

Method 2 For K = 2, one may rewrite the last equation of Eq. 3.2 as follows:

p(n, 1)(μ + nγ ) = p(n − 1, 1)λ − p(n + 1, 1)μ, n = 1, 2, . . . , (3.39)

so in particular also

p(n + 1, 1)(μ + (n + 1)γ ) = p(n, 1)λ − p(n + 2, 1)μ, n = 0, 1, . . . , (3.40)

Addition of these two formulas indeed yields the last equation of Eq. 3.2. Now
rewrite Eq. 3.39 into:

2(φ + n)

β
p(n, 1) =

(
ζ

φ

) 1
2

p(n − 1, 1) −
(

φ

ζ

) 1
2

p(n + 1, 1). (3.41)

Comparison with Eq. 3.38 immediately confirms that p(n, 1) = Cαn Iφ+n(β), with C
some constant.

4 The Second Station: Balance Equations

In the previous section we have shown how one can handle the M/Mk,K]/1 + M
model analytically, for K = 2. The case K ≥ 3 already seems very challenging, and
non-exponential distributional assumptions will most likely lead to an extremely
difficult problem. In the present section we therefore discuss a numerical solution
to the more general M/M[k,K]/S + M model; an approach which can be extended to
non-exponential (phase-type) distributions. As before, patience relates to the waiting
time in the queue. First, we generalize the global balance equations (3.1) and (3.2)
to the multiserver case with the batch sizes restricted to multiples of a kit size b . We
assume that k and K are multiples of b , k = mb , K = Mb . Note that all batch sizes
between k and K are allowed if b = 1 so that the model of the previous section is
included. Then, we solve these equations by truncation and iterations, and express
various performance measures of interest in terms of the state probabilities. The
resulting algorithm forms the basis for the optimization study in the next section.
In Appendix B an alternative approach using power-series expansions is described
which did not work out well for the present model.

Remark 4 While we restrict ourselves in this section to the case of exponential
service and patience times, the approach of the present section can be extended
to the case of phase-type distributions. However, this goes at the expense of added
complexity and a state-space explosion.

Define p(n, s) as the probability that n customers are waiting in the queue, n =
0, 1, 2, . . . , while s servers are occupied with a bulk of customers of an unspecified
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size, s = 0, 1, . . . , S. For states with s = 0 (all servers idle) the global balance equa-
tions read (cf. Eq. 3.1): for n = 0, 1, . . . , k − 1,

(λ + nγ )p(n, 0) = λI{n>0} p(n − 1, 0) + (n + 1)γ I{n<k−1} p(n + 1, 0) + μp(n, 1);
(4.1)

here I{·} denotes an indicator function. For states with s = 1, . . . , S − 1, the global
balance equations read (cf. Eq. 3.2): for n = 0, 1, . . . , k − 1,

(λ + nγ + sμ)p(n, s) = λI{n>0} p(n − 1, s) + λI{n=0} p(k − 1, s − 1)

+ (n + 1)γ I{n<k−1} p(n + 1, s)

+ (s + 1)μp(n, s + 1); (4.2)

while for s = S (all servers occupied) the global balance equations read: for n = 0,

(λ + Sμ)p(0, S) = λp(k − 1, S − 1) + γ p(1, S) + Sμ

M∑

h=m

p(hb , S); (4.3)

for n = 1, 2, . . . , b − 1,

(λ + nγ + Sμ)p(n, S) = λp(n − 1, S) + (n + 1)γ p(n + 1, S) + Sμ

M∑

h=m

p(n + hb , S);
(4.4)

and for n = b , b + 1, . . . ,

(λ + nγ + Sμ)p(n, S) = λp(n − 1, S) + (n + 1)γ p(n + 1, S) + Sμp(n + K, S).

(4.5)

Summing the global balance equations for fixed s, s = 0, 1, . . . , S − 1, over n, n =
0, 1, . . . , k − 1, yields with induction the following balance equations for transitions
between the levels s and s + 1, cf. Eq. 3.3:

λp(k − 1, s) = (s + 1)μ

k−1∑

j=0

p( j, s + 1), s = 0, 1, . . . , S − 1. (4.6)

Remark 5 In Section 3 we have restricted ourselves to the single server case. How-
ever, it should be observed that the balance equation (4.6) is identical to the last
balance equation of Eq. 3.3, when replacing Sμ by μ. Hence the analysis of Case
2 of Section 3 goes through for the multiserver case; the only difference is that,
in the latter case, there is a larger number of unknown constants appearing in the
normalization condition; these are determined by taking the remaining (finite) set of
Eqs. 4.1–4.5 into account.

The average size of a service batch B can be computed as the quotient of the total
rate at which batches of various size start over the rate at which services start. Batch
services start when the queue length process is in states (k − 1, s), s = 0, 1, . . . , S − 1,
with rate λ at which arrivals occur and then have the minimum size k, in states (n, S)

with n = hb + j, h = m, . . . , M − 1, j = 0, . . . , b − 1, with rate Sμ at which a server
becomes available and then have size hb , and in states ( j, S), j = K, K + 1, . . . , with
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rate Sμ at which a server becomes available and then have the maximum size K.
Hence,

E{B}= λk
∑S−1

s=0 p(k − 1, s) + Sμ
∑M−1

h=m hb
∑b−1

j=0 p(hb + j, S) + SμK
∑∞

j=K p( j, S)

λ
∑S−1

s=0 p(k − 1, s) + Sμ
∑∞

j=k p( j, S)
.

(4.7)

Using the balance equation (4.6) between levels s and s + 1, s = 0, 1, . . . , S − 1, the
first terms in the numerator and the denominator of Eq. 4.7 can be replaced, and the
factor μ can be canceled:

E{B} = k
∑S

s=1 s
∑k−1

j=0 p( j, s) + S
∑M−1

h=m hb
∑b−1

j=0 p(hb + j, S) + SK
∑∞

j=K p( j, S)
∑S

s=1 s
∑k−1

j=0 p( j, s) + S
∑∞

j=k p( j, S)
.

(4.8)

The denominator represents the average number of busy (occupied) servers, to be
denoted by E{O}:

E{O} =
S∑

s=1

s
k−1∑

j=0

p( j, s) + S
∞∑

j=k

p( j, S).

The rate at which customers renege is

γ

S∑

s=0

∞∑

n=1

np(n, s) = γ E{Q};

here, E{Q} denotes the average number of customers waiting in the queue for
service. Hence, the fraction of customers that is lost due to reneging is

Ploss = γ

λ
E{Q}. (4.9)

The rate at which served customers leave the system is λout = λ[1 − Ploss]. Since
Ploss ≤ 1, Eq. 4.9 implies that for all parameter values,

E{Q} ≤ λ

γ
. (4.10)

By Little’s law, the mean time in queue of the customers is E{W} = E{Q}/λ, but this
includes both customers who renege and those who are ultimately served. For the
mean number of customers in the system, E{N}, Little’s law implies E{N} = λE{R},
with E{R} the mean time in system. The difference of these relations yields

E{N} − E{Q} = λE{R − W} = λ

μ
[1 − Ploss],

since R − W represents the time in service, and this has a mean of 1/μ if a customer
gets served and of 0 for a reneging customer. Hence, with Eq. 4.9,

E{N} = λ

μ
+

(
1 − γ

μ

)
E{Q}. (4.11)
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Note that if γ = μ we have for all S, k and K,

E{N} = λ

μ
.

From Eqs. 4.11 and 4.9 it follows that the mean sojourn time can be written as

E{R} = 1

μ
+

(
1

γ
− 1

μ

)
Ploss. (4.12)

The computation of other characteristics of the sojourn time distribution than its
mean is more involved. This is illustrated in Appendix A, where also the computation
of the conditional mean sojourn time ES{R}, given that the customer is eventually
served, is explained.

It is assumed that each item (customer) is of bad quality with probability pb . The
result of testing a bulk of items is either good—if all items in the bulk are good—
or bad otherwise. Hence, a bulk of hb items passes the test with probability (1 −
pb )hb , h = m, . . . , M. The rate at which items, which have passed the test, leave the
system will be denoted by λgood. This rate is found in a similar way as Eq. 4.7:

λgood = λk(1 − pb )k
S−1∑

s=0

p(k − 1, s) + Sμ

M−1∑

h=m

hb(1 − pb )hb
b−1∑

j=0

p(hb + j, S)

+ SμK(1 − pb )K
∞∑

j=K

p( j, S). (4.13)

Table 2 contains a few cases evaluated by truncating the number of waiting customers
at 100. Here, the arrival rate of λ = 12, the service rate of μ = 2 and the reneging
rate γ = 0.2 are fixed, and the number of servers S, the minimum bulk size k and the
maximum bulk size K are varied. We take b = 1 but restrict ourselves to k, K values
which are multiples of 6 as kits of size 6 are often used in practice. The finite set

Table 2 A case study with bulk sizes between k and K; λ = 12, μ = 2, γ = 0.2, pb = 0.001

S k K E{Q} E{N} Ploss E{R} ES {R} E{B} E{O} λout λgood

1 6 6 9.75 14.78 0.1626 1.232 1.325 6.00 0.84 10.05 9.99
1 6 12 5.37 10.83 0.0894 0.902 0.946 7.56 0.72 10.93 10.84
1 6 18 4.90 10.41 0.0817 0.868 0.907 7.81 0.71 11.02 10.92
1 6 24 4.80 10.32 0.0800 0.860 0.899 7.87 0.70 11.04 10.93
1 12 12 6.59 11.93 0.1098 0.994 1.060 12.00 0.45 10.68 10.55
1 12 18 6.31 11.68 0.1052 0.974 1.036 12.46 0.43 10.74 10.60
1 12 24 6.25 11.63 0.1042 0.969 1.031 12.56 0.43 10.75 10.61

2 6 6 2.93 8.63 0.0488 0.720 0.744 6.00 0.95 11.43 11.36
2 6 12 2.75 8.48 0.0459 0.707 0.730 6.20 0.92 11.45 11.38
2 6 18 2.74 8.47 0.0457 0.706 0.729 6.21 0.92 11.45 11.38
2 12 12 5.62 11.06 0.0937 0.922 0.977 12.00 0.45 10.88 10.75

3 6 6 2.53 8.28 0.0421 0.690 0.711 6.00 0.96 11.49 11.42
3 6 12 2.52 8.27 0.0420 0.689 0.711 6.01 0.96 11.50 11.43
3 12 12 5.61 11.05 0.0935 0.921 0.976 12.00 0.45 10.88 10.75

4 6 6 2.51 8.26 0.0418 0.688 0.709 6.00 0.96 11.50 11.43
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Table 3 A case study with bulk sizes multiples of 6; λ = 12, μ = 2, γ = 0.2, pb = 0.001

S k K E{Q} E{N} Ploss E{R} ES {R} E{B} E{O} λout λgood

1 6 12 6.00 11.40 0.1000 0.950 1.002 7.14 0.76 10.80 10.71
1 6 18 5.61 11.05 0.0936 0.921 0.970 7.30 0.75 10.88 10.78
1 6 24 5.53 10.98 0.0922 0.915 0.963 7.33 0.74 10.89 10.80
1 12 18 6.42 11.78 0.1070 0.981 1.046 12.28 0.44 10.72 10.58
1 12 24 6.38 11.74 0.1063 0.979 1.042 12.34 0.43 10.72 10.59

2 6 12 2.83 8.55 0.0472 0.712 0.737 6.09 0.94 11.43 11.36
2 6 18 2.82 8.54 0.0471 0.712 0.736 6.10 0.94 11.44 11.36

3 6 12 2.53 8.27 0.0421 0.689 0.711 6.00 0.96 11.49 11.43

of balance equations is solved by iteration, until the sum of the absolute differences
between the jth and the ( j − 1)st iterant is smaller than ε = 10−10. The truncation
error is smaller than this ε with the foregoing truncation level. To compute a value
for λgood, the probability of a bad item is taken as pb = 0.001. Note that in the case
S = 1, k = K = 6, the system would be unstable if customers did not renege. To
increase λout and λgood starting from this boundary case, adding a second server has a
stronger influence on the performance of the system than changing the minimum and
maximum bulk sizes, but adding a third server only leads to a minor increase. Further,
it seems best in this example to set the minimum batch size at k = 6. For S ≥ 2
and k = 6, increasing the maximum batch size K only leads to minor improvements
of λgood.

Table 3 considers the same cases as Table 2 but with the restriction that the bulk
sizes can only be multiples of the kit size b = 6. Of course, if k = K there is no
difference between the systems. It turns out that this more restricted system performs
worse (more congestion and more reneging) with comparable parameter settings, as
could be expected.

5 Performance Optimization

The M/M/S system with bulk services and deadlines will be optimized with respect
to the number of servers S, the minimum bulk size k and the maximum bulk size K.
The latter are restricted to the values 6 ≤ k ≤ K ≤ 24, while k and K are six folds
but b = 1. This means that for each value of S, 10 combinations of k and K will be
considered. The objective is to maximize profit per day. It is assumed that an amount
G is earned for each item in a bulk that passes the test. To compensate for long
responses and, consequently, rather useless items, a penalty cost of Cp is included per
expected number of days in the system per item. By taking Cp ≈ G/3.5 nothing will
be earned if E{R} ≥ 3.5 days (leaving 0.5 day for the first phase of testing). Further
costs are a fixed daily cost Cs per server, and a cost Cb + Cib for testing a bulk of size
b , k ≤ b ≤ K. Note that the average cost of a bulk is Cb + Ci E{B}, while λout/E{B}
bulks are tested per day, on the average. Hence, CB

.= (Cb + Ci E{B})λout/E{B} is
the average daily cost of testing the bulks. Summarizing, we have the following daily
profit:

C(S, k, K) = Gλgood − Cpλgood E{R} − CsS − (Cb + Ci E{B})λout/E{B}. (5.1)
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Table 4 Optimal values for S, k and K for the case μ = 4, γ = 0.3, pb = 0.001, G = 100, Cp = 32,
Cs = 50, Cb = 5, Ci = 1, b = 1, for various values of λ

λ S k K C(S, k, K) Gλgood Cpλgood E{R} CB Cs S

30 2 6 24 2,418.42 2,888.05 318.12 51.52 100.00
60 4 6 24 5,019.47 5,877.33 551.39 106.47 200.00
300 9 12 24 26,056.45 29,454.45 2,527.97 420.03 450.00
600 15 12 24 52,542.58 59,041.96 4,911.79 837.59 750.00
3,000 48 18 24 264,231.45 294,276.73 23,825.40 3,819.88 2,400.00
6,000 92 18 24 529,226.15 588,863.71 47,391.45 7,646.12 4,600.00

Table 4 shows the optimal values of S, k and K, and the corresponding maximum
profit, for the case μ = 4, γ = 0.3, pb = 0.001, G = 100, Cp = 32, Cs = 50, Cb = 5,
Ci = 1, for various values of the arrival rate λ. For higher values of λ a higher
truncation level is required to keep the truncation error below, say, 10−8, up to
1,000 for λ = 6,000. This last case took more than 8 min cpu time to evaluate about
300 parameter settings for models with up to 3,200 states. We restrict the search
to combinations with SK ≥ λ/μ because models which would not be stable without
reneging are expected to be far from optimal. Further, the maximum profit over all k
and K for fixed S seems to be a concave function of S. We stopped the search when
S is four more than the current best S to be safe. It seems that taking K as large
as possible is best in all cases. Further, the best values for k and, of course, S are
increasing with the arrival rate λ.

Table 5 contains a sensitivity analysis of the optimum for the case λ = 600 with
respect to each of the other parameters of the system. If the fraction of bad items
pb increases, the optimal number of servers strongly increases while the maximum
bulk size decreases to reduce the waste of good items. If the cost per server Cs

increases, the optimal number of servers decreases while the minimum bulk size
increases to let the servers handle larger bulks. Note that nevertheless the bulk cost
per day CB decreases due to a larger fraction of reneging customers. If the fixed cost
per bulk Cb increases, the optimal minimum bulk size increases while the number
of servers decreases. If the item-dependent cost Ci increases, the optimal strategy
does not change, only the maximum profit becomes lower. If the penalty cost for

Table 5 Sensitivity analysis on base case with λ = 600, μ = 4, γ = 0.3, pb = 0.001

λ S k K C(S, k, K) Gλgood Cpλgood E{R} CB Cs S

Base case 15 12 24 52,542.58 59,041.96 4,911.79 837.59 750.00
pb = 0.01 31 6 6 49,128.35 56,387.32 4,610.94 1,098.02 1,550.00
Cs = 200 10 18 24 50,721.59 58,512.15 5,035.21 755.35 2,000.00
Cb = 25 12 18 24 51,676.88 58,651.08 4,954.10 1,420.10 600.00
Ci = 10 15 12 24 47,160.05 59,041.96 4,911.79 6,220.12 750.00
Cp = 16 15 12 24 54,998.47 59,041.96 2,455.89 837.59 750.00
G = 50 14 12 24 23,032.52 29,493.10 4,929.53 831.05 700.00
G = 25 11 18 24 8,364.01 14,651.82 4,978.18 759.63 550.00
μ = 2 26 12 24 47,200.39 58,967.75 9,637.83 829.53 1,300.00
γ = 0.1 15 12 24 52,646.01 59,168.44 4,933.22 839.21 750.00
Multiple 6 15 12 24 52,535.16 59,040.16 4,916.65 838.34 750.00
Deadline 3 14 12 24 52,698.08 59,198.13 4,966.40 833.65 700.00
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congestion Cp decreases, the optimal strategy does not change, only the maximum
profit becomes higher. If the gain per item G decreases to 50, the optimal number of
servers slightly decreases. If it further decreases to 25, the optimal number of servers
more strongly decreases because the gain no longer dominates the costs as strongly as
in other cases. If the mean service time 1/μ increases, the optimal number of servers
strongly increases. If the average deadline 1/γ increases from 3 1

3 day to 10 days, the
optimal strategy does not change while the maximum profit slightly increases since
less customers renege. If the bulk sizes are restricted to multiples of the kit size 6, the
optimal number of servers is the same and the maximum profit is slightly less. Finally,
if the (exponential) reneging rate is set equal to 0, but a finite buffer is chosen of
3KSμ—so that the time in queue of an item that arrives when the queue is almost full
is 3 days with a small variance, mimicking a constant deadline—, the optimal number
of servers slightly decreases (but the profit with 15 servers is very close: 52,697.97).
In comparison to the base case, the difference in performance stems from changing
γ ; the loss probability is negligible in both cases.

Remark 6 The factor E{R} in the objective function (5.1) includes items that have
reneged. The mean sojourn time ES{R} of items that are actually tested could be
computed as indicated in Appendix A. However, the computation of ES{R} takes
much more time than the numerical solution of the global balance equations, and
this burden increases with λ. It might be expected that the optimum will not differ
since it is quite insensitive to the penalty cost Cp. Indeed, replacing E{R} by ES{R}
in Eq. 5.1 leads for λ = 30 up to λ = 600 to the same optimal values of S, k and K
with a slightly smaller maximum profit than in Table 4.

Remark 7 It should be noticed that station 1 plays no direct role in the optimization
problem, due to its behaviour as a delay system (infinite server system). Its role is
confined to a reduction of the arrival rate from � to λ (at station 2), and an adaptation
of the patience at station 2 (by subtracting the time spent in station 1).

Remark 8 We have tried to apply successive overrelaxation (cf. Tijms 1986, Appen-
dix D) to speed up the computation of the steady-state distribution. A factor 1.2
gave divergence in all experiments, a factor 1.1 gave a speed-up in some cases but
divergence in other cases. So for reliability’s sake we have used plain Gauss–Seidel
iteration to generate the tables.

Remark 9 In this paper we have mainly concentrated on the case of exponential
patience. If patience at the second station were deterministic (which is a reasonable
assumption in the case of blood testing), then we’d like to suggest the following
approximation, which is based on an idea that was developed in Boxma and De Waal
(1994) to approximate loss probabilities in multiserver queues with impatience. Let
us assume that patience is deterministic D, and that D is considerably larger than the
mean service time 1/μ; otherwise a large percentage of the customers would even
become impatient in light traffic. Our first observation is that we may assume that
customers who eventually become impatient, are rejected immediately. Consider a
tagged customer C who finds j customers waiting upon arrival. C’s waiting time is
the sum of 	 j

K 
 + 1 exp(μ) service times, which is Erlang (	 j
K 
 + 1, μ) distributed.

Our second observation is that such an Erlang distribution can be quite accurately
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approximated by a deterministic (degenerate) distribution if 	 j
K 
 + 1 is not too

small. This implies that there will be a sharp distinction between (	 j
K 
 + 1) 1

μ
< D

and (	 j
K 
 + 1) 1

μ
≥ D. In the former case, C is likely to remain patient, and in the

latter case he is likely to become impatient (i.e., be rejected immediately). Hence
we propose to approximate the queue length distribution in the M/M[k,K]/1 + D
system by that in the M/M[k,K]/1/R system with finite waiting room R, where R =
K�μD − 1�. The latter system has been studied in Bar-Lev et al. (2007), which paper
allows the service time distribution to be general and depending on the batch size. As
a final remark, we’d like to refer to Iravani and Balciog̃lu (2008) for approximations
for performance measures of the M/G/N + G queue. It may be worthwhile to adapt
their approach to the case of batch service.

Appendix A: Sojourn Times for Served Customers

The distribution of the waiting time W (time in queue) can be obtained both for
customers who are eventually served and for those who renege by conditioning on
the state in which they find the system upon arrival (using PASTA). The conditional
waiting time given the state upon arrival is equivalent to the time until absorption
into either the service state S or the reneging state R of a possibly infinite-state
Markov process, cf. e.g. Neuts (1981, Section 3.9). Let Q+

A be the number of
customers in the queue and let S+

A be the number of busy servers just after the arrival
of a tagged customer. Then, the joint probability that this tagged customer has a
waiting time less than t and is served can be written as

P{W ≤ t,S} =
S−1∑

s=0

p(k − 1, s) +
S−1∑

s=0

k−2∑

n=0

p(n, s)q̃S
n+1(t) +

∞∑

n=0

p(n, S)qS
n+1(t); (A.1)

with

q̃S
i (t) = P{W ≤ t,S|Q+

A = i, S+
A < S}, qS

i (t) = P{W ≤ t,S|Q+
A = i, S+

A = S}.
(A.2)

Similarly, the joint probability that this tagged customer has a waiting time less than
t and reneges can be written as

P{W ≤ t,R} =
S−1∑

s=0

k−2∑

n=0

p(n, s)q̃R
n+1(t) +

∞∑

n=0

p(n, S)qR
n+1(t); (A.3)

with

q̃R
i (t) = P{W ≤ t,R|Q+

A = i, S+
A < S}, qR

i (t) = P{W ≤ t,R|Q+
A = i, S+

A = S}.
(A.4)

Case 1 S+
A < S.

The situation when a customer finds at least one server idle is relatively simple. In
this case the number of busy servers is irrelevant, because the new arrival will either
renege or become part of the first formed batch (of size k). The Markov process to
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be considered for the conditional waiting time has transient states {1, 2, . . . , k − 1},
representing the number of customers present in the queue, and absorbing states S ,
entered with rate λ from state k − 1, and R, entered with rate γ from all transient
states {1, 2, . . . , k − 1}. Let Q̂(t) be the number of customers in the queue and let Ŝ(t)
be the number of busy servers at time t after the arrival of the tagged customer. The
auxiliary functions for the transient states,

q̃i(t, n) = P{Q̂(t) = n, Ŝ(t) < S|Q̂(0) = i, Ŝ(0) < S}, i, n = 1, . . . , k − 1, (A.5)

satisfy the forward differential equations: for i, n = 1, . . . , k − 1,

d
dt

q̃i(t, n) = λI{n>1}q̃i(t, n − 1) + nγ I{n<k−1}q̃i(t, n + 1) − (λ + nγ )q̃i(t, n). (A.6)

The conditional waiting time probabilities are then determined by: for i = 1, . . . ,

k − 1,

d
dt

q̃S
i (t) = λq̃i(t, k − 1); d

dt
q̃R

i (t) = γ

k−1∑

n=1

q̃i(t, n). (A.7)

The conditional mean waiting times can be computed as follows. First, write the
forward differential equations (A.6) for the transient states in the matrix-vector
form

d
dt

q̃i(t) = Aq̃i(t). (A.8)

Then, solve ωi from A2ωi = ei, with ei the ith unit vector of length k − 1. Finally,

E{W,S|Q+
A = i, S+

A < S} = λωi(k − 1), E{W,R|Q+
A = i, S+

A < S} = γ

k−1∑

n=1

ωi(n).

(A.9)

Case 2 S+
A = S.

The situation when an arriving customer finds all servers busy is more compli-
cated. In this case we have to keep track of the total number of customers in the
queue to determine whether or not a batch can be formed, and of the rank in the
queue of the tagged customer to determine whether this customer becomes part of
a batch or not. So the Markov process has transient states {(r, n), 1 ≤ r ≤ n} with
all servers busy plus {1, 2, . . . , k − 1} with at least one server idle (here, the number
of idle servers and the rank of the tagged customer become irrelevant again), and
absorbing states S and R. The service state S is entered with rate λ from state
k − 1 with an idle server and with rate Sμ from states (r, n) with all servers busy,
if r ≤ K and n ≥ K, or if n = hb + j, h = m, . . . , M − 1, j = 0, . . . , b − 1 and r ≤ hb .
The reneging state R is entered with rate γ from all transient states. Let R̂(t) be the
rank in the queue of the tagged customer at time t after the arrival of this customer.
The auxiliary functions for the transient states, for i = 1, 2, . . . , r = 1, . . . , i, n =
r, r + 1, . . . ,

qi(t, r, n) = P{R̂(t) = r, Q̂(t) = n, Ŝ(t) = S|R̂(0) = Q̂(0) = i, Ŝ(0) = S}, (A.10)
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and for i = 1, 2, . . . , n = 1, . . . , k − 1,

qi(t, n) = P{R̂(t) ≤ Q̂(t) = n, Ŝ(t) < S|R̂(0) = Q̂(0) = i, Ŝ(0) = S}, (A.11)

satisfy the forward differential equations: for i = 1, 2, . . . , r = 1, . . . , i, n = r,
r + 1, . . . ,

d
dt

qi(t, r, n) = λI{n>r}qi(t, r, n − 1) + SμI{n<b}
M−1∑

h=m

qi(t, r + hb , n + hb)

+ SμI{r+K≤i}qi(t, r + K, n + K) + rγ I{r<i}qi(t, r + 1, n + 1)

+ (n + 1 − r)γ qi(t, r, n + 1)

− (λ + nγ + Sμ)qi(t, r, n); (A.12)

and for i = 1, 2, . . . , n = 1, . . . , k − 1,

d
dt

qi(t, n) = λI{n>1}qi(t, n − 1) + nγ I{n<k−1}qi(t, n + 1)

+ Sμ

n∑

r=1

qi(t, r, n) − (λ + nγ )qi(t, n). (A.13)

The conditional waiting time probabilities (A.4) are then determined by: for
i = 1, 2, . . . ,

d
dt

q̃S
i (t) = λqi(t, k − 1) + Sμ

M−1∑

h=m

b−1∑

j=0

hb∑

r=1

qi(t, r, hb + j) + Sμ

∞∑

n=K

K∑

r=1

qi(t, r, n);

(A.14)

d
dt

q̃R
i (t) = γ

k−1∑

n=1

qi(t, n) + γ

m∑

r=1

∞∑

n=r

qi(t, r, n). (A.15)

The conditional mean waiting times can be computed in a similar way as Eqs.
A.8 and A.9, but to write the forward differential equations (A.12) and (A.13)
for the transient states in a matrix-vector form the states have to be put on a
row: first the states {1, 2, . . . , k − 1} with at least one server idle, and then the
states (1, 1), (1, 2), . . . , (1, T1), (2, 2), (2, 3), . . . , (2, T2), . . . , (i, i), (i, i + 1), . . . , (i, Ti)

with all servers busy; here, Tr are suitable truncation levels, r = 1, . . . , i. Further
details are left to the reader.

Once the conditional mean waiting times like Eq. A.9 have been computed,
the conditional mean waiting times ES{W}, given that a customer is eventually
served, and ER{W}, given that a customer reneges, can be computed with the
aid of Eqs. A.1 and A.3. The conditional mean sojourn times then follow from
ES{R} = ES{W} + 1/μ and ER{R} = ER{W}. As a check, it should hold that
(1 − Ploss)ES{R} + Ploss ER{R} = E{R}, cf. Eq. 4.12.
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Appendix B: Power-Series Expansions

An option for numerical analysis of the M/M/S queue with batch services and dead-
lines that we have considered is the power-series algorithm (PSA) as summarized in
Blanc (1993). The PSA has proven to be a very useful analytic-numerical method for
the analysis of multi-dimensional Markov chains. In principle, it can be applied to
any Markov chain that satisfies some mild regularity conditions; see also Hooghiem-
stra and Koole (2000). Its main limitations are the storage requirements for the
coefficients of the power-series expansions of the joint queue-length probabilities
(but this is not an issue in this one-dimensional model) and the fact that some
technical parameters have to be tuned by trial and error for proper convergence of
the power series and for avoiding numerical inaccuracy.

Because arrivals occur one by one, the stationary state probabilities for the current
model allow the following power-series expansions with θ = λ:

p(n, s) = θn+sk
∞∑

�=0

θ� b(�; n, s), n = 0, 1, . . . , k − 1, s = 0, 1, . . . , S − 1; (B.1)

and

p(n, S) = θn+Sk
∞∑

�=0

θ� b(�; n, S), n = 0, 1, . . . . (B.2)

Substitution of these power-series expansions into the global balance equations leads
after some rearrangements to a set of recursions for the coefficients b(�; n, s). The
coefficients b(�; 0, 0) which are not included in the above scheme because the factor
in front of this coefficient vanishes, are determined by the requirement that the
probabilities sum to one. The efficiency of the algorithm is further enhanced in Blanc
(1993). A peculiarity of the current system with reneging customers is that it is stable
for all λ > 0. If a system is stable for all positive values of the arrival rate, then the
bilinear mapping discussed in Blanc (1987) for obtaining convergence of the series
(B.1) and (B.2) is not suitable. In such cases a bilinear mapping of the following form
may be useful:

θ = λ

H + Gλ
, λ = Hθ

1 − Gθ
. (B.3)

This maps λ = ∞ to θ = 1/G. Table 6 displays some results obtained with the
PSA; here, G and H are the parameters of the mapping (B.3) and L is the level

Table 6 Some test results with the PSA

λ μ S k K γ E{Q} p(0, 0) Ploss E{B} E{O} G H L

0.95 1.0 1 1 1 1.0 0.3367 0.3867 0.3545 1.00 0.61 0.00 1.0 20
0.95 1.0 1 1 1 0.1 1.6376 0.2138 0.1724 1.00 0.79 0.28 1.0 25
0.95 0.5 1 2 2 0.5 0.7856 0.2319 0.4135 2.00 0.56 1.00 0.54 25
0.95 0.5 1 2 2 0.1 2.0689 0.0990 0.2178 2.00 0.74 1.00 0.1 40
0.95 0.5 1 1 2 0.5 0.8475 0.1783 0.4460 1.28 0.82 0.00 1.0 25
0.95 0.5 2 1 1 0.5 0.4833 0.1496 0.2544 1.00 1.42 0.00 1.0 20
0.95 1/8 2 2 4 0.1 2.9192 0.0086 0.3073 2.88 1.83 1.00 0.1 60
0.95 1/12 2 6 6 1/12 3.5336 0.0050 0.3100 6.00 1.31 1.00 0.07 120
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(power of θ) at which the summations in Eqs. B.1 and B.2 have been truncated. As
is illustrated in this table, suitable values for these parameters, which have to be
found by trial and error, vary strongly with the parameters of the model. And in
contrast to other applications of the PSA, minor deviations of the stated values of
G and H make the PSA unstable in the sense that adding more and more terms
does not improve the convergence of the series due to loss of accuracy, even in
conjunction with the epsilon algorithm, cf. Blanc (1993). The reason for the problem
may lie in an interplay of the effects of reneging customers and batch services. On
the one hand, entire functions like e−λ (in the case γ = μ = 1, k = K = S = 1) may
appear in the queue-length distribution of systems with reneging customers. Rational
functions produced by the PSA with the epsilon algorithm will all fail to be good
approximations for large enough values of λ. In this case, the version of the PSA with
postponed normalization (PSA/N) as introduced in Hooghiemstra and Koole (2000)
suffers the same problem since it has to approximate the function e+λ. On the other
hand, the queue-length distributions of M/M/1 systems with batch services are known
to possess branch points as function of λ, which may lie close to the origin λ = 0.
Branch points can be approximated by rational functions, but their presence close to
the origin influences good choices for G and H. Unfortunately, this makes the PSA
in its present forms unsuitable for optimization of the current system whereby the
performance has to be evaluated for a variety of parameter settings, in contrast to
the successful optimization in, e.g., Blanc and Van der Mei (1995).
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